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Abstract—An analysis of a synchronous generator in a bond 

graph approach is proposed. This bond graph allows to determine the 
simplified models of the system by using singular perturbations. 
Firstly, the nonlinear bond graph of the generator is linearized. Then, 
the slow and fast state equations by applying singular perturbations 
are obtained. Also, a bond graph to get the quasi-steady state of the 
slow dynamic is proposed. In order to verify the effectiveness of the 
singularly perturbed models, simulation results of the complete 
system and reduced models are shown. 
 
Keywords—Bond graph modelling, synchronous generator, 

singular perturbations 

I. INTRODUCTION 
HE synchronous machine has long been the most 
important of the electromechanical power conversion 

devices, playing a key role both in the production of electricity 
and in certain special drive applications. Thus, an 
understanding of their characteristics and accurate modelling 
of their dynamic performance are of fundamental importance 
to the study of power system stability. 
    The modelling and analysis of the synchronous machine has 
always been a challenge. The problem was worked on 
intensely in the 1920s and 1930s, and has been the subject of 
several more recent investigations..  

Many books and papers have used the traditional 
mathematical model of a synchronous machine [1], [2], [3]. 
Nevertheless in [4] a synchronous machine model considering 
a class of equivalent circuits with sufficient flexibility to 
permit the introduction of an arbitrary number of damper 
windings. Also, the singular perturbations method is applied to 
synchronous machine without damping windings in [5]. The 
transfer function block diagram model of a generator has been 
employed to analyze generator dynamic characteristics in [6]. 

    Hence, it is useful to develop mathematical models of a 
synchronous machine to explain their electric, magnetic and 
mechanical behavior. However, these phenomenons using a 
bond graph model of the system can be analyzed in a direct 
and graphical way. 

    In other wise, bond graph was established by [7]. The 
idea was developed by [8] and [9] how a powerful tool of 
modelling. The main key points of the bond graph 
methodology are: a model containing the energetic junction 
structure, i.e., the system architecture; different energy 
domains are covered and the coupling of subsystems are 
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allowed; the cause to effect relations of each element are 
obtained graphically; and the state variables have a physical 
meaning. 

    A bond graph is a model of a dynamic system where a 
collection of components interact with each other through 
energy ports. These components are placed in the system 
which exchanges energy. A bond graph consists of subsystems 
linked by lines to show the energetic connections. A bond 
graph can represent a variety of energy types and describes 
how the power flows through the system [7], [8]. 

    A fundamental problem in the theory of systems and 
control is the mathematical modeling of a physical system. The 
realistic representation of many systems calls for high-order 
dynamic equations. The presence of some parasitic parameters, 
such as small time constants, resistances, inductances, 
capacitances, moments of inertia, and Reynolds number, is 
often the source for the increased order and stiffness of these 
systems. The stiffness, attributed to the simultaneous 
occurrence of slow and fast phenomena, gives rise to time 
scales. The systems in which the suppression of a small 
parameter is responsible for the degeneration (or reduction) of 
dimension (or order) of the system are labeled as singularly 
perturbed systems, which are a special representation of the 
general class of time scale systems [13]. 

    The purpose of this work is to apply the bond graph 
methodology to a synchronous machine on the two-axis 
theory, in order to obtain the simplified models of this 
electromechanical machine using singularly perturbations 
theory in a direct and easy way. The main contribution of this 
paper is to obtain the fast and slow bond graphs of the 
synchronous generator from a linearized bond graph and to 
verify the models through of simulation results. 

    Section II gives the bond graph model of a physical 
system using the junction structure. A nonlinear bond graph 
model of a synchronous machine is described in section III. A 
subsection presenting a linearized bond graph of the machine 
is proposed in section III. The simplified models of the 
machine applying singular perturbations theory are presented 
in section IV; where a bond graph of the fast state variables of 
the machine is obtained. Also, a quasi-steady state bond graph 
for the slow state variables is presented. Simulation results are 
shown in section IV. Finally, conclusions are given in section 
V. 

II. BOND GRAPH MODEL 
Consider the following scheme of a multiport LTI system 

which includes the key vectors of fig. 1 [9], [10].  
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Fig. 1 Key vectors of a bond graph 

 
In fig. 1, (MSe,MSe), (I,C) and (R) denote the source, the 

energy storage and the energy dissipation fields, (D) the 
detector and (0,1,TF,GY) the junction structure with 
transformers, TF, and gyrators, GY. 

    The state x   n is composed of energy variables p and 
q associated with I and C elements in integral causality, u  

 p denotes the plant input, y    q the plant output, z  
  ⁿ the co-energy vector, and Din   r and Dout   r 

are a mixture of e and f showing the energy exchanges 
between the dissipation field and the junction structure [9], 
[10].    The relations of the storage and dissipation fields are, 

 z Fx=  (1) 
 out inD LD=  (2) 
The relations of the junction structure are, 

 11 12 13

21 22 23
out

in

z
x S S S

D
D S S S

u

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

&
 (3) 

The entries of S take values inside the set {0, ±1, ±kt, ±kg} 
where kt and kg are transformer and gyrator modules; S  
and S  are square skew-symmetric matrices and S  and 
S  are matrices each other negative transpose. The state 
equation is  [9], [10]: 

 p px A x B u= +  (4) 
were, 

 ´ 11 12 21( )pA S S MS F= +  (5) 

 ´ 11 12 23pB S S MS= +  (6) 
being 

 1
22( )M I LS L−= −   

Next section gives a bond graph model of a synchronous 
generator. 

III. A BOND GRAPH MODEL OF A SYNCHRONOUS GENERATOR 
    Synchronous generators form the principal source of 

electric energy in power systems, many large loads are driven 
by synchronous motors and synchronous condensers are 
sometimes used as a means of providing reactive power 
compensation and controlling voltage. These devices operate 
on the same principle and are collectively referred to as 
synchronous machines [1]. 

    It is useful to develop mathematical models of a 
synchronous machine to explain their electric, magnetic and 
mechanical behavior. However, a graphical model of a 

synchronous machine is described in this section, this new 
model is based on bond graph model. 

    In this paper, the following assumptions are made for the 
development of a mathematical and graphical model for a 
synchronous machine: S : the stator windings are 
sinusoidally distributed along the air-gap; S : the stator slots 
cause no appreciable variation of the rotor inductances with 
rotor position; S : magnetic hysteresis is negligible; S : 
magnetic saturation effects are negligible. 

    Consider the representation of a synchronous generator of 
fig. 2 [1], [2]. 

 
Fig. 2 Schematic diagram of a synchronous generator 

 
    In fig. 2, we can identify the following elements: 
 

• a, b, c: stator phase windings. So, ia, ib, ic denote the 
stator phase currents; va, vb, vc denote the stator phase 
voltages, ra, rb, rc denote the stator phase resistances and 
Laa, Lbb,  Lcc denote the stator phase self inductances. 

• F: field winding with iF and vF denote the field current 
and voltage, respectively; rF denotes the field 
resistance and LF denotes the field self inductance. 

• D: d-axis amortisseur circuit with iD and vD denote the 
amortisseur current and voltage on the d-axis, 
respectively; rD denotes the amortisseur resistance on the 
d-axis and LD denotes the amortisseur self inductance on 
the d-axis. 

• Q: q-axis amortisseur circuit with iQ and vQ denote the 
amortisseur current and voltage on the q-axis, 
respectively; rQ denotes the amortisseur resistance on the 
q-axis and LQ denotes the amortisseur self inductance on 
the q-axis. 

 
The synchronous generator of fig. 2, is represented by six 

windings are magnetically coupled. The magnetic coupling 
between the windings is a function of the rotor position. The 
instantaneous terminal voltage v of any winding is in the form, 

 v ri λ= ± ±∑ &  (7) 
where λ is the flux linkage, r is the winding resistance and i 

is the current with positive directions of stator currents flowing 
out of the generator terminals. 

A great simplification in the mathematical description of the 
synchronous machine is obtained from the Park's 
transformation. The effect of Park's transformation is simply to 
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transform all stator quantities from phases a, b and c into new 
variables the frame of reference of which moves with the rotor. 
Thus by definition [1]. 

 odq abci Pi=  (8) 
 where the current vectors are defined as, 

 0 0

T

dq d qi i i i⎡ ⎤= ⎣ ⎦  (9) 

 [ ]T
abc a b ci i i i=  (10) 

 and the Park’s transformation is, 

( ) ( )
( ) ( )

1 1 1
2 2 2

2 2 2cos cos cos3 33
2 2sin sin sin3 3

P π πθ θ θ

π πθ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥
⎢ ⎥− +
⎣ ⎦

(11) 

 The angle between the d axis and the rotor is given by, 

 2Rt πθ ω δ= + +  (12) 

 Where Rω  is the rated angular frequency in rad/s and δ is 
the synchronous torque angle in electrical radians. 
    Similarly, to transform the voltages and flux linkages, 

 0dq abcv Pv=  (13) 

 0dq abcPλ λ=  (14) 
In according with fig. 2, we described the bond graph model of 
the synchronous machine on d-q axis, in fig. 3 that satisfies the 
conditions 1 4S S−  of this section. This bond graph is 
different respect to [11] on the directions of the bonds 14, 15, 
17 and 19, and we use a voltage source on the exciting 
winding. 

 
Fig. 3. Bond graph model of a synchronous generator. 

 
    In fig. 3, Tm is the mechanical torque, Tj is the moment of 
inertia, D is the damper coefficient, I:MdDF and I:MQq  are the 
magnetic coupling between self and mutual inductances of the 
windings on d-axis and on q-axis, respectively. 
    The key vectors of the bond graph of fig. 3 for the storage 
field are, 

 

[ ]
[ ]
[ ]

3 4 5 10 11 18

3 4 5 10 11 18

3 4 5 10 11 18

T

T

T

x p p p p p p

x e e e e e e

z f f f f f f

=

=

=

&  (15) 

and for the dissipation field, 

 
[ ]
[ ]

2 7 8 9 13 20

2 7 8 9 13 20

T
in

T
out

D f f f f f f

D e e e e e e

=

=
 (16) 

The constitutive relations of the bond graph model of fig. 3 
are, 

 { }, , , , ,d F D Q qL diag r r r r r D=  (17) 

 { }1 , ,dDF Qq jF diag M M T− =  (18) 

were 

 
d dD dF

dDF dDF D DF

dF DF F

L M M
M M L M

M M L

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (19) 

 
Q qQ

qQ
qQ q

L M
M

M L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (20) 

A. A Linear Bond Graph of a Synchronous Generator 
 

By neglecting the amortisseur circuits D and Q, i.e. 
removing the bonds 4, 8, 9 and 10 and applying the procedure 
to linearize the nonlinear bond graph of the synchronous 
machine [14] of fig. 3, a linearized bond graph of the 
synchronous machine is shown in fig. 4. 

 
Fig. 4. Linearized bond graph. 

 
The state equation of the linearized system is given by, 

x A x B uδ δ δ δ δ= +  
 were, 
 

0 1
11 11 12 21 13( )xA S S S MS F Sδ = + + +  

13 12 23
xB S S MSδ = +  

with the junction structure of the linearized bond graph, 

0 0
11 11 12 13 13

12 22 23 0

x x
out

in

z
x DS S S S S
D uS S S

u

δ

δ

δ

⎡ ⎤
⎢ ⎥⎡ ⎤+⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎣ ⎦

&

%

 

and 
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0 1
13 13S u S xδ=%  

 The junction structure of the linearized bond graph is. 

0 3 3 1
11

1

0
0

T
x h

S
h

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
; 0 3 3 2

13
2

0
0

T
x h

S
h

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
 

 

1 0 0qo doh λ λ⎡ ⎤= −⎣ ⎦
% %  and 2 0 0q dh λ λ⎡ ⎤= −⎣ ⎦  

The state equation of the linearized synchronous generator is 
given by, 

0 0

1

0 0

1 2

0 0 0
*

0

d DF F q q

F

j q d d

j DF F

r M L L
r

A F
T r L
T a M a L D

δ

ω λ

ω λ
−

− − − −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥− −⎢ ⎥⎣ ⎦

 

3B Iδ = , 1 0 0q qa i λ= −  and 2 0 0d da i λ= − . 
 

 A bond graph allows to reduce a model by removing some 
of their bonds of the system. In the next section, some 
simplified models of a synchronous machine using singularly 
perturbations theory are obtained. 

IV. A SINGULARLY PERTURBED SYNCHRONOUS GENERATOR 
    In previous section a mathematical model with six 

nonlinear differential equations of the bond graph of a 
synchronous machine can be found. Thus, the complete 
mathematical description of a large power system is 
exceedingly complex, and simplifications are often used in 
modeling the system. By using a bond graph the reduced 
models can be directly obtained. Because it is necessary to 
eliminate the respective bonds to neglect some part of the 
model. 

The singular perturbation model of finite dimensional 
dynamic systems, extensively studied in the mathematical 
literature by Tikhonov (1948,1952), Levinson (1950), 
Vasil'eva (1963), Wasow (1965), O'Malley (1971), etc. was 
also the first model to used in control and systems. 

Linear time invariant models are of interest in local or small 
signal approximations of more realistic nonlinear models of 
dynamic systems [13], [14]. Consider a LTI system to study 
two time scale properties of the following form, 

 1 11 1 12 2 1x A x A x B u= + +& , 1
nx ∈ℜ  (21) 

 2 21 1 22 2 2x A x A x B uε = + +& , 2
mx ∈ℜ  (22) 

 The slow reduced model is obtained by setting 0ε =  in 
(22) then, 

 1 1
2 22 22 1 22 2s s sx A A x A B u− −= − −  (23) 

substituting (23) into (21) we have, 
 ( ) ( )1 1

1 11 12 22 21 1 1 12 22 2s s sx A A A A x B A A B u− −= − + −&  (24) 

 The fast reduced model is obtained by introducing the fast 
time scale η=(t-t )/ε in (21) and (22). x1f, x2f, uf denote the 
fast parts of variables x , x  and u. 

A. Decoupling Fast Dynamic Behavior 
 According to [14] there is a condition for decoupling fast 
and slow behavior from a singularly perturbed system which is 
the invertibility of A  associated with the fast part of the 
system. For decoupling the fast behavior we can apply one of 
the next two procedures proposed by [14] for the case when a 
bond graph model has C or I elements of different order of 
magnitude and R elements of the same order of magnitude 
(Procedure 1) and when a bond graph model has R elements of 
different order of magnitude and C or I elements of the same 
order of magnitude (Procedure 2). 
    Procedure 1 
    The fast reduced bond graph is deduced from the global one 
by suppressing: 
 

• All the C or I elements with large modulus. 
• All the R elements causally connected with these C or I 

elements directly or indirectly through other R elements. 
• All the input sources having no causal connection with the 

remaining C, I and R elements. 
 
    Procedure 2 
    The fast reduced bond graph is deduced from the global one 
by suppressing: 
 

• All the C elements causally connected  with large valued R 
elements or large valued R elements in the case of an 
algebraic loop. 

• All the R elements without causal connection with the 
remaining C, I or R directly or indirectly through other R 
elements. 

• All the input sources having no causal connection with the 
remaining C or I directly or indirectly through other R 
elements. 

 
    In the case of linearized bond graph of synchronous 
generator, we have I elements with the same order of 
magnitude and R elements with different then it is possible to 
apply Procedure 2 and the fast reduced part of the bond graph 
is shown in Fig. 5. 
 

 
Fig.  5 Bond graph of fast reduced part 
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 Simulation results of the fast state variables using the bond 
graph model of Fig. 5, and variables of the linearized bond 
graph of Fig. 3 are obtained. The numerical parameters of the 
synchronous generator are: Mq=1.64H, Ld=1.7H, LF=1.65H, 
MdF=1.55H, Rd=0.1Ω, Rf=1Ω, Rq=2Ω, Jr=12.37N m s², 
D=1N m s, Vq=1.2246V, Vd=0, Vf=30V and 
Tm=100N m. Hence, electrical currents on d and q-axis are 
shown in Fig. 6 and 7, where IdL and IqL are the electrical 
current of the linearized bond graph on d and q-axis, 
respectively, and IdLF and IqLF are the electrical currents of the 
fast bond graph on d and q-axis, respectively. 
 

 
Fig. 6 Electrical current on d-axis 

 

 
Fig. 7 Electrical current on q-axis 

 
Fig. 8 shows electrical current on the field winding. 

 
Fig. 8 Electrical current on the field winding 

 
 We can verify that the performance of the fast variables 
using the linearized bond graph and the simplified fast bond 
graph are similar having the same steady state response. 
 

B. Quasi-Steady State 
 For the slow part and so called "quasi" steady state of the 
system we apply a different procedure which proposes to 
assign derivative causality to storage elements that represent 
the fast states and the storage elements of slow states maintain 
an integral causality assignment. Fig. 9 shows the bond graph 
to determine the quasi-steady state. 

  

 
Fig. 9 Quasi-steady state bond graph 

 
 The junction structure of the quasi-steady state bond graph 
is defined by, 

1
11 12 11 11 11

1 11 11 12 13 14 2
21 22 21 21 21

2 11 11 12 13 14
11 12
21 21 22 23 24

h
out

h
in

z
x H H H H H x
z H H H H H D
D H H H H H u

w

⎡ ⎤
⎢ ⎥⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

& &

 (25) 

where h h h
out inD L D= . Thus, the quasi-steady state model is,  

 

 L L
11 1x A x B u= +&  (26) 

with 
 L ( )11 11 11

11 11 12 21 1A H H QH F= +  (27) 

 L 11 11
1 13 12 23B H H QH= +  (28) 

 1
22( )h hQ L I H L −= −  (29) 

 In order to compare the simulation results of the angular 
velocity of the quasi-steady state bond graph model (W_L_S) 
with linearized bond graph (W_L), fig. 9 shows the 
performance of the both variables indicating that are similar. 
 

 
Fig. 9 Angular velocity of the quasi-steady state and linearized state 

 
 Fig. 10 compares the behavior of the angular velocity of the 
nonlinear bond graph respect to linearized bond graph models 
showing that effectively the angular velocity is a slow state 
variable. 
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Fig. 10 Angular velocity of the nonlinear and linearized bond graphs 
 
 Note that the bond graph methodology with singular 
perturbations theory allows to have a graphical tool decoupling 
state variables with fast and slow dynamics in a direct manner. 

V. CONCLUSIONS 
 This work describes a nonlinear bond graph model of a 
synchronous machine. Also, the linearized bond graph of the 
machine is proposed. In order to disconnect the state variables 
of a LTI system with two time scale the singular perturbations 
theory to bond graph methodology is applied. Hence, a bond 
graph of fast state variables of the synchronous machine is 
proposed. Also, a bond graph of the slow state variables of the 
machine is presented. Simulation results of the synchronous 
generator using nonlinear, linearized, fast and slow bond 
graphs models are shown. 
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