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Abstract—Dengue fever is an important human arboviral 
disease. Outbreaks are now reported quite often from many parts of 
the world. The number of cases involving pregnant women and infant 
cases are increasing every year. The illness is often severe and 
complications may occur.  Deaths often occur because of the 
difficulties in early diagnosis and in the improper management of the 
diseases. Dengue antibodies from pregnant women are passed on to 
infants and this protects the infants from dengue infections. 
Antibodies from the mother are transferred to the fetus when it is still 
in the womb. In this study, we formulate a mathematical model to 
describe the transmission of this disease in pregnant women. The 
model is formulated by dividing the human population into pregnant 
women and non-pregnant human (men and non-pregnant women). 
Each class is subdivided into susceptible (S), infectious (I) and 
recovered (R) subclasses. We apply standard dynamical analysis to 
our model. Conditions for the local stability of the equilibrium points 
are given. The numerical simulations are shown.  The bifurcation 
diagrams of our model are discussed. The control of this disease in 
pregnant women is discussed in terms of the threshold conditions. 

Keywords—Dengue disease, local stability , mathematical 
model, pregnancy. 

I. INTRODUCTION

ENGUE a mosquito borne viral disease with a high 
capacity for epidemic outbreaks. It has become the most 

important arthropod-borne viral disease of human. There are 
four serotypes: dengue 1, 2, 3 and 4. This disease is 
transmitted to the human through the bite of infected Aedes
mosquitoes, particularly Aedes Aegypti [1]. Infection by any 
of the four serotypes induces lifelong immunity against re-
infection by the same serotype, but only partial and transient 
protection against the others. Dengue fever (DF), Dengue 
hemorrhagic fever (DHF) and Dengue shock syndrome (DSS) 
are three forms of this disease. Sequential infection by 
different serotypes seems to be the main trigger of DHF or 
DSS. Infection with dengue virus can result in a wide disease     
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spectrum, from a mild fever to the life-threatening DHF and 
DSS. Symptoms of classical dengue fever, following a 5-8 
day incubation period, include rash, severe headache, nausea,  
vomiting, chills, malaise, and rash and may include 
lymphadenopathy. DHF involves increased blood vessel 
permeability that can lead to shock and death in about 10% of 
the reported cases. Until now, there is no efficient vaccine to 
prevent this disease.

Dengue fever occurs in people of all ages. It has been 
estimated that there are between 50 and 100 million cases per 
year, with approximately 10,000 infant deaths due to this 
disease. DHF follows secondary dengue infections, but may 
sometimes follow primary infections, especially in infants. In 
such infants,  maternally acquired dengue antibodies are 
presumed to enhance primary infections. About 30% of 
dengue cases are reported in patients older than 15 years [2]. 
In 1989, there have been reported cases of vertical infection in 
Tahiti [3]. Since then, there have been reports of increasing 
number of cases in Thailand,  Malaysia, France and India  [3]-
[9].  

There have been reported cases of dengue virus infection in 
pregnancy; they are shown in Table 1.   More cases of dengue 
infection during pregnancy have occurred because of the 
increasing incidences of dengue infection among adults. An 
infection should be suspected when a pregnant woman is 
presented with similar patterns of symptoms and signs like 
those seen in non-pregnant human.  Dengue infection during 
pregnancy should be of greater concern because of the 
possibility of increased mortality, particularly in preterm 
deliveries with premature babies. Where dengue fever is 
endemic, the dengue infection should be highly suspected in 
cases of febrile pregnant women, and a thorough investigation 
should be conducted to confirm the infection and prevent the 
possible maternal and fetal complications which could occur 
[10]. According to the CDC (The Centers for Diseases Control 
and Prevention (USA)), some vaccine- preventable infections 
lead to more severe illness in pregnant women than in non-
pregnant human or can cause serious damage to the fetus.
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TABLE I
REPORTED CASES ON  DENGUE  DISEASE  IN  PREGNANCY [24] 

No  of 
cases Quantity Reference 

1989 9 China [11] 
1991 5 French  [3]
1994 >60 Thailand, Cuba [4, 12] 
1997 5 Thailand, Malaysia [2, 13]
1999 22 French [14] 
2000 38 French [15] 
2001 4 Thailand, French [5, 6, 10] 
2003 27 Thailand, Bangladesh, 

Colombia  
[16, 17, 18, 19, 
20] 

2004 3 Thailand [21, 22] 
2005 8 India [8] 
2006 26 Malaysia [23] 
    

Antibodies (also known as immunoglobulin) [25] are 
gamma globulin proteins that are found in blood or other 
bodily fluids of vertebrates, and are used by the immune 
system to identify and neutralize foreign objects, such as 
bacteria and viruses. There are vaccines that are useful in 
preventing infections during pregnancy. Vaccination protects 
against infection by stimulating the body’s immune system to 
produce antibodies that in many cases are protective. Some 
infections are less common in newborn infants because they 
have antibodies from their mothers that prevent these 
infections.  

Mathematical modeling of disease transmission has a long 
history. In 1911, an epidemiology model for malaria 
transmission was developed by Ross [26]. Mac Donald [27] 
later added a layer of biological realism to the model by 
providing careful interpretation and estimation of the 
parameter, which should go into the model. Mc Kenzie [28] 
has pointed out that the utility of a model depends not as much 
on how well a mathematical job has been accomplished but on 
how well a particular question has been translated. If one is 
interested in disease transmission, it is imperative that the 
model describes as closely as possible the characteristics of 
the disease being transmitted. 

Modeling the dynamics of dengue transmission may help to 
improve the understanding of the interrelationships between 
dengue virus, vector, and host. Esteva and Vargas [29] 
introduced a mathematical model to provide a qualitative 
assessment for the problem. The model they used is based on 
the SIR model often used to model the dynamics of 
transmission for some diseases. It does not however describe 
the transmission of dengue in pregnant women. The purpose 
of this paper is to study the transmission of dengue disease in 
a population containing both pregnant and non-pregnant 
human through a mathematical model. In section 2, we 
introduce a mathematical model to describe the transmission 
of dengue disease in pregnant and non-pregnant classes. The 
analytical results of the model are presented in Section 3.  In 
the last section, numerical solutions of the model are 
presented.

II. MATHEMATICAL MODEL

We propose a new model to study the transmission of 
dengue virus infection by introducing pregnant and non-
pregnant classes into the SIR model. We classify the human 
population into two groups, pregnancy and non-pregnancy.  
Each group is constant in size and is divided into three classes, 
susceptible, infectious and recovered human populations. The 
vector population is divided into two groups, susceptible and 
infectious mosquitoes, with the mosquitoes never recover 
from the infection. In our SIR model, the dynamic of each 
component of the human population is given. 

'
' ' ' vPH

PH H PH VNH PH VH
T h

bdS N S S I
dt N O

    (1.1) 

'
' ' ' ( )vPH

VNH PH VH H IHR PH
T h

bdI S I I
dt N O

     (1.2) 

'
' 'P H

IH R P H H P H
d R I R

d t
         (1.3) 

'
' ' 'NH v

NH H NH VNH NH VH
T h

dS bN S S I
dt N O

    (1.4) 

'
' ' ' ( )NH v

VNH NH VH H IHR NH
T h

dI bS I I
dt N O

     (1.5) 

and '
' 'N H

IH R N H H N H
d R I R

d t
         (1.6) 

where ' ', ,PH PHS I  and '
PHR  are the numbers of susceptible,  

infectious, and recovered pregnant women, respectively; 
' ', ,NH NHS I and '

NHR  are the numbers of susceptible, 

infectious, and recovered non- pregnant human populations , 
respectively.

The parameters in our model are defined as follows: 

pr   is  the percentage of the women to become pregnant, 

TN   is the number of human population (assumed to be  

constant), 

hO    is the number of alternative hosts available as blood   

sources,

vb    is the average rate of biting per mosquito per day , 

   is the average constant birth rate of the human  

       population, 

H
   is the average constant death rate of the human 

population, 

IHR
   is the constant rate at which an infected human 

recovers,

VNH
  is the transmission probability from vector to non-

pregnant human, 

VPH
  is the transmission probability from vector to pregnant 

women, 
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  is the ratio between transmission probability from 
vector to pregnant women and  transmission 
probability from vector to non-pregnant human. 

The last parameter is of most interest to us in this study.  
We are interested in the role of this parameter in determining 
how the infection in pregnant women progresses.  

We now add (1.1) to (1.6), (1.1) to (1.3) and (1.4) to (1.6).  
The six equations reduce to the following three equations  

' ' ' ' ' '( )T
T H PH PH PH NH NH NH

dN N S I R S I R
dt

(2.1)
' ' '( )PH

PH H PH PH PH
dN N S I R

dt
       (2.2) 

' ' '( )NH
NH H NH NH NH

dN N S I R
dt

       (2.3) 

where

TN (= ' ' ' ' ' '
PH PH PH NH NH NHS I R S I R ) is the 

total human population , 
PHN  (= ' ' '

PH PH PHS I R ) is the 

total number of pregnant women and 
' ' '( )NH NH NH NHN S I R  is the number of non-pregnant 

human. 
We assume that the total population remains constant. 

Therefore 0
dt

dN
dt

dN
dt

dN NHPHT

with ,
100
p T

PH

r N
N

(100 )
100

p T
NH

r N
N  and 

T PH NHN N N . With the number of each human class is 

constant, the rate of change in each class is equal to zero. 
Setting the right hand side of (2.1), (2.2)  and (2.3) to be zero, 
we obtain 

H
 (birth rate equals to the death rate).   The 

dynamic equations of the vector population are described by 
'

' ' ' '( ),VH v
H V VH NHV VH PH NH

T h

dS bV S S I I
dt N O

(3.1)
and '

' ' ' '( ) ,VH v
NHV VH PH NH V VH

T h

dI bS I I I
dt N O

 (3.2) 

where '
VHS  and '

VHI  are the number of susceptibles and 

infectives in the vector population, respectively. 
VH  is the constant recruitment rate of the vector 

population,  

V
  is the average constant death rate of the vector 

population , 

NHV
is the transmission probability from non-pregnant   

human to vector, 

PHV
is the transmission probability from pregnant women   

   to vector , 
  is the ratio between transmission probability from   
 pregnant women to vector and the  transmission  

probability  from non-pregnant human to vector. 
When we add  (3.1) to (3.2), we get  

' '( ) ,VH VH H V v
d S I V N
dt

          (3.3) 

where
vN  is the number of the vector population and it is 

equal to ' '
VH VHS I . We assume the number of the vector 

population is also constant.  Then the right hand side of (3.3) 
is equal to zero. This gives 

H
v

V

VN
. We now introduce the 

normalized populations '
PH

PH
PH

SS
N

, '
PH

PH
PH

II
N

,

'
PH

PH
PH

RR
N

 , '
NH

NH
NH

SS
N

, '
NH

NH
NH

II
N

 , '
NH

NH
NH

RR
N

 , 

'
VH

VH
H V

SS
V

 and '
VH

VH
H V

II
V

.

Then (1.1)-(1.6), (3.1) and (3.2) can be rewritten as 

(1 ) ,PH v
H PH VNH PH VH H V

T h

dS bS S I V
dt N O

     (4.1) 

( ) ,vPH
VNH PH VH H V H IHR PH

T h

bdI S I V I
dt N O

                       (4.2) 

(1 ) ,NH v
H NH VNH NH VH H V

T h

dS bS S I V
dt N O

     (4.3) 

( ) ,NH v
VNH NH VH H V H IHR NH

T h

dI bS I V I
dt N O

                       (4.4) 
and (1 ) ( ) ,VH v

NHV VH PH PH NH NH V VH
T h

dI bI I N I N I
dt N O

(4.5)
The dynamic equations for

PHR  ,
NHR  and 

VHS  are not 

needed, since 1PH PH PHS I R , 1NH NH NHS I R  and 

1VH VHS I .

III. ANALYSIS OF THE MATHEMATICAL MODEL

A. Equilibrium Points  
The equilibrium points are obtained by setting the right 

hand side of (4.1)-(4.5) equal to zero. We get two equilibrium 
points, the disease free state 

1 (1,0,1,0,0)E  and the 

endemic disease state * * * * *
2 ( , , , , )PH PH NH NH VHE S I S I I

where
* 1

*
1 2

PH
VH

S
I

,             (5.1) 

*
* 1 2

*
1 2 1 3( )

VH
PH

VH

II
I

,        (5.2) 
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* 1
*

1 2
NH

VH

S
I

,            (5.3) 

*
* 1 2

*
1 2 1 3( )

VH
NH

VH

II
I

,       (5.4) 

And where *
VHI  are solutions of  

* 2 *
1 2 3( ) 0VH VHA I A I A           (6.1) 
The solutions of (6.1) are given by 

2
2 2 1 3*

1
1

4
2VH

A A A A
I

A
 ,        (6.2) 

and
2

2 2 1 3*
2

1

4
2VH

A A A A
I

A
        (6.3) 

where 1 1
3 3 1 2

2 2

(( ) )A K K K ,    (6.4) 

1
2 1 3 2 3 1 2

2

(( ) )A K K K K K K , (6.5) 

and 1 1 2 3A K K K             (6.6) 

with 
1 ( )H T hN O  ,

2
H

VNH v
V

V b

3 ( )IHR T hN O   and  2
1 1 2( )NHV v PHK b N ,

2
2 1 2( )NHV v NHK b N  , 2

3 1 3 2( )( )( )V T hK N O .

Looking at the term in square root of *
1VHI  and *

2VHI ,

2
2 1 34A A A   is positive for 2 2 2 1

1 3

1K K
K

. Since 

1
3 1 2

2

( ) 0K K K , then 3A  is negative and 1A  is 

always positive.  Moreover 2
2 1 34A A A  is greater than 

2A . We can easily see that 
2

2 2 1 3

1

4
0

2
A A A A

A
  and 

2
2 2 1 3

1

4
0

2
A A A A

A
 . The solution 

2
2 2 1 3*

2
1

4
2VH

A A A A
I

A
 is negative. This is physical 

meaningless since the infectious vector proportion  must be 
positive. Hence the solution is defined  for 0 1R

2 2 2 1
0

1 3

( )K KR
K

.

B. Local Asymptotical Stability  
The local stability of an equilibrium point is determined 

from the signs of eigenvalues of the Jacobian matrix of the 
right hand side of the above set of differential equations. 

C. Disease Free State
For the system defined by (4.1)-(4.5), the Jacobian matrix 

evaluated at 
1E  is the 5x5 matrix given by 

1

0 0 0

0 0 0

0 0 0

0 0 0

0 0

v
H VNH H V

T h

v
H IHR VNH H v

T h

v
H VNH H VE

H h

v
H IHR VNH H V

T h

v v
NHV PH NHV NH V

T h T h

b V
N O

b V
N O

b VJ
N O

b V
N O

b bN N
N O N O

The eigenvalues are obtained by solving the characteristic 
equation; 

1E 5det(J I ) 0  where 5I  is the identity 

matrix dimension 5x5. If all eigenvalues for each equilibrium 
state have negative real parts then that equilibrium state is 
locally stable. The characteristic equation for the disease free 
state is given by  

2
1 0 0,H H IHR H B B    (7) 

where
2

0 ( ) [ ] ( / )( ),v
V H IHR NHV VNH H V NH HP

T h

bB V N N
N O

1 H V IHRB .
From the characteristic (7), the first three eigenvalues are 

1 H , 2 H IHR   and 3 H . The 
remaining eigenvalue is found by solving 

2
1 0 0B B .

It can be easily seen that 1 2,  and 3  are always 

negatives. We can see that  
2

1 1 0
4

4
2

B B B
 and 

2
1 1 0

5

4
2

B B B
. The eigenvalue 4  has a negative 

real part. 5  has negative real part when 

2
1 0 14B B B  or 2 2

1 0 14B B B  or 0 0B . So that 

2( ) ( / )( ) ( ) 0.v
V H IHR NHV VNH H V NH HP

T h

b
V N N

N O

 and  

2( / )( ) ( )
1

( )

v
NHV VNH H V NH HP

T h

V H IHR

bV N N
N O

. Thus, 

the disease free state is locally stable state when

2 2 1
0

1 3

( ) 1K KR
K

.             (8) 
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D.  Endemic Disease State  
 The local stability of the endemic state, 

2E , is determined 

by looking at the signs of  the eigenvalues of the Jacobian 
evaluated at 

2E .    The Jacobian matrix for this state is 
* *

* *

* *

2

* *

* * * *
0 0 0 0 0 0

- - 0 0 0 -

- - 0 0

0 0 - - 0 -

0 0 - -

0 - 0 - - - -

H VH PH

VH H IHR PH

H VH NH
E

VH H IHR NH

VH VH PH NH V

I S

I S

I SJ

I S

c c I d d I c I d I

,

with 

( / )v
VNH H V

T h

b V
N O

,

0
v

NHV PH
T h

bc N
N O

and 0
v

NHV NH
T h

bd N
N O

where * * * *, , ,PH PH NH NHS I S I  and *
VHI  are defined in (5.1)-

(5.4), (6.1) and 0 1R 2 2 2 1
0

1 3

( )K KR
K

.    (8) 

The characteristic equation for the endemic state is given by 
4 3 2

3 2 1 0( )( ) 0H IHR a a a a   (9.1) 
 where 

* * *
3 1 0 0 3VH PH NH IHR H Va I c I d I ,   (9.2) 

2* *
2 0 0 2

1 ( ( ( )) (( 2 ) (2 3 ))VH VH IHR H H IHR Ha I c d I

* * * * * * * *
2 10 2 3 0( ( (1 ( ) ) ) ( )PH VHNH NH VH NH NH VH PH PHd I S I R I c I I R I I

* *
3 2 3) ( ) )PH VH VI I           (9.3) 

* * * *
2 31 2 4 0

1 ((2 ( (( )VH VHVH H NH NH NHa I d I I R S I

* * * * * * * 2
4 12 ) 2( ( ( ) ) 3 )VH VHNH VH IHR NH VH NH NH H NH HI I R I S I I I I

* * * * * * * *
2 30 2( (( ) ) 2( (VH VHPH PH PH NH VH IHR PH VH PHc I I R S I I I I I I

* * * * 2 * *
1 0 5 0 6) ) 3 ) ( ) ( (PH VH PH PH IHR H PH H VH VHI I R I I d c I I

* 2
2 2) 2( ) 3 ) )))IHR VH IHR H H VI ,      (9.4) 

* * * * 2
5 6 2 30 0 7 0 8 0

1 ( ( ) ( (( )VH VH VH VHH NH IHR H NH NH NHa d c d I I I I I R I S

* * * * * * 2 *
1 5 60( ( ) ) )) (VH IHR VH VHNH NH NH NH VH H NH H PHI I R S I I I c I I I

* * * 2 * * * * * *
2 3 1(( ) ( (( )VH VH VHH PH PH PH H PH VH PH PH VH PHI I R I S I I I I R I S

*
5 64 9) ))) )VH VHPH H VI I I          (9.5) 

with
1 2 3 4 5 6 7

1(1 ), (1 ), 3 , , 2 , 2 , ,IHR H IHR H H H H

2* * * * * *
1 2 1 28 9, , , , 1 , 1 ,PH PH VH VHH IHR H PH PH PH PH VH VHI I S I I S I I I I

2* * * * *
3 4 5 6, , ,VH VH VH VHVH VH VH IHR VH H VH HI I S I I I I I I

From the characteristic (9.1), the first eigenvalue

1 H IHR  is always negative. The other eigenvalues 

are found by solving 4 3 2
3 2 1 0 0a a a a .  The 

signs of these eigenvalues are negatives when they satisfy the 

Routh-Hurwitz criteria [30] which are:  
i) 3 0a ,               (10.1) 

ii) 1 0a ,                (10.2) 

iii) 0 0a ,                  (10.3) 

iv) 2 2
3 2 1 1 3 0a a a a a a              (10.4) 

We now map out the regions in 3a -  phase space, 1a -

phase space, 0a -  phase space and ( 2 2
3 2 1 1 3 0a a a a a a  ) - 

phase space in which the four above conditions are met and
0 1R .  These are  shown in the following figures. 

Fig. 1 The parameter space for the endemic equilibrium point which 
satisfies the Routh-Hurwitz criteria. The values of the other 
parameters are 1

H 0.000039139 day ,
1

V 0.071428571 day , 100,000,TN 40,000HV
1

vb 0.33333 day , 1
IHR 0.33333 day , 500,PHN

VNH 0.9, NHV PHV0.7, 0.4 , 0.5714286,
99,500NHN .

From the above figure, Routh-Hurwitz criteria (10.1) to 
(10.4) are satisfied for 0 1R . Thus, the endemic equilibrium 
state is locally stable when 0 1R .

E. Numerical Results
In this section, we consider the transmission of this disease 

among the pregnant and non-pregnant  classes.  The 
trajectories of the solutions when the parameter values will 
lead to a disease free equilibrium  state and when they will 
lead to the endemic equilibrium state are shown in the figures. 
The values of the  parameters used in this study are 

H 0.000039139  per day. This corresponds to a life 
expectancy of 70 years in human. The mean life of mosquito 
is 14 days and so is V 0.071428571 per day. 0R  is  

defined in (8). 'R0  is the basic reproductive number 
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determined from the square root of 0R [29]. We assume that 
the number of the non-pregnant human is  greater than the 
number of the pregnant women and there is no alternative 
host.   We have taken the ratio  and  to be less than one. 
The trajectories of  the numerical solutions of (4.1)-(4.5) are 
shown in the following figures.

                            2a)                                                2b) 

Fig. 2 Numerical solutions  demonstrate the solution trajectories, 
projected into two 3D space  PH PH VH(S , I , I ), NH NH VH(S , I , I )
respectively. The value of parameters are 

1
H 0.000039139 day , 1

V 0.071428571 day ,
1

vb 0.33333 day , 1
IHR 0.33333 day , VNH 0.9,

VPH 0.3 , NHV PHV0.7, 0.4 , 0.33333 ,

0.5714286 , TN 100,000, NHN 99,500,

PHN 500 . 2a) 0R 1 , V 2,000, R 0.209476,H 0
'R 0.4576850 . The fractions of populations PH PH NH(S , I ,S ,

NH VHI , I ) approach to the disease free state (1,0,1,0,0) . 2b)  

0R 1 , V 40,000, R 4.18953,H 0
'R 2.046830 . The 

trajectory of the five state variable solution 

PH PH NH NH VH(S , I ,S , I , I ) spirals into the endemic disease 

equilibrium state (0.162904,0.000110251,0.060917,
0.0000982777,0.000359141) .

Fig. 2 shows the trajectories of the solutions of (4.1) – (4.5) 

in the 3D PH PH VH(S , I , I ) space and the NH NH VH(S , I , I ) for

two values of 0R .    We now look at the trajectory of the 

solutions when the threshold numbers are different. We show 

these trajectories in Fig. 3.

3a)                                            3b) 
Fig. 3 Numerical solutions  demonstrate the solution 
trajectories, projected onto the 3D space for  different values 
of the ratio .  The values of parameters are the same as those 
used to generate the curves in Fig. 2, except for the ratio 
between transmission probability of the virus from the vector 
to pregnant women and that from the vector to the non-
pregnant human.   3a)  For 0.375 , R 9.31117,0

'R 3.051420 . The trajectories of the five component 

solution PH PH NH NH VH(S , I ,S , I , I ) appears to spiral into the 
equilibrium state (0.0698949,0.000109197, 0.0274079,
0.000114185, 0.000372021)  3b) The trajectory  

when 0.888889 , R 104.905 ,0
'R 10.24230 .The

trajectories here spiral to the new equilibrium state  
(0.00273964,0.000117081, 0.00243598,0.000117117,
0.000381617) .

Note that R0  is the threshold condition, if it is less than one 
then the disease free state will be locally stable. But if this 
number is more than one, the endemic disease state will be 

locally stable. 'R R0 0  is the  basic reproductive number 
of this disease. 

IV. DISCUSSION AND CONCLUSION

In this study, we are interested in the transmission of 
dengue disease in pregnant and non-pregnant classes. The 
threshold number is defined by 0R  where

2 2 1
0

1 3

( )K KR
K
2 2

VNH NHV v NH H v VPH PHV v PH H v
2 2

v T h H IHR v T h H IHR

b N (V / ) b N (V / )
(N O ) ( ) (N O ) ( )

  (11) 

The square root of the second term of this number is the 
number of secondary infective pregnant women. To see how 
this term arises, we first note that 
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v H v

T h H IHR

b (V / ) 1( )( )
(N O ) ( )

is the number of times that the 

susceptible mosquitoes will bite an infected pregnant women.   
Of these, only a fraction of them will end up as a special class 
of infectious mosquito.  The number of infectious mosquitoes 
in the class will be the number of bites multiplied by the 
probability that the bite will end up as an infection which 
is PHV .  Of these mosquitoes, only a faction of them 

v PH

v T h

b N
( )
N O

 will bite a pregnant woman.  In turn, only a 

fraction ( VPH ) of these pregnant women will become 
infectious. The number of secondary infectious pregnant 

women will be the product of v H v

T h H IHR

b (V / ) 1( )( )
(N O ) ( )

times PHV times v PH

v T h

b N
( )
N O

 times VPH .  This is just 

the second term in (11).  For a disease to be capable of 
invading and establishing itself in a host population, the full 
threshold number R0 must be greater than one.  Otherwise, 
every successive generation will get smaller until no 
population is left .

Fig. 2 shows ( PH PH NH NH VHS , I ,S , I , I ) moving towards their 
equilibrium state.   We see the trajectory approaching the 
disease free equilibrium state (1,0,1,0,0) when 0 1R .
When 0 1R , we see the trajectory is spiraling into the 
equilibrium endemic disease state (0.162904,0.000110251,
0.060917, 0.0000982777, 0.000359141) . Using the 
numerical values for the various parameters which give 

0 1R in the expressions for the ia ’s, (9.2) – (9.5), the 
characteristic equation becomes a 4th order numerical 
polynomial  equation which can be solved by the program 
mathematica .  The solution of this equation is a complex 
number, meaning that the eigenvalues are complex.  For the 
imaginary part, the program finds that the complex part of the 
eigenvalue is approximately 0.005946. This corresponds to a 
period of oscillation of 2 / 0.005946 days or approximately 
2.89511 years. The numerical solutions of 
( PH PH NH NH VHS , I ,S , I , I ) for 0 1R  when 0.375  and 

0.88889  are shown in Fig.3.  We see the trajectories 
spiraling toward the different endemic disease states 
(0.0698949,0.000109197, 0.0274079, 0.000114185,
0.000372021) and (0.00273964,0.000117081,
0.00243598,0.000117117, 0.000381617) , for the two 
values of , respectively. The imaginary part of the two 
eigenvalues are approximately 0.00900892  and  0.029841.   
These imaginary values correspond to periods of oscillation of 
approximately 1.91079 years and 0.576863 years. 

Fig. 4 Bifurcation diagrams of the solutions of equations (4a)-(4e) for 

the different values of 0R .  denote the stable solutions 

while  denote the unstable solutions.  The values of the 

parameters used in the calculations are: 
1

H 0.000039139 day ,

1
V 0.071428571 day , 1

vb 0.33333 day ,
1

IHR 0.33333 day , VNH VPH0.9, 0.3 ,

NHV PHV0.7, 0.4 , 0.33333 , 0.5714286 ,

TN 100,000, NHN 99,500, PHN 500 ,

H 1V 40,000 , 3.91389 , 2 356,000 , 33,333.33 ,

11
1K 8.18265 10 , 14 18

2 3K 2.84961 10 , K 2.92237 10 .
The bifurcation diagrams of (4.1)-(4.5) are shown in the 

Fig. 4.  We can see that, when 0 1R 1, E  will be stable and 
for 0 2R 1, E  will be stable.  If the threshold number is 
greater than one, the normalized susceptible pregnant and 
non-pregnant human populations decrease. The normalized 
infectious pregnant human, non-pregnant human and 
infectious vector populations increase. This subsequent 
behavior occurs since there are enough susceptible pregnant 
human and non-pregnant human to be infected from infectious 
vector.

The ultimate goal of any control effort would be the 
reduction of 0R  to a value below  one [29,31,32,33]. If we 
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can reduce the second term of the threshold number as defined 
in (11), then the number of women during their pregnancies 
will be decreased. Consequently, the infants will be not 
infected with dengue virus from vertical transmission. This 
will reduce the outbreaks of dengue disease in neonates. 

REFERENCES

[1] World Health Organization , Dengue Haemorrhagic fever:Diagnosis 
treatment control., Geneva, 1997.  

[2] J. K. Chye, C. T. Lim, J. M. Lim, R. George, and S. K. Lam, “Vertical 
transmission  of dengue,” Clin Infect Dis.,vol 25, pp. 1374-7, 1997. 

[3] L. Poli, E. Chungue, O. Soulignac, P. Kuo, and M. Papouin-Rauzy, 
“Materno-Feral dengue,” Bull Soc Path  Exot, vol. 84 , pp. 513-521, 
1991. 

[4] P. Thaithumyanon, U. Thisyakorn, J. Deerojnawong, and B. L. Innis, 
“Dengue infection complicated by severe hemorrhage and vertical 
transmission in a parturient woman,” Clin Infect Dis, vol. 18 , pp. 248-
249, 1994. 

[5] T. Doussemart, P. Babe, G. Sibille, C. Neyret, and C. Berchel, “Prenatal 
transmission of dengue:two new cases,” J Perinatol, vol. 21 , pp. 255-
257, 2001.  

[6] A. Kerdpanich, V. Watanaveeradej, R. Samakoses, S. Chumnanvanakij, 
T. Chulyamitporn, P. Sumeksri, and et al, “Perinatal dengue infection,” 
Southeast Asian J  Trop Med  Publ Health, vol. 32, pp. 488-493. 

[7] L. Kabilan, S. Balasubramanian, S. M. Keshava, V. Thenmozhi, G. 
Sehar, S. C. Tewari  , and et al, “Dengue disease spectrum among infants 
in the 2001 dengue epidemic in Chennai, Tamil Nadu,         India,” J.  
Clin  Microbiol, vol. 41, pp. 3919-3921, 2003.  

[8] N. Malhotra, C. Chanana, and S. Kumar, “Dengue infection in 
pregnancy,” Int J Gynecol Obstet, vol. 94 , pp. 131-132, 2006.  

[9] V. Wiwanitkit, “Dengue haemorrhagic fever in pregnancy:appraisal on 
Thai cases,” J  Vector Borne Dis, vol. 43, pp. 203-205, 2006.

[10] V. Phupong, “Dengue fever in pregnancy:a case report,” BMC
Pregnancy and Childbirth, vol. 1, pp. 1471-2393, 2001. 

[11] K. Y. Chong, and K. C. Lin, A preliminary report of the fetal effects of 
dengue infection in pregnancy, Gaoxiong Yi Xue Ke Xue Za Zhi, vol. 5,
pp. 31-34, 1989.  

[12] L. T. Figueiredo, H. Carlucci, and G. Duarte, “Prospective study with 
infants whose mothers had dengue during pregnancy,” Rev Inst  Med 
Trop Sao Paulo, vol. 36, pp. 417-421, 1994.  

[13] S. Bunyavejchevin, S. Tanawattanacharoen, N. Taechakraichana, U. 
Thisyakorn, Y. Tannirandorn, and K. Limpaphayom, “Dengue 
hemorrhagic fever during pregnancy:       antepartum, intrapartum and 
postpartum management,” J Obstet Gynaecol Res, vol. 23, pp. 445-448, 
1997.  

[14] G. Carles, H. Peiffer, and A. Talarmin, “Effects of dengue fever during 
pregnancy in French Guiana,” Clin  Infect Dis, vol. 28, pp. 638-40, 
1999. 

[15] G. Carles, A. Talarmin, C. H. Peneau, and M. Bertsch, “Dengue fever 
and pregnancy,  A study of 38 cases in French Guiana,” J Gynecol 
Obstet , vol. 29, pp. 758-762, 2000. 

[16] P. Witayathawornwong, “Parturient and perinatal dengue hemorrhagic 
fever,” Southeast Asian J  Trop Med  Publ Health, vol. 34, pp. 797-799,
2003.  

[17] S. Ahmed, “Vertical transmission of dengue: first case report from 
Bangladesh,” Southeast Asian J  Trop Med  Publ Health, vol. 34, pp. 
800-803, 2003. 

[18] B. N. Restrepo, D. M. Isaza, C. L. Salazar, J. L. Ramirez, G. E. Upegui, 
and M. Ospina, “Neonatal and postnatal effects of dengue infection 
during pregnancy,”  Biomedica, vol. 23, pp. 416-423, 2003.  

[19] U. Chotigeat, S. Kalayanarooj, and A. Nisalak, “Vertical transmission of 
dengue , infection in Thai infant: two case reports,” J Med Assoc Thai,
vol. 86, pp. 628-632, 2003. 

[20] W. Janjindamai, and P. Pruekprasert, “Perinatal dengue infection: a case 
report and        review of literature,” Southeast Asian J  Trop Med  Publ 
Health, vol. 34, pp. 793-796, 2003. 

[21] S. Sirinavin, P. Nuntnarumit, S. Supapannachart, S. Boonkasidecha, C. 
Techasaensiri, and S. Yoksarn, Pediatr Infect Dis J,vol.  23, pp. 1024-
1027, 2004.  

[22] W. Petdachai, J. Silaon, S. Nimmannitya, and A. Nisalak, “Neonatal 
dengue infection:        report of dengue fever in a 1-day-old infant,” 
Southeast Asian J  Trop Med  Publ Health, vol. 35, pp. 403-407, 2004.  

[23] NAM. Ismail, M. Kampan, Z. A. Mahdy, M. A. Jamil, and ZRM. Razi, 
Dengue in pregnancy,” Southeast Asian J  Trop Med  Publ Health, vol. 
37, pp. 681-683, 2006. 

[24] W. Ranmali, G. N. Malavige, M. Pradeepan, N. Chandrika, F. Sirimali, 
and L. Suranjith, “Dengue infections during pregnancy: A case series 
from Sri Lanka and review of the literature,” J Clin Virol, vol. 37, pp. 
27-33, 2006. 

[25] G. W. Litman, J. P. Rast, M. J. Shamblott, R. N. Haire, M. Hulst, W. 
Roess, and et al, “Phylogenetic diversification  of        immunoglobulin 
genes and the antibody repertoire,” Mol Biol Evol, vol. 10, pp. 60-72, 
1993. 

[26] R. Ross, The Prevention of Malaria, Second  Edition, Murray,  London. 
[27] G. MacDonald, The Epidemiology and Control of Malaria, Oxford 

University        Press, London, 1957. 
[28] F. E. McKenzie, “Why model malaria ?,” Parasititology Today , vol. 16, 

pp. 511-516, 2000. 
[29] L. Esteva, and C. Vargas, “Analysis of a dengue disease transmission 

model,” Math Biosci, vol. 150, pp. 131-151, 1998. 
[30] M. Robert, Stability and Complexity in Model Ecosystems, Princeton 

University Press, New Jersey, 1973. 
[31] P. Pongsumpun, K. Patanarapelert, M. Sripom, S. Varamit, and I. M. 

Tang,           “Infection risk to travelers going to dengue fever endemic 
regions,” Southeast Asian J  Trop Med  Publ Health, vol. 35, pp. 155-
159, 2004.  

[32] P. Pongsumpun, and I. M . Tang, “Mathematical model for the 
transmission of Plasmodium Vivax Malaria,” Int J math models and
methods in  applied sci, vol. 3, pp. 117-121, 2007. 

[33] F. C. Coelho, C. T. Codeco, and C. J. Struchiner, “Complete treatment of 
uncertainties in a model for dengue R0 estimation,” Cad Saude Publica, 
vol. 24, pp. 853-861, 2008. 


