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Analysis for a food chain model with
Crowley–Martin functional response and time delay

Kejun Zhuang, Zhaohui Wen

Abstract—This paper is concerned with a nonautonomous three
species food chain model with Crowley–Martin type functional
response and time delay. Using the Mawhin’s continuation theorem
in theory of degree, sufficient conditions for existence of periodic
solutions are obtained.

Keywords—Periodic solutions; coincidence degree; food chain
model; Crowley–Martin functional response.

I. INTRODUCTION

THE dynamic behaviors of food chain systems have re-
ceived more and more attention due to their universal ex-

istence and importance. Many kinds of these models have been
extensively investigated [1], [2], [3], [4], [5], [6]. All these
studies depend on the classical types of functional responses,
such as Holling types, Mechaelies–Menten ratio–dependent
type, Beddington–DeAngelis type, Hassell–Varley type and
so on. As far as we know, there are very few literatures to
discuss the population dynamics with Crowley–Martin type
functional response [7], [8], [9], [10]. The Crowley–Martin
type functional response is classified as one of predator–
dependent functional response. It is assumed that predator–
feeding rate decreases by higher predator density even when
prey density is high, and therefore the effects of predator
interference in feeding rate remain important all the time
whether an individual predator is handling or searching for
a prey at a given instant of time.

Recently, R.K. Upadhyay and R.K. Naji have studied a three
species food chain model with Crowley–Martin type functional
response in [7] in the form of

⎧

⎪

⎨

⎪

⎩

Ẋ(t) = a1X
(

1 − X
K

) − wXY
X+D ,

Ẏ (t) = −a2Y + w1XY
X+D1

− w2Y Z
1+dY +bZ+bdY Z ,

Ż(t) = −cZ + w3Y Z
1+dY +bZ+bdY Z ,

(1)

where all the parameters are positive constants. The prey X
grows with intrinsic growth rate a1 and carrying capacity
K in the absence of predation; D and D1 measure the
extent to which environment provide protection to prey X and
Y , respectively; w is the maximum value which per capita
reduction rate of X can attain, w1 has a similar meaning to
w. The constants w2, w3, b and d are the saturating Crowley–
Martin functional response parameters, in which b measures
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the magnitude of interference among predator. Besides, a2 is
the death rate of the intermediate predator and c is the death
rate of the top predator.

For system (1), the stability and persistence conditions were
established and bifurcation diagrams were obtained in [7].
Further, chaotic behaviors have been derived with the help
of numerical results [8]. In addition, local and global stability
for a predator–prey model with Crowley–Martin function and
stage structure was explicitly discussed [9]. It is apparent to
all that time delay is an important factor in biological systems.
Also, the effect of environmental changes cannot be ignored.

In this paper, we mainly focus on the following nonau-
tonomous food chain system with Crowley–Martin functional
response and time delay:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ(t) = x(t)
(

a1(t) − b1(t)x(t) − w(t)y(t)
x(t)+D(t)

)

,

ẏ(t) = y(t)
(

−a2(t) + w1(t)x(t)
x(t)+D1(t)

− w2(t)z(t)
1+d(t)y(t)+b(t)z(t)+b(t)d(t)y(t)z(t)

)

,

ż(t) = −c(t)z(t)
+ w3(t)y(t−τ)z(t)

1+d(t)y(t−τ)+b(t)z(t−τ)+b(t)d(t)y(t−τ)z(t−τ) ,
(2)

here all the coefficients are the positive ω−periodic functions
and time delay τ is the positive constant. The main purpose
of this paper is to explore the existence of periodic solutions
for system (2).

II. PRELIMINARIES

For convenience, we first present the preliminary results
we shall use, more details can be found in [11], [12]. From
the main theorem in [11], we can easily obtain the following
lemma.
Lemma 2.1. Let t1, t2 ∈ [0, ω] and t ∈ R. If g : R → R is
ω−periodic, then

g(t) ≤ g(t1) +
1
2

∫ ω

0

|g′(t)|dt

and
g(t) ≥ g(t2) − 1

2

∫ ω

0

|g′(t)|dt,

where the constant factor 1/2 is the best possible.
For simplicity, we use the following notations throughout

this paper:

Iω = [0, ω], ḡ =
1
ω

∫

Iω

g(t)dt =
1
ω

∫ ω

0

g(t)dt,

fM = max
t∈Iω

f(t), fL = min
t∈Iω

f(t).
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Now, we introduce some concepts and a useful result from
[12]. Let X,Z be normed vector spaces, L : DomL ⊂ X →
Z be a linear mapping, N : X → Z be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimkerL = codim ImL < +∞ and ImL is closed in
Z. If L is a Fredholm mapping of index zero and there exist
continuous projections P : X → X and Q : Z → Z such that
ImP = kerL, ImL = kerQ = Im(I − Q), then it follows
that L|DomL ∩ kerP : (I − P )X → ImL is invertible.
We denote the inverse of that map by KP . If Ω is an open
bounded subset of X , the mapping N will be called L-compact
on Ω̄ if QN(Ω̄) is bounded and KP (I − Q)N : Ω̄ → X is
compact. Since ImQ is isomorphic to kerL, there exists an
isomorphism J : ImQ→ kerL.

Next, we state the Mawhin’s continuation theorem, which
is a main tool in the proof of our theorem.
Lemma 2.2.[12] (Continuation Theorem) Let L be a Fred-
holm mapping of index zero and N be L-compact on Ω̄.
Suppose
(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is such
that u /∈ ∂Ω;
(b) QNu 	= 0 for each u ∈ ∂Ω∩kerL and the Brouwer degree
deg{JQN,Ω ∩ kerL, 0} 	= 0.
Then the operator equation Lu = Nu has at least one solution
lying in DomL ∩ Ω̄.

III. EXISTENCE OF PERIODIC SOLUTIONS

Theorem 3.1. If the condition

wL
1 exp{L1}/(exp{M1} +DM

1 ) > aM
2

is satisfied, where M1 = ln(aM
1 /bL1 ) + ωā1 and L1 =

ln(aL
2D

L
1 /w

M
1 ) − ωā1. Then system (2) has at least one

ω−periodic solution.
Proof Set x(t) = exp{u1(t)}, y(t) = exp{u2(t)}, z(t) =
exp{u3(t)}, then system (2) can be reduced to the following
form,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u̇1(t) = a1(t) − b1(t)eu1(t) − w(t)eu2(t)

eu1(t)+D(t)
,

u̇2(t) = −a2(t) + w1(t)e
u1(t)

eu1(t)+D1(t)

− w2(t)e
u3(t)

1+d(t)eu2(t)+b(t)eu3(t)+b(t)d(t)eu2(t)+u3(t) ,

u̇3(t) = −c(t)+
w3(t)e

u2(t−τ)

1+d(t)eu2(t−τ)+b(t)eu3(t−τ)+b(t)d(t)eu2(t−τ)+u3(t−τ) .

(3)
Then we only need to prove the existence of periodic solutions
for system (3).

Let X = Z =
{

(u1, u2, u3)T ∈ C(R,R3) : ui(t +
ω) = ui(t), i = 1, 2, 3,∀t ∈ R

}

, ‖(u1, u2, u3)T ‖ =
∑3

i=1 maxt∈Iω |ui(t)|, (u1, u2, u3)T ∈ X (or in Z).
Then X and Z are both Banach spaces when they are endowed

with the above norm ‖ · ‖. Let

N

⎡

⎣

u1

u2

u3

⎤

⎦

=

⎡

⎢

⎢

⎣

a1(t) − b1(t)eu1(t) − w(t)eu2(t)

eu1(t)+D(t)

−a2(t) + w1(t)e
u1(t)

eu1(t)+D1(t)
− w2(t)e

u3(t)

1+d(t)eu2(t)+b(t)eu3(t)+b(t)d(t)eu2(t)+u3(t)

−c(t) + w3(t)e
u2(t−τ)

1+d(t)eu2(t−τ)+b(t)eu3(t−τ)+b(t)d(t)eu2(t−τ)+u3(t−τ)

⎤

⎥

⎥

⎦

:=

⎡

⎣

N1(t)
N2(t)
N3(t)

⎤

⎦ ,

L

⎡

⎣

u1

u2

u3

⎤

⎦ =

⎡

⎣

u̇1(t)
u̇2(t)
u̇3(t)

⎤

⎦ , P

⎡

⎣

u1

u2

u3

⎤

⎦ = Q

⎡

⎣

u1

u2

u3

⎤

⎦ =

⎡

⎣

1
ω

∫ ω

0
u1(t)dt

1
ω

∫ ω

0
u2(t)dt

1
ω

∫ ω

0
u3(t)dt

⎤

⎦ .

Then it follows that kerL =
{

(u1, u2, u3)T ∈ X :
(u1(t), u2(t), u3(t))T = (h1, h2, h3)T ∈ R3, t ∈ R

}

, ImL =
{

(u1, u2, u3)T ∈ Z : ū1 = ū2 = ū3 = 0, t ∈ R
}

,dimkerL =
3 = codim ImL.

Since ImL is closed in Z, then L is a Fredholm mapping
of index zero. It is easy to show that P and Q are continuous
projections such that ImP = kerL and ImL = kerQ =
Im(I −Q). Furthermore, the generalized inverse (of L) KP :
ImL→ kerP ∩ DomL exists and is given by

KP

⎡

⎣

u1

u2

u3

⎤

⎦ =

⎡

⎢

⎣

∫ t

0
u1(s)ds− 1

ω

∫ ω

0

∫ t

0
u1(s)dsdt

∫ t

0
u2(s)ds− 1

ω

∫ ω

0

∫ t

0
u2(s)dsdt

∫ t

0
u3(s)ds− 1

ω

∫ ω

0

∫ t

0
u3(s)dsdt

⎤

⎥

⎦
.

Thus

QN

⎡

⎣

u1

u2

u3

⎤

⎦ =

⎡

⎣

1
ω

∫ ω

0
(N1(s)) ds

1
ω

∫ ω

0
(N2(s)) ds

1
ω

∫ ω

0
(N3(s)) ds

⎤

⎦ ,

and

KP (I −Q)N

⎡

⎣

u1

u2

u3

⎤

⎦ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∫ ω

0
N1(s)ds− 1

ω

∫ ω

0

∫ t

0
N1(s)dsdt

− (

1
2 − 1

ω

) ∫ t

0
N1(s)ds,

∫ ω

0
N2(s)ds− 1

ω

∫ ω

0

∫ t

0
N2(s)dsdt

− (

1
2 − 1

ω

) ∫ t

0
N2(s)ds,

∫ ω

0
N3(s)ds− 1

ω

∫ ω

0

∫ t

0
N3(s)dsdt

− (

1
2 − 1

ω

) ∫ t

0
N3(s)ds,

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Clearly, QN and KP (I − Q)N are continuous. According
to the Arzela-Ascoli theorem, it is not difficulty to show that
KP (I−Q)N(Ω̄) is compact for any open bounded set Ω ⊂ X
and QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄.

Now, we shall search an appropriate open bounded subset
Ω for the application of the continuation theorem, Lemma 2.2.
For the operator equation Lu = λNu, where λ ∈ (0, 1), we
have
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u̇1(t) = λ
(

a1(t) − b1(t)eu1(t) − w(t)eu2(t)

eu1(t)+D(t)

)

,

u̇2(t) = λ
(

−a2(t) + w1(t)e
u1(t)

eu1(t)+D1(t)

− w2(t)e
u3(t)

1+d(t)eu2(t)+b(t)eu3(t)+b(t)d(t)eu2(t)+u3(t)

)

,

u̇3(t) = −λc(t)+
λw3(t)e

u2(t−τ)

1+d(t)eu2(t−τ)+b(t)eu3(t−τ)+b(t)d(t)eu2(t−τ)+u3(t−τ) .

(4)
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Assume that (u1, u2, u3)T ∈ X is a solution of system (4) for
a certain λ ∈ (0, 1). Integrating (4) on both sides from 0 to
ω, we obtain
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∫ ω

0

(

b1(t)eu1(t)
)

dt+
∫ ω

0
w(t)eu2(t)

eu1(t)+D(t)
dt = ā1ω,

∫ ω

0
w1(t)e

u1(t)

eu1(t)+D1(t)
dt = ā2ω

+
∫ ω

0
w2(t)e

u3(t)

1+d(t)eu2(t)+b(t)eu3(t)+b(t)d(t)eu2(t)+u3(t) dt,
∫ ω

0
w3(t)e

u2(t−τ)

1+d(t)eu2(t−τ)+b(t)eu3(t−τ)+b(t)d(t)eu2(t−τ)+u3(t−τ) dt = c̄ω.

(5)
Since (u1, u2, u3)T ∈ X , there exist ξi, ηi ∈ Iω , i = 1, 2, 3,
such that

ui(ξi) = min
t∈Iω

{ui(t)}, ui(ηi) = max
t∈Iω

{ui(t)}, i = 1, 2, 3. (6)

From (4) and (5), we have
∫ ω

0

|u̇1(t)| dt ≤ 2ā1ω,

∫ ω

0

|u̇2(t)| dt ≤ 2w̄1ω,

∫ ω

0

|u̇3(t)| dt ≤ 2c̄ω.

By the third equation of (5) and (6), we have

ωc(η3) ≤
∫ ω

0

w3(η3)eu2(η3−τ)dt

and

ωc(ξ3) ≤
∫ ω

0

w3(ξ3)eu2(ξ3−τ)

b(ξ3)d(ξ3)eu2(ξ3−τ)+u3(ξ3−τ)
dt,

thus,

u2(η2) ≥ u2(η3 − τ) ≥ ln
cL

wM
3

and

u3(ξ3) ≤ u3(ξ3 − τ) ≤ ln
wM

3

cLbLdL
.

According to Lemma 2.1, we have the following estimations:

u2(t) ≥ u2(η2) − 1
2

∫ ω

0

|u̇2(t)| dt

≥ ln
cL

wM
3

− ωw̄1 := L2,

and

u3(t) ≤ u3(ξ3) +
1
2

∫ ω

0

|u̇3(t)| dt

≤ ln
wM

3

cLbLdL
+ ωc̄ := M3.

By the first equation of (5), it follows that

b1(ξ1)eu1(ξ1) ≤ a1(ξ1)

and

eu2(ξ2) ≤ eu2(η1)

≤ a1(η1)(eu1(η1) +D(η1))
w(η1)

,

which imply

u1(ξ1) ≤ ln
aM
1

bL1

and

u2(ξ2) ≤ ln
aM
1 (eM1 +DM )

wL
.

Therefore, we have

u1(t) ≤ u1(ξ1) +
1
2

∫ ω

0

|u̇1(t)| dt

≤ ln
aM
1

bL1
+ ωā1 := M1.

and

u2(t) ≤ u2(ξ2) +
1
2

∫ ω

0

|u̇2(t)| dt

≤ ln
aM
1 (eM1 +DM )

wL
+ ωw̄1 := M2.

From the second equation of (5), we obtain

a2(η2) ≤ w1(η2)eu1(η2)

eu1(η2) +D1(η2)
<
w1(η)eu1(η2)

D1(η2)

and
w1(ξ2)eu1(ξ2)

eu1(ξ2) +D1(ξ2)
≤ a2(ξ2) + w2(ξ2)eu3(ξ2),

which reduce to

u1(η1) ≥ u1(η2) > ln
aL
2D

L
1

wM
1

and

u3(η3) ≥ u3(ξ2) ≥ ln
wL

1 eL1

eM1+DM
1

− aM
2

wM
2

.

Then we have

u1(t) ≥ u1(η1) − 1
2

∫ ω

0

|u̇1(t)| dt

≥ ln
aL
2D

L
1

wM
1

− ωā1 := L1

and

u3(t) ≥ u3(η3) − 1
2

∫ ω

0

|u̇3(t)| dt

≥ ln
wL

1 eL1

eM1+DM
1

− aM
2

wM
2

− ωc̄ := L3,

From above, we can get

max
t∈[0,ω]

|u1(t)| ≤ max{|M1|, |L1|} := R1,

max
t∈[0,ω]

|u2(t)| ≤ max{|M2|, |L2|} := R2,

max
t∈[0,ω]

|u3(t)| ≤ max{|M3|, |L3|} := R3.
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Clearly, R1, R2 and R3 are independent of λ. Let R = R1 +
R2 +R3 +R0, where R0 is taken sufficiently large such that
for for the following algebraic equations:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ā1 − b̄1e
u1 − 1

ω

∫ ω

0
w(t)eu2

eu1+D1(t)
dt = 0,

ā2 − 1
ω

∫ ω

0
w1(t)e

u1

eu1+D1(t)
dt

+ 1
ω

∫ ω

0
w2(t)e

u3

1+d(t)eu2+b(t)eu3+b(t)d(t)eu2+u3 dt = 0,

c̄− 1
ω

∫ ω

0
w3(t)e

u2

1+d(t)eu2+b(t)eu3+b(t)d(t)eu2+u3 dt = 0,

(7)

every solution (u∗1, u
∗
2, u

∗
3)

T of (7) satisfies ‖(u∗1, u∗2, u∗3)T ‖ <
R. Now, we define

Ω = {(u1, u2, u3)T ∈ X : ‖(u1, u2, u3)T ‖ < R}.
Then it is clear that Ω verifies the requirement (a) of
Lemma 2.2. If (u1, u2, u3)T ∈ ∂Ω ∩ kerL = ∂Ω ∩
R

3, then (u1, u2, u3)T is a constant vector in R
3 with

‖(u1, u2, u3)T ‖ = |u1| + |u2| + |u3| = R, so we have

QN

⎡

⎣

u1

u2

u3

⎤

⎦ 	=
⎡

⎣

0
0
0

⎤

⎦ .

By the assumption in Theorem 3.1 and the definition
of topological degree, the invariance of homotopy produces
deg(JQN,Ω∩kerL, 0) 	= 0. We have verified that Ω satisfies
all requirements of Lemma 2.2; therefore, system (2) has at
least one ω-periodic solution in DomL ∩ Ω̄. This completes
the proof.

IV. CONCLUSION

This paper has introduced a novel nonautonomous food
chain system with Crowley–Martin type functional response
and time delay. The existence of periodic solutions has been
explored in detail, by means of coincidence degree theory. The
main results show that the three species will vary periodically
under certain conditions.
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