
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

671

Analysis and Research of Two-Level Scheduling
Profile for Open Real-Time System

Yongxian Jin, Jingzhou Huang

Abstract—In an open real-time system environment, the
coexistence of different kinds of real-time and non real-time
applications makes the system scheduling mechanism face new
requirements and challenges. One two-level scheduling scheme of
the open real-time systems is introduced, and points out that hard
and soft real-time applications are scheduled non-distinctively as the
same type real-time applications, the Quality of Service (QoS)
cannot be guaranteed. It has two flaws: The first, it can not
differentiate scheduling priorities of hard and soft real-time
applications, that is to say, it neglects characteristic differences
between hard real-time applications and soft ones, so it does not suit
a more complex real-time environment. The second, the worst case
execution time of soft real-time applications cannot be predicted
exactly, so it is not worth while to cost much spending in order to
assure all soft real-time applications not to miss their deadlines, and
doing that may cause resource wasting. In order to solve this
problem, a novel two-level real-time scheduling mechanism
(including scheduling profile and scheduling algorithm) which
adds the process of dealing with soft real-time applications is
proposed.

Finally, we verify real-time scheduling mechanism from two
aspects of theory and experiment. The results indicate that our
scheduling mechanism can achieve the following objectives. (1) It
can reflect the difference of priority when scheduling hard and soft
real-time applications. (2) It can ensure schedulability of hard
real-time applications, that is, their rate of missing deadline is 0. (3)
The overall rate of missing deadline of soft real-time applications
can be less than 1. (4) The deadline of a non-real-time application is
not set, whereas the scheduling algorithm that server 0S uses can
avoid the “starvation” of jobs and increase QOS. By doing that, our
scheduling mechanism is more compatible with different types of
applications and it will be applied more widely.

Keywords—Hard real-time; two-level scheduling profile;
open real-time system; non-distinctive schedule; soft real-time.

I. INTRODUCTION

ITH the development of real-time systems, the
application of open real-time system, in which hard,

soft and non real-time applications are included, is getting
more and more widespread. This brings new demands and
challenges to the scheduling. So those scheduling approaches,
which are proposed for closed real-time system and suitable
for simplex scope, have already not meet people’s demands.
Therefore the concept “open real-time system” (ORTS) has
been proposed in recent years. The ORTS’s uppermost
characteristic is: when the system is running, all the real-time
or non real-time applications that are developed and validated
independently can be configured dynamically and join in the
system, then they will concurrent with original applications;

Yong-xian JIN is with College of Mathematics, Physics and Information
Science, Zhejiang Normal University, China (E-mail: jyx@zjnu.cn)

and at the time the system is expanded dynamically, the
global schedulability analysis is not needed [1].

After studying scheduling profile [1], this paper points out
the scheme that schedules hard and soft real-time applications
by regarding them as the same ones cannot assure QoS, then
an improved scheme is put forward. The improved scheme
adds the function of dealing with soft real-time applications,
so the problem that schedules hard and soft real-time
applications nondistinctively is solved. Meanwhile we have
taken account of influences to schedulability brought by
non-preemptable sections (NPS). By doing that, our
scheduling mechanism is more compatible with different
types of applications and it will be applied more widely. The
rest of this paper is organized as follows. Section II describes
related works. In section III, we analyze the limitations of
two-level scheduling profile. Section IV presents a novel
scheduling profile and scheduling algorithm. Section V and
VI give the schedulability analysis and simulation results. We
conclude with a short summary and extensions on future
work in Section VII.

II. RELATED WORKS

At present, scheduling profile of ORTS include two kinds:
the first is the method integrating a variety of scheduling
algorithms based on servers within the hierarchical
scheduling framework [1]. It is one of the bandwidth
reservation algorithms using CUS (constant utilization server)
and TBS (total bandwidth server). The two-level scheduling
profile is established based on that. It focuses on
individualized task scheduling to the application system; the
second is the method syncretizing a variety of scheduling
algorithms within a unified architecture [2]. It employs a
unified system-scheduling model which contains some
different scheduling strategies. It permits to configure
multiple scheduling strategies in a unified structure, but the
system can use only one strategy when running. On the basis
of the two kinds of scheduling profile, researchers have
brought forward lots of scheduling algorithms for kinds of
scheduling objects existing simultaneity in an ORTS.

Generalized Processor Sharing (GPS) algorithm [3]
idealizes real-time applications to be a work-flow whose
granularity can be subdivided infinitely, and then each
real-time task will be allocated certain CPU bandwidth
according to its demand. EGPS algorithm [4] inherits the
thought in [3]. Constant Bandwidth Server (CBS) [5,6] and
Hierarchical CBS (H-CBS) algorithm [7] focuses on the
problem of providing efficient run-time support to
multimedia applications in a real-time system, where
different types of tasks can coexist. The bandwidth

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

672

reservation mechanism allows real-time tasks to execute in a
dynamic environment under a temporal protection
mechanism, so that each task will never exceed a predefined
bandwidth, independently of its actual request. Earliest
Deadline as Late as possible-Red Tasks Only (EDL-RTO)
and Blue When Possible (EDL-BWP) [8] are two on-line
algorithms, and the objective is to minimize the average
response time of soft aperiodic request, while ensuring that
the QoS (Quality of Service) of periodic tasks will never be
less than a specified bound. Reference [9] presents the
non-preemptive Group-EDF algorithm for soft
multimedia-application systems. The experiment suggests
this algorithm is more efficient in executing soft multimedia
applications. Reference [10] focuses on scheduling soft
real-time applications of the multiprocessor platform. It
points out that compared with partitioned EDF, global EDF
can get a higher system utilization. Processor Sharing with
Earliest Deadlines First (PShED) algorithm [11] provides
independence among scheduling tasks. Rigorously
Proportional Dispatching Server (RPDS) algorithm [12]
establishes a new hierarchical scheduling framework, and it
schedules types of tasks using time chip as the basic unit.
Open Adaptive Real-Time Scheduling (OARTS) framework
[13], which imports auto control ideas into ORTS scheduling,
can adjust real-time priorities of tasks depending on local
resources. However, it do not think about characteristics of
tasks such as NPS, global resources etc. And they increase
burden of the system because of a mass of computing.
Reference [14] presents Two-Dimensional Priority Real-Time
Scheduling (TDPRTS), and the system allocates different
priorities and corresponding bandwidth for different
algorithms, but the bandwidth can not be adjusted
dynamically. The mechanism is not agile enough so that it is
difficult to make full use of system resources. Reference [15]
presents a multiprocessor scheduling framework for
integrating hard and soft and best-effort (non real-time) tasks.
It ensures that hard real-time deadlines are met and that of
soft ones are less than a bound.

Research above does not synthetically think about the
type of tasks (periodic or aperiodic), the characteristic of
tasks (if they contain NPS, if they require global resources)
and so on. By contrast, the two-level scheduling profile [1]
has its own advantage. The reason is that it admits real-time
and non real-time applications and tasks with different
characteristics, and it can schedule real-time and non
real-time applications in a complex open real-time
environment.

III. ANALYSIS OF THE TWO-LEVEL SCHEDULING PROFILE

A. Related Concepts
Definition 1 Open Real-Time System: Non-relevant

real-time applications and non-real time applications may be
developed and validated independently, and global
schedulability analysis is not necessary when the system is
extended dynamically [1].

Definition 2 Task: Software entity that can accomplish
some function. It is a basic unit of real-time scheduling. An
execution during the task’s lifetime is called a job of this task.
Application is defined by a set consists of multiple tasks.

Definition 3 Server: In this paper it represents a special
task established by the system scheduling mechanism. It
provides service for scheduling objects [16]. There is more
than one server in system and each server is equivalent to a
slow processor.

Definition 4 Server Speed: Assume that the speed of
system processor is 1. Consider a server as a virtual
processor, and then the speed ratio of virtual processor and
the system processor is server speed. The server speed of kS

is: 1k .
Definition 5 Application Event: It means an action

occurred inside the application at some point. In order to
ensure schedulability, the server scheduler must keep track of
moments application events take place. An event of kA refers

to one of the following: a job in kA is released or

completes a job in kA requests for or releases a global

resource; a job in kA enters or leaves a NPS

B. Analysis for Two-level Scheduling Profile
Fig.1 shows the hierarchical (or called two-level)

scheduling framework [1].

Fig. 1 Two-level scheduling architecture

The workload of the processor consists of a variable
number N of real-time applications, called 1A , 2A ,…, NA ,
together with non-real-time applications. All non-real time
applications are executed by a server 0S , while each real-time

application is executed by a server kS (1k). The 0S ,

1S ,…, NS are at the upper level. Each server kS has a

A1 A2 AN

time sharing
scheduler

S0

RM-PCP
scheduler

S1

EDF-SBP
scheduler

S2

cyclic executive
scheduler

SN

ready queue

OS Scheduler
(EDF)

operating system

real-time
application

real-time
application

real-time
application

non-rea-time
applications

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

673

ready queue containing ready jobs of the real-time
application kA , and ready queue of the server 0S contains
ready jobs of all the non-real-time applications. The
server 0S uses a time-sharing algorithm to schedule ready
jobs of all non-real-time applications [17]. At the OS level,
the scheduler provided by the operating system, which we
call OS scheduler, maintains all the servers in the system. It
replenishes the server budget and sets the server deadline for
every server according to the characteristics of the
applications. A server is ready when its budget is nonzero and
its ready queue is not empty. The OS scheduler also has a
ready queue, which contains all the ready servers. It
schedules all the ready servers according to the EDF
algorithm. The hierarchical scheduling scheme, which is
based on two kinds of servers CUS (Constant Utilization
Server) and TBS (Total Bandwidth Server), is one kind of
server scheduling strategies. Server iS may be CUS or
TBS, and it must participate in the system scheduling with
deadline. The difference of CUS and TBS is following:

Assume that iS is a CUS. If its deadline is ,i kd at time t,

,i kd is calculated as follows:

, , 1 , ,max{ , } /i k i k i k i kd t d e (1)

Here ,i k denotes the server speed of iS , and ,i ke
denotes the remaining WCET (worst case execution time).
Server iS replenishes its budget at time , 1max{ , }i kt d , and the

budget value is ,i ke . The deadline setting of TBS is the same
as CUS, and the difference between them is replenishment
time. Suppose job ,i kJ is released at time t: if , 1i kt d , they

are the same; if , 1i kt d , TBS can replenish its budget as
soon as the job , 1i kJ is finished, while CUS has to wait till to
time , 1i kd [16].

Scheduling framework mentioned above can manage
real-time applications and non-real-time applications. About
scheduling non-real-time applications, we have already
discussed in detail in [18]. About real-time applications
scheduling, the original framework has some characteristics
as below:

(1) Each real-time application has its own scheduling
algorithm and server. Each server is allocated certain
bandwidth and it must maintain the current application’s
ready queue and take part in scheduling in OS level.

(2) There are no restrictions on the type of tasks contained
in real-time applications. Periodic tasks, aperiodic tasks and
sporadic tasks are all allowed.

(3) It does not strictly limit tasks’ characteristics in a
real-time application: 1) tasks may preempt each other. 2)
Tasks may request for global resources. 3) Tasks may have
NPS. For those tasks that are nonpredictable or request for
global resources or have nonpreemptable sections, we must
prepare sufficient bandwidth in advance to ensure their
schedulability.

(4) When a real-time application enters the system, global
schedulability analysis is not necessary, but the application

has to pass the acceptance test. Only applications that meet
some conditions can be accepted.

From the four points we know that the original
framework can manage multi-types real-time tasks with a
variety of characteristics and ensure their schedulability.
However, it does not consider the differences between hard
and soft real-time applications when scheduling them, that is
to say, it applies only to hard real-time applications. If iT is a

hard real-time task, ie represents its job’s WCET without

being interrupted. If iT is a soft real-time task, ie is a
statistical or estimated value [12]. So for a soft real-time
application which is made up of soft real-time tasks, the
server speed and execution time it demands are estimated
values when executing. If we use the original framework to
execute a soft real-time application and its actual execution
time is longer than the estimated value, we will not ensure the
schedulability of system. In addition, there is another
difference between hard and soft real-time applications. A
hard real-time application must not miss its deadline;
otherwise it will result in a disaster. A soft real-time
application has an estimated deadline, even though some miss
their deadlines, it will not have a significant loss. However, in
practice, we should try out best to lower the rate of missing
deadline to increase QOS (Quality of Service).

For that reason, we attempt to modify the part of
scheduling real-time applications. It is hoped to present a new
scheduling mechanism to achieve the following objectives:

(1) It should reflect the difference of priority when
scheduling hard and soft real-time applications.

(2) It should ensure schedulability of hard real-time
applications, that is, their rate of missing deadline is still 0.

(3) The overall rate of missing deadline of soft real-time
applications should be less than 1.

(4) The deadline of a non-real-time application is not set,
whereas the scheduling algorithm server 0S uses should try to
avoid the “starvation” of jobs.

IV. A NOVEL SCHEDULING PROFILE AND SCHEDULING
ALGORITHM

To achieve our objectives, a novel scheduling profile is as
follows (shown in Fig. 2). The server ready queue of OS level
is divided into three parts: hard, soft and non-real-time
respectively. Server schedulers of hard and soft real-time
applications use the EDF algorithm, and that of non-real-time
applications uses a time-sharing algorithm.

The discussion will be carried on the premise of the
following conditions:

(1) Tasks in hard and soft real-time applications are all
periodic, and they are scheduled by preemptive algorithms.

(2) All applications are predictable. Periods of tasks in
applications are equal to their relative deadlines, and a job is
always released at the beginning of the period.

(3) Hard and soft real-time applications can include NPS
or use global resources, but if a non-real-time application
includes NPS or use global resources, it will be scheduled as
a soft real-time application.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

674

cyclic executive
scheduler

SN

(4) In this paper a task is the basic scheduling unit. An
application’s schedulability is proved through the
schedulability of tasks it includes, that is, if tasks in an
application are all schedulable, the application is schedulable.

Fig. 2 Novel two-level scheduling profile

The general idea of our new scheduling algorithm is that
different priorities are given three server ready queues which
respectively have hard real-time jobs, soft real-time jobs and
non-real-time jobs. In the system if there are hard real-time
jobs which are ready, they will be executed firstly. When the
server ready queue of hard real-time jobs is empty, soft
real-time jobs will be executed. When the two ready queues
above are empty, non-real-time jobs will be executed. When a
job with lower priority is being executed, if a job with higher
priority becomes ready, it will preempt the former one
immediately. In the following text, some parameters are:

0U : The fixed bandwidth allocated to non-real-time
applications when the system starts. It does not change till the
system terminates.

hU : The total CPU utilization ratio of all hard real-time
applications in the system.

sU : The total CPU utilization ratio of all soft real-time
applications in the system.

tU : The total CPU utilization ratio of system, namely the
total bandwidth already allocated, it meets the equation:

0t h sU U U U
 and 1tU (3)

jB : The maximum execution time of the NPS of all jobs

other than jJ , that is, jB is the maximum blocking time the

job jJ can suffer due to the non-preemptivity of other jobs.
An application must accept the acceptance test before

entrance. If a non-real-time application contains NPS or
needs global resources, it will be scheduled as a soft real-time
application. Otherwise it will directly enter the scheduling

queue of non-real-time applications. When a new application
kA requests for admittance, it provides the following

information in its admission request:
The scheduling algorithm k by kA .

The speed k of the slow processor on which kA is
schedulable.

The maximum length kL of all NPS or critical sections

guarding global resources used by kA .

The shortest relative deadline j of all jobs in kA if kA is
a priority driven application, or the shortest length

j between any two consecutive events of kA if kA is a
time-driven application.

Then the system will respond to that as follows:
Find the type of the server for kA , TBS or CUS (in this
paper it must be TBS).
Allocate the bandwidth kU for kA (here, application are

predictable, so k kU).

If 1max / 1t k j N j jU U B (N is total number

of applications in the system including kA), reject kA . Else,

admit kA , and do following work: create a TBS kS with

server speed kU for kA ; set server budget and server
deadline to zero and increase tU by kU [1].

At application level, if an application releases a new job,
the job will be inserted to the ready queue in order according
to the algorithm used by the scheduler. At OS level, the
system must check ready queues of all real-time applications
continuously. When a job is ready, the system replenishes the
corresponding server’s budget and sets its deadline. Then the
server will join the corresponding server ready queue. The
server scheduling algorithm is:

Step1: Check whether the hard real-time server ready
queue is empty, if empty, go to Step2; else, schedule the first
server in the ready queue and execute the job. When the
execution completes, move the server out of the server ready
queue, go to Step1.

Step2: Check whether the soft real-time server ready
queue is empty, if empty, go to Step3; else, schedule the first
server in the ready queue and execute the job. When the
execution completes, move the server out of the server ready
queue, go to Step1.

Step3: Check whether the non-real-time server is ready, if
it is ready, execute jobs till the moment the next application
event occurs; go to Step1.

IV. SCHEDULABILITY PROOF

Next we will verify whether our two-level scheduling
profile can achieve the anticipatory objects:

(1) Through the description of the algorithm, we know that
hard real-time jobs always have priority over soft real-time
and non real-time jobs, and hard real-time jobs are blocked
only happens when soft ones are in their NPS or holding

hard real-time
 application

A1 A2 AN

time sharing
scheduler
 S0

RM-PCP
scheduler

S1

EDF-SBP
scheduler

S2

Ready Queue
(hard)

OS Scheduler
(EDF)

Operating System

non real-time
applications

hard real-time
 application

Ready Queue
(soft)

S0

soft real-time
 application

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

675

global resources. If that happens, can hard real-time jobs
complete before their deadlines? In other words, will soft
real-time jobs affect the schedulability of hard ones or not? It
will be proved in (2).

(2) To ensure the rate of missing deadline of hard real-time
application is 0, we need make all jobs released by this
application must complete before their deadlines.

Here, three points need to be proved: 1) if real-time
applications do not have NPS or request for global resources,
hard real-time applications are schedulable. 2) If a hard
real-time application has NPS or requests for global
resources, it will not affect other hard real-time applications’
schedulability. 3) If a soft real-time application has NPS or
requests for global resources, it will not affect hard real-time
applications’ schedulability. They will be proved by the
following three theorems.

Theorem 1: if the system uses the EDF algorithm to
schedule the server ready queue of hard real-time applications
and if real-time applications do not have NPS or use global
resources, hard real-time applications are schedulable.

Proof: (i) Real-time applications include hard and soft
ones. If they do not have NPS or use global resources,
according to our algorithm, soft real-time jobs will never
block hard ones. Thus, soft real-time applications do not
affect the schedulability of hard ones. (ii) Liu CL et al.[19]
have proved that in a task set which includes many hard
real-time tasks, if and only if the CPU utilization ratio of all
tasks is not more than 1, the task set is schedulable with the
EDF algorithm. And if a task set is schedulable with other
algorithms, it is also schedulable with the EDF algorithm. In
this sense, the EDF algorithm is optimal. In this paper, the
total CPU utilization ratio of all hard real-time
applications 1h tU U , then it meets the necessary and
sufficient condition mentioned above, so that hard real-time
applications are schedulable.

Theorem 2: if the system uses the EDF algorithm to
schedule the server ready queue of hard real-time
applications, then NPS contained in a hard real-time
application or global resources required by it will not affect
the schedulability of the other hard ones.

Proof: We prove the theorem by contradiction. Suppose
NPS in the task 1T has affected the schedulability of the
task 2T . The two jobs they release are respectively 1J
and 2J . The release time of the two jobs are 1r and 2r , and

deadlines are 1d and 2d . The time interval of NPS in 1J is

0t , 1t . The execution time of 2J is 2e . 2T ’s period is 2p .
Let’s see Fig. 3.

Fig. 3 An example about NPS and schedulability

1) Because NPS in 1J has blocked 2J , there must be

2 1d d and 0 2 1t r t . Nt denotes the time length

between 2r and 1t . That is to say, 2J has to wait for Nt to be
executed after it is released, and 2J will miss its deadline.
Then

2 2 2Nt e d r 2p
and more,

2 21 /Nt p 1max /t j N j jU B
Apparently it is in contradiction with the permission

condition in acceptance test, so we have made a wrong
assumption. In other words, even if some hard real-time job is
blocked by NPS, it will be schedulable provided that it
follows the permission condition.

2) Here there is a more complex case. Suppose the
job iJ ’s period is ip and its execution time is ie . Its release

time ir is after 0t while its deadline id is right before 2d , and it

makes 2J unschedulable. From 1) we know iJ is schedulable.

According to the relationship between ip and 2p (respectively

the period of iJ and 2J), we will discuss the following two
cases:

(i) 2ip p
From the condition above, we get 2i i ie p e p . And

from Fig. 3, we know that whenever iJ is released, the
following inequation (6) is always true.

2 2N it e e p
So: 2 2 21 N it p e p

Furthermore: 2 21 N i it p e p

2 2N it p

1maxt j N j jU B
It is in contradiction with the permission condition. The

assumption is wrong.
(ii) 2ip p
According to the assumption, we have 0 2it r r , then

1 0 2 2 2 1 2 2 2i i i i it t p e p e p t r p e p e p

1 2 2i i it r p e e p

1 2i i it r e e p

1 1i i it r d t p
1 (9)

On the other hand,

1 0 2 2 2 1 2maxi i j N j j it t p e p e p B

1max j N j j tB U
So: 1 0 2 2 21 i it t p e p e p

1max j N j j tB U (11)

That is: 11 max j N j j tB U
It is in contradiction with the permission condition. The

assumption is wrong.

J1 t0r1 d1

J2

t1

r2 d2

NPS

tN

ri di

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

676

From (i) and (ii) we know iJ will not affect 2J ’s
schedulability. Other cases can be proved like that.

1) and 2) tell us that whether directly or indirectly, a hard
real-time job which has NPS or use global resources will not
affect the schedulability of the other hard ones. So the
schedulability of a hard real-time application made up of hard
real-time tasks can be ensured.

Theorem 3: if the system uses the EDF algorithm to
schedule the server ready queue of hard real-time
applications, then NPS contained in a soft real-time
application or global resourcest will not affect the
schedulability of hard ones.

Proof: here, 1max j N j jB applies to all the hard

and soft real-time applications. When a job enters its NPS,
regardless of hard one or soft one, its affection to the
schedulability of a hard real-time job is all the same. So the
proof is the same as that of Theorem 2.

From the three theorems above we see that our scheme and
algorithm can ensure hard real-time applications’
schedulability.

(3) Next we will validate whether soft real-time
applications’ total rate of missing deadline is less than 1 in
the improved scheme.

If there are no hard real-time applications, soft real-time
applications will get the highest priority. Theorem 1 and
Theorem 2 show that they are schedulable statistically.
Therefore, the existence of hard real-time applications is the
reason why the soft ones miss their deadlines. Assume there
are m hard real-time tasks and n soft ones, and the
lowest common multiple of all tasks’ periods is p . If every
execution of these n soft real-time tasks has missed its
deadline, then according to the algorithm, it is impossible to
execute non-real-time tasks within p . That’s to say, during
the time interval, the total CPU utilization ratio it needs
which makes all tasks schedulable is more than 1. However,
all tasks are periodic so that the state will not be improved. It
contradicts the permission condition. Consequently at least
one soft real-time job must complete within p . Then it is
concluded that the statistic rate of missing deadline of soft
real-time applications is less than 1.

(4) When it starts the system reserves bandwidth 0U for
non-real-time applications. The two-level profile can
implement the bandwidth isolation, so within p ,

non-real-time jobs will execute for 0p U . It has been
discussed in [18] and that approach can avoid “starvation”
and increase QOS.

VI. SIMULATION AND ANALYSIS

Following we make a simulation to test the validity of the
new scheduling algorithm.

A. Testing Environment
This experiment is performed in a PC with single CPU,

and main parameters are:
(1) CPU: Pentium4 frequency 3.0G Hz;
(2) Main memory: DDR SDRAM, frequency 400MHz,

capacity 512M;
(3) External storage: Western Digital, rev 7200 r/m,

capacity 80G;
(4) Operating system: WINDOWS XP

PROFESSIONAL;
(5) Programming language: JAVA 2, JDK 1.6.0;
(6) Programming environment: ECLIPSE 3.4.1;
(7) Drawing tool: MATLAB R2007a.

B. schematic design
In order to highlight the algorithm’s performance and

eliminate influences from testing environment, scheduling
spending and timer error to results, periods of real-time tasks
are set in second grade. Tasks’ characteristic parameters, such
as the number of tasks, if a task contains NPS, the length of
NPS, a task is hard one or soft one, the length of a task’s
period and the bandwidth a task needs, are generated
automatically by system. In the process 30 tasks are
generated, and each task is executed 10 times, and periods of
tasks range from 10s to 60s. The result is counted according
to the respective execution number of hard and soft real-time
tasks, specifically, the respective DMR (Deadline Miss Ratio)
is computed every 30 executions. The testing program is a
multithreading one, and it is made up of four threads, which
are:

(1) Task generation thread: It is responsible for task
generation. When generating tasks, it sets the length of a task,
the bandwidth a task needs, WCET, the execution number
and determines whether a real-time task is hard or soft. New
tasks join the waiting queue. The thread will wait when the
waiting queue is full.

(2) Acceptance test thread: This thread examines the
task generation queue and performs acceptance test to tasks in
the queue. Tasks that meet conditions enter the system, and
then they are removed from the queue. When the system can
not accept any task in the queue, the thread notifies task
generation thread to generate new tasks. After that the thread
waits till some task quits from system.

(3) Task execution thread: This thread executes and
switches real-time tasks in system according to the algorithm
described in 3.3.2. When some task is running, if another task
is ready, the system will stop executing the current task, save
its context state and put it into the corresponding ready queue
in order. Then the system will schedule real-time tasks in the
ready queue over again (only one exception: if the current
real-time task is a hard one and a soft one is ready, the
execution will not be interrupted). If the current task is
located in its NPS, the system will not act until the task leaves
its NPS.

(4) Waiting queue of system tasks maintenance thread:
Tasks executed by system are periodic, so after one execution
a task has to wait till the next period begins, and at this
moment it will be inserted into the waiting queue of system
tasks. The system examines tasks in the queue. When some
task’s period begins, it will be put into the corresponding
ready queue.

C. Results Analysis

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

677

We make experiments for different load efficiency, and
hard and soft real-time tasks execute more than 250 times
respectively.

(1) Light load: As is shown in Fig.4, we can see DMR of
all hard and soft real-time tasks stay 0 all the time (the two
curved shapes coincide with X axis), in other words, there are
no tasks that miss their deadlines. The result is in accord with
our supposition.

(2) Middle load: Through experiment we know all tasks
meet their deadlines. The algorithm we use has the effects as
good as that on light load condition. So we get the graph just
the same as Fig. 4.

(3) Full load: According to simulation result (shown in Fig.
5), no hard real-time tasks miss their deadlines (the curved
shape coincides with X axis), while the maximum of missing
deadline rate of soft real-time tasks is smaller than 7%. The
result testifies theorems and indicates our scheduling
algorithm can achieve the anticipatory objects. In addition,
perhaps soft real-time tasks can not complete before their
deadlines, but statistically the system provides better

concurrency for them. The system can accept more soft
real-time tasks and execute them concurrently if only the NPS
contained in them do not affect the schedulability of hard
ones. Thus the system can stay full load evermore and make
full use of resources.

(4) Over load: The system does not deny any task, it means
the load may vary in a big range. Therefore, it is not proper to
display all results in a graph, but we can analyze them. When

hU is bigger than 1, CPU will execute hard real-time tasks
all the time, while soft real-time tasks will not be executed.
This is not an extreme situation. Now QOS of soft real-time
tasks is 0, and we can not conclude accurately how many
hard real-time tasks will miss their deadlines, but some of
them will have to. The framework and corresponding
algorithm is not suitable for the over load condition.

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x:The Total Number of Task Executed

y:
D

ea
dl

in
e

M
is

s
R

at
io

DMR of hard
DMR of soft

Fig. 4 Comparison of DMR of hard and soft real-time tasks (light and middle load)

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x:The Total Number of Tasks Executed

y:
D

ea
dl

in
e

M
is

s
R

at
io

DMR of hard
DMR of soft

Fig. 5 Comparison of DMR of hard and soft real-time tasks (full load)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

678

VII. CONCLUSIONS AND FUTURE WORK

This paper focuses on the two-level scheduling profile of
ORTS and points out the limitation that the profile only suits
a hard real-time environment, and then we present an
improved scheduling approach which adds the process of
dealing with soft real-time applications. The improved
approach solves the problem that schedules hard and soft
real-time applications nondistinctively, and it can be applied
in a more complex environment. Through proof and
simulation, we can see the improved approach can achieve
the prospective objectives.

It should be pointed that in more complex environments,
an application is not predictable or it includes sporadic tasks,
this paper does not discuss. Those problems need to be solved
in the future.

REFERENCES

[1] Z.Deng, J.W.S. Liu. Scheduling Real-Time Applications in an Open
Environment. In: Proc. of the 18th IEEE Real-Time Systems
Symposium. IEEE Computer Society, 1997, pp.308-319.

[2] Y.C .Wang, K.J. Lin. Implementing a General Real-Time Scheduling
Framework in the RED-Linux Real-Time Kernel. In: Proc. of the 20th

IEEE Real-Time Systems Symposium. IEEE Computer Society, 1999,
pp. 246-255.

[3] A.K. Parekh. A generalized processor sharing approach to flow control
in integrated services networks [Ph.D. Thesis]. Massachusetts Institute
of Technology,1992.

[4] T.W. Kuo, W.R. Yang, K.J. Lin. EGPS: a class of real-time scheduling
algorithms based on processor sharing. In: Proc. of the 10th Euromicro
Workshop on Real Time Systems. IEEE Computer Society, 1998,
pp.27-34.

[5] L.Abeni, G.Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In: Proc. of the 19th IEEE Real-Time Systems
Symposium(RTSS’98). IEEE Computer Society,1998, pp. 4-13.

[6] L.Abeni, G.Buttazzo. Resource Reservation in Dynamic Real-Time
Systems. Real-Time Systems,2004,27: pp.123-167.

[7] G.Lipari, S.Baruah. A Hierarchical Extension to the Constant
Bandwidth Server Framework. In: Proc. of the 7th IEEE Real Time
Technology and Applications Symposium.IEEE Computer Society,
2001, pp. 26-35.

[8] A. Marchand, M. Silly-Chetto. Dynamic Real-time Scheduling of Firm
Periodic Tasks with Hard and Soft Aperiodic Tasks. Real-Time
Systems,2006,32(1-2): pp.21-47.

[9] W.Li, K.Kavi,R.Akl. A non-preemptive scheduling algorithm for soft
real-time systems. Computers and Electrical Engineering,2007,33(1):
pp.12-29.

[10] U.C. Devi, J.H.Anderson. Tardiness bounds under global EDF
scheduling on a multiprocessor. Real-Time System,2008,38(2):
pp.133-189.

[11] G.Lipai, J.Carpenter, S.Baruah. A Framework for Achieving
Inter-Application Isolation in Multiprogrammed Hard Real-Time
Environments. In: Proc. of the 21st IEEE Real-Time Systems
Symposium. IEEE Computer Society, 2000, pp. 217-226.

[12] Y.C. Gong, L.G. Wang, et al. A Hybrid Real-Time Scheduling
Algorithm Based on Rigorously Proportional Dispatching of Serving.
Journal of Software, 2006,17(3): pp. 611-619. (in Chinese)

[13] X.Y.Huai, Y.Zou, M.S.Li. An Open Adaptive Scheduling Algorithm
for Open Hybrid Real-Time Systems. Journal of Software, 2004,15(4):
pp. 487-496. (in Chinese)

[14] P.L. Tan, H.Jin, M.H. Zhang. Two-Dimensional Priority Real-Time
Scheduling for Open Systems. Acta Electronica Sinica, 2006, 34(1): pp.
1773-1777. (in Chinese)

[15] B.B. Brandenburg, J.H. Anderson. Integrating Hard/Soft Real-Time
Tasks and Best-Effort Jobs on Multiprocessors. In: Proceedings of the
19th Euromicro Conference on Real-Time Systems. IEEE Computer
Society,2007, pp. 61-70.

[16] Y.Zou, M.S. Li, Q.Wang. Analysis for Scheduling Theory and
Approach of Open Real-Time System. Journal of Software, 2003,14(1):
pp. 83-90. (in Chinese)

[17] Z.Deng, J.W.S. Liu, J.Sun. A Scheme for Scheduling Hard-Real-Time
Applications in Open Environment. In: Proc. of the 9th Euromicro
Workshop on Real-Time Systems. IEEE Computer Society Press, 1997,
pp.191-199.

[18] Y.X.Jin, J.Z.Huang, J.G.Wang. Scheduling for Non-Real Time
Applications of ORTS Based on Two-Level Scheduling Scheme. To
appear in: International Journal of Computer Theory and Engineering,
2009, 1(2): pp.170-180.

[19] C.L.Liu, J.W.Layland. Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment. Journal of the ACM, 1973, 20(11):
pp. 46-61.

