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Abstract—An unstructured finite volume numerical model is 
presented here for simulating shallow-water flows with wetting and  
drying fronts. The model is based on the Green’s theorem in 
combination with Chorin’s  projection method. A 2nd-order upwind 
scheme coupled with a Least Square technique is used to handle 
convection terms. An Wetting and drying treatment is used in the 
present model to ensures the total mass conservation. To test it’s 
capacity and reliability, the present model is used to solve the 
Parabolic Bowl problem. We compare our numerical solutions with 
the corresponding analytical and existing standard numerical results. 
Excellent agreements are found in all the cases. 
 

Keywords—Finite volume method, Projection method, Shallow 
water, Unstructured grid, wetting/drying fronts.  

I. INTRODUCTION 
REE-surface water flows can be seen in many real life 
flow situations such as river and lake hydrodynamics, 

surface irrigation, tides, dam break flows, as well as estuarine 
and coastal circulation. Many of these flows involve complex 
flow behaviors, irregular flow domains, rapid variation of 
bottom topography and moving boundaries in which wetting 
and drying of variable topography occurs. Satisfactory 
numerical simulations of these processes are very challenging 
tasks. Because of these reasons, free-surface flows are gaining 
popularity amongst the computational fluid dynamics 
community in the last few decades. 

These types of flow behaviors can be modeled 
mathematically by Shallow-Water Equations (SWE), which 
are derived by considering the depth-averaged three-
dimensional incompressible Navier-Stokes equations, 
assuming hydrostatic pressure distribution, and neglecting 
vertical acceleration and viscous effects. The discretization of 
the SWE has been the subject of extensive literature. Until 
recent years, the most commonly chosen numerical methods 
were Finite Differences (FD), Continuous Finite Elements 
(CFE) and Finite Volumes (FV). The main motivation for 
using FV is that such methods are especially tailored to 
discretize conservation laws possibly with shocks, usually 
producing approximate solutions with local conservation 
properties.  

The unstructured finite-volume methods (UFVMs) not only 
ensure local mass conservation, but also the best possible 
fitting of computing meshes into the studied domain 
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boundaries. Recently, Nguyen et. al. [9] has developed an 
unstructured finite volume methods for computing shallow-
water flows in complex topographies and geometries, using 
the technique based on Green’s theorem in combination with 
Chorin’s projection method [4]. In their scheme, Rhie and 
Chow’s technique [10] is introduced for preventing numerical 
oscillations. The model is validated and approved by several 
benchmark tests. But, this scheme is unable to conserve the 
total mass of the physical domain and gives poor results for 
the moving boundary problems (like dame break flows, 
Parabolic bowl problem etc.) in which wetting and drying of 
variable topography occurs. 

The purpose of the present work is to extend the above 
unstructured finite volumes method for moving boundary 
problems. The same type of idea like Brufau et. al. [2], has 
been used to tackle the drying and flooding situations of the 
boundary cells of the flow domain. This extended scheme 
gives very satisfactory results for the moving boundary 
problems considered here. In the next section, we discuss 
about the governing equations and projection method. Section 
3 discuss about the numerical technique and wetting and 
drying treatment. In section 4, we validate our scheme by 
solving the well known test problem of parabolic bowl and 
finally, section 5 summarizes the whole work. 

II.  GOVERNING EQUATIONS AND PROJECTION METHOD 

A. Governing Equations: 
The two-dimensional Shallow-water equations, consist of 

the depth-averaged continuity equation and x  and y  
momentum equations, can be written as follows: 

 
Continuity equation: 
  

( ) ( ) 0=
∂
∂

+
∂

∂
+

∂
∂

y
hv

x
hu

t
Z s                                     (1)                   

Momentum equations: 
( ) ( ) ( )

( ) ( ) ( )
o

bx
HH

s

y
huA

yx
huA

xx
Z

ghhvf

y
huv

x
hu

t
hu

ρ
τ

−⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

+
∂
∂

−=

∂
∂

+
∂

∂
+

∂
∂ 2

     (2)                 

Rajendra K. Ray1,*, Kim Dan Nguyen 1 

An Unstructured Finite-volume Technique for 
Shallow-water Flows with Wetting and Drying 

Fronts 

F



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:11, 2010

1195

 

 

( ) ( ) ( )

( ) ( ) ( )
o

by
HH

s

y
hvA

yx
hvA

xy
Z

ghhuf

y
hv

x
huv

t
hv

ρ
τ

−⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

+
∂
∂

−−

=
∂

∂
+

∂
∂

+
∂
∂ 2

(3)                        

 
where g  is the gravity acceleration; f  is the Coriolis 

parameter; u  and v  are the depth-averaged velocity 
components in x  and y  directions respectively; sZ  is the 

water surface elevation; h  is the flow depth and bxτ  and byτ  

are the bed shear stresses determined by Chézy's formula as 
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where hC  is the Chézy coefficient. HA , the horizontal 
dispersion coefficient, can be calculated following Elder's 
formula and applied for 2D flows 
 

                        huAH *6= ,  

where *u  is the friction velocity that can be defined by         

hCyxgu /)( 22
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B. Projection Method: 
Chorin's projection method [4] has been applied here to 

split up the Saint-Venant equations in the successive steps: 
convection-diffusion, wave propagation and velocity 
correction ([6], [8], [9]). 

 
 Convection-diffusion step  
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(5) is transport equations. Subscript (*) is purely symbolic 
to design values of qx and qy, obtained after this step. 

 
 Wave propagation step 
  The combination of the continuity and momentum 

equations without convection and diffusion terms, allows us to 
get a Poisson’s equation for only water surface levels as 
unknowns:     
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γ is a time weighting coefficient, 1≥ γ ≥1/2. We note that, 

the term 
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 was ignored in 

Nguyen et al. [9]. We now introduced it to take into 
consideration the bottom gradient, which may be large in 
flows over a very irregular bed.  
  

Velocity correction step 
Once the water surface levels are known, the unit 

discharges *
xq and *

yq  should be now corrected using the 

momentum equations: 
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Fig. 1.  Parabolic Bowl: Computed water surface elevations at (A) 6/τ=t , (B) 6/2τ=t , (C) 6/3τ=t , (D)            6/4τ=t , (E) 

6/5τ=t , (F) τ=t .
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III. NUMERICAL TECHNIQUES AND WETTING AND DRYING 
TREATMENT 

The present model is based on the Green’s theorem in 
combination with Chorin’s  projection method [4]. 

Equations (5)-(9) have been integrated by a technique based 
on Green’s theorem and then discretised by a Unstructured 
Finite-Volume Method (UFVM). The convection terms are 
handled by a 2nd order ULSS (Upwind Least Square Scheme, 
Kobayashi et al. [7]). The linear equation system issued from 
the wave propagation step is implicitly solved by a SOR 
(Successive Over Relaxation, Tannehill et al. [11]) technique. 
The readers can be referred to Nguyen et al [9] for the details 
of these techniques. 

In a fluid flow problem, when wetting front advance over a 
dry bed or vice versa, the problem is called a moving 
boundary problem. In the present scheme, to capture the 
moving boundary and to conserve the total mass of the fluid, 
we adapt an almost similar treatment like Brufau et al. [2]. 
The main idea in this treatment is to find out the partially 
drying or flooding cells in each time step and then add or 
subtract hypothetical fluid mass to fill the cell or to make the 
cell totally dry respectively, and then subtract or add the same 
amount of fluid mass to the neighbouring wet cells in the 
computational domain. To consider a cell to be wet or dry in a 
given time step, we use the threshold value )10( 3−= Oε  as 

the minimum water depth ( h ). If ε≤h , the cell will be 
considered as dry and the water depth for that cell set to be 
fixed as ε=h  for that time step. The details of this treatment 
can be found in the paper by Brufau et. al. [2].  

IV. NUMERICAL VALIDATION 

Parabolic Bowl: 
In this section, we test the capacity of the present model in 

describing the wetting and drying fronts. The bed topography 
of the domain is defined by 2b(x) rα= , where α  is a 

positive constant and 222 yxr += . The analytical solution 

is periodic in time with a period ω
πτ 2= . The water depth 

),( trh  is non-zero for )(
)cos(

22 YX
tYXr

−
+< α

ω  

and the analytical solution ([12])  is given within the range as 
follows: 
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Here, α , X  and Y  are fixed as 17106.1 −−× m , 11 −m  

and 141884.0 −− m  respectively. The computational domain 
(Ω ) is considered here as a square region 

2]4000,4000[]4000,4000[ m−×−  with an origin at the 

domain centre. The threshold value ε  is set as 3103 −× .  
Fig. 1 shows the time evolution of computed solution for 

six different time stages of a full period (τ ). In Figure 2, we 
plot the 3D water depth (h) for the same time stages. For these 
computations, we use a )7070( ×  mesh. Our computed 
results are matching very well quantitatively, with the 
corresponding analytical solution of Thacker ([12]) and 
qualitatively with the existing standard numerical solutions of 
Bunya et. al. ([3]) and Ern et. al. ([5]). The 2L  error norms of 
the water-depth (h) corresponding to five different mesh sizes, 
starting from ]1313[ X  to ]200200[ X ,  at 2/τ=t  and 

τ=t , are shown in Figure 3. It is clear from these figures 
that in the wetting stage (see Figure 3 [left]) the rate of 
convergence is more than 1.4 and in the drying stage (see 
Figure 3 [right]), it is more than 1.3. Both the convergence 
rates are better than that of Bunya et. al. ([3]) and Ern et. al. 
([5]). Moreover, it can be noticed that both, Ern et al. (2008) 
and Bunya et al. (2009) got convergence rates, which are 
totally different for wetting and drying stages with 
convergence rates decreasing in the latter stage, whereas the 
convergence rates obtained from our scheme remain almost 
the same for both stages. This certainly proves the efficiency 
and robustness of the present numerical scheme in treating the 
wetting-drying-wetting transitions. Figure 4 plots the 2L  error 
norms at 2/τ=t  and τ=t  for different Courant numbers 
that can reach up to 2.1 . This proves the unconditional 
stability of the present scheme that is fully implicit. Clearly, 
the 2L errors are still bounded for the Courant number even 
grater than 1. In all the computations for different mesh-sizes, 
the relative error in global mass conservation has been found 
less than %003.0 , which confirms that our numerical 
scheme correctly respects the total mass conservation. 

V.   CONCLUSION 
In this paper we extended an unstructured finite volume 

scheme, developed by Nguyen et al. [9], for the moving 
boundary problems in which wetting and drying fronts occur. 
This extended method correctly conserve the total mass of the 
physical domain. To validate our scheme, we solve the 
parabolic bowl problem. Our scheme very efficiently capture 
the wetting-drying-wetting transitions and shows almost 1.4 
order of accuracy for both the wetting and drying stages. This  
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Fig. 2. Parabolic Bowl: Computed 3D water depth (h) at  (A) 6/τ=t , (B) 6/2τ=t , (C) 6/3τ=t , (D) 6/4τ=t , (E) 6/5τ=t , 
(F) τ=t .
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order of accuracy is better than those obtained by a certain 
existing models; particularly for the drying stage. Also, 
present method efficiently conserves the total mass of the 
physical domain. Overall, our present method gives very 
satisfactory results in all aspects and it can be used as a 
standard method to solve this type of moving boundary 
problems. 

 
 

 
Fig. 3 Parabolic bowl: convergence rate in 2L  error norms at  

2/τ=t  [left]   and   τ=t  [right]. 
 

 
Fig.  4.  Parabolic bowl: error plots for different Courant Numbers at 

2/τ=t  [left] and at τ=t    [right]. 
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