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Abstract—This paper unifies power optimization approaches
various energy converters, such as: thermal, sclaemical, and
electrochemical engines, in particular fuel cellfiermodynamics
leads to converter's efficiency and limiting poweEfficiency
equations serve to solve problems of upgradingdovehgrading of
resources. While optimization of steady systems lieppthe
differential calculus and Lagrange multipliers, dygmic optimization
involves variational calculus and dynamic programgniln reacting
systems chemical affinity constitutes a prevailownponent of an
overall efficiency, thus the power is analyzed énnts of an active
part of chemical affinity. The main novelty of theesent paper in the
energy yield context consists in showing that tleeegalized heat
flux Q (involving the traditional heat fluxy plus the product of
temperature and the sum products of partial ergeopnd fluxes of
species) plays in complex cases (solar, chemiahksttrochemical)
the same role as the traditional hgat pure heat engines.

The presented methodology is also applied to pdwwets in fuel
cells as to systems which are electrochemical #ogines propelled
by chemical reactions. The performance of fuelsdslidetermined by
magnitudes and directions of participating streant mechanism of
electric current generation. Voltage lowering beldve reversible
voltage is a proper measure of cells imperfectidre voltage losses,
called polarization, include the contributions bfee main sources:
activation, ohmic and concentration. Examples spower maxima
in fuel cells and prove the relevance of the extensf the thermal
machine theory to chemical and electrochemicalesyst The main
novelty of the present paper in tR€ context consists in introducing
an effective or reduced Gibbs free energy changedss productp

variables to describe these systems. In the preserik we
itreat generalized power yield problems systemshithvboth
temperature3 and chemical potentia)g are essential. This is
associated with engines propelled by fluxes of lestbrgy and
substance. In a process of power production showrig. 1
two subsystems differing in values Dfand y interact through
the set of power generators (engines). The proolugiiocess
is propelled by diffusive and/or convective fluxefsheat and
mass transferred through ‘conductances’ or bountiaygrs.
The energy flux (power) is created in each generatated
between the resource stream (‘upper’ fluid 1) asaly, an
waste stream (‘lower’ fluid, 2).

Basically, both transfer mechanisms, flows and eslof
conductances of boundary layers influence the ohtgower
generation [2-5]. Local fluxes of heat and powemdbchange
along the steady process path only when both sieam
(reservoirs) in Fig.1 are infinite. Whenever onay,supper,
stream is finite, its thermal potential decreadesgthe path,
which is the consequence of the energy balance. fikile
stream is thus a resource reservoir. It is theuregoproperty
or the finiteness of amount or flow of a valuabldstance or
energy which changes the upper fluid properties@lts path.
For the engine mode of the system and a very |doger’
stream (sometimes the stream of the environmeloidl)f one
observes stage-wise relaxation of the upper str8am the

and reactants which take into account the decrease of voltagk arequilibrium with an infinite lower reservoir. Thiss a

power caused by the incomplete conversion of tlegadhvreaction.

cumulative effect obtained for a resource fluidiatv, a set of
sequentially arranged engines, and an infinite H&th An

Keywords— Power yield, entropy production, chemical enginesi’nverse process, which needs a supply of an extemer,

fuel cells, exergy.
I. INTRODUCTION

I n a previous work [1] we have analyzed models ofigro

production and power optimization towards energyt§ in

purely thermal systems with finite rates. In paride, radiation

engines were treated as important nonlinear systgwsrned

by laws of thermodynamics and transport phenomen@ngine_type systems.

may be referred to the upgrading of the resourca ineat
pump [7]. Studies of resource downgrading or upiggepply
methods of dynamical optimization [8]. Indeed, the
developments shown in Fig.1 may be regarded asnuigah
processes since they evolve through sequence tefskither
in the chronological time or in holdup (spatiafné.

Fuel cells working in the power production mode al&o
In fact, they are electrocbamiow

Temperaturesl of participating media were sole necessarkngines propelled by chemical reactions. Downggadim

S. Sieniutycz is with the Warsaw University of Teology, Faculty of
Chemical and Process Engineering, Warsaw, PL 00-82&land
(corresponding author, phone: 48-22-8256340; f&22-8251440; e-mail:
sieniutycz@ ichip.pw.edu.pl).

upgrading of resources may also occur in the systefrthe
fuel cell type. The performance of fuel cells etetmined by
magnitudes and directions of participating streaamsl by
mechanism of electric current generation. Voltageering in
fuel cells below the reversible value is a good snea of their
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imperfection which influences the downgrading apdgrading (each conductor) is assumed at each stage;( andd.= g»),
of reagents. Yet, in this paper we restrict to sheady-state the property which does not hold in the case whesi transfer

fuel cell systems. is coupled with transfer of substances.

Section Il of the present paper derives relevantrots in As a flux can be normalized by dividing it by a stamt
power systems, the so called Carnot variables. &hesults resource mass flux we neglect dots over symbdisixés.
are common for all processes considered here. Erigen Total entropy balance of a system’s stage leadsotal

systems are treated in Sects IlI-VIIl of this papBple of entropy source, as the difference of outlet and inlet entropy
chemical affinities for chemical conversion is peth out in  fluxes
Sec. X. Electrochemical systems (fuel cells) aralyaed in Qo % _ Ty o _ G T Tz) @
- . - 0’ - - = —= (-
Sect XI. Sectloqs XIl ant_j XIll present, respectyefinal s T, i, LT T, Ty .
remarks and basic conclusions.

With an effective temperature called Carnot tenpega
Il. DEVELOPMENT OFCONTROLS INPOWER SYSTEMS. P

Here we shall recall and then use definitions ofnGa ' Ty
control variables (Carnot temperature and chenpo#éntial) T ETZT_ ®)
whose derivations and applications were originaitedour
previous work [9, 10]. Since diverse control valégbof heat
and mass transfer can accomplish the task of aisabte
energy conversion, alternative (more traditionapteols are
also possible. However, the mathematical formules the 1 1
simplest in terms of Carnot controls. Os= Ch(; ‘T—) 4)

We begin with the simplest case of no mass transéerwe 1
shall consider a steady, internally reversible d@eversible’)
engine with perfect internal power generators atterazed at
each stage by temperatures of circulating flliid and T,
Fig.1.

entropy production of the endoreversible procegs(B), takes
the following simple form

This form is identical with the familiar expressiobtained for
processes of purely dissipative heat exchange batvi@o
bodies with temperaturdsg andT'.

From the entropy and energy balances of an intgrnal
reversible process the “endoreversible” thermalciefficy

flowing reagents follows in terms of temperatures of the circulatfhgd
with high chemical potential G

1
u H
4;'1' S Seslalalf = :—' p_ —1_2 (5)
X4 xq =n= T
?’1’- v B H,1T1 7"1f ql 1

) In terms of temperatur€ of Eq. (3) this efficiency assumes
ol H 2 Generao| K N = the classical Carnot form containing the tempegatur the
power output bulk of the second reservoir and temperafiire

i f
v s, —— 7] T,

n=1-—+ (6)

N5 Haqa s

reagents ;"C',tt';#t’l";’,eé This property substantiates the name “Carnot teatpes” for

2=t =T the control variabld’. When a control action takes place, the
/i anvironment f superiority of Eq. (6) over Eq. (5) consists inngsin (6)

yi s single, free controll’, instead of two constrained controls of
Eq. (5) (linked by an internal balance of the epyo
Moreover, the endoreversible power is also of @asform

v

Fig.1. A discrete scheme of chemical and/or therengjine.G is the
flux of Gibbs thermodynamic function (flu® in Egs. (11) and (12)).

o —[1_T2
The stream temperatures, attributed to the bulkat éluid P=/h = [1_qu1 )
areT; andT,. The inequalitied;>T,>T,>T, are valid for the

engine mode of the system. The internal entropgirtual of a In terms of T" description of thermal endoreversible cycles is

perfect engine at an arbitrary stage yields broken down to formally “classical” equations whictntainT’
92 _ % @ in place ofT;. Importantly, the derivation of Egs. (1) - (7) doe
Ty Tp not require any specific assumptions on the nabifréeat

transfer. In irreversible situations Carnot tempeea T’

Continuity of pure heat fluxes through each boupdayer T )
efficiently represents temperature of the uppesrsesr, T;. Yet,
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at the reversible Carnot point, whéfg = T; andT» = T,, Eq.  (thermal and chemical efficiencies). The relateding forces
(3) yields T" = T, thus returning to the classical reversibleare the temperature difference and chemical affinit
theory. These properties of Carnot temperature erend When mass transfer is included the internal enttmpgnce of
descriptions of endoreversible and reversible eydemilar. the perfect engine has in terms of total heat futhe same
They also make the variablé a suitable control in both static structure as Eq. (1) in termsapfi.e.
and dynamic cases [9, 10].

For the purpose of this paper it is worth knowihgttin terms Q _Q
of Carnot temperatur@’ the linear (Newtonian) heat transfer is ﬁ B f (13)
described by a simple kinetic equation

The continuity of energy and mass fluxes through risistive
layers leads to ‘primed’ fluxes in terms of those the bulk.

) ) Assuming a complete conversion we restrict to poxeld by a
whereg is overall heat transfer conductance i.e. theywbdf @ gimple reaction A+A,=0 (isomerisation or phase change af A
total exchange area and an overall heat transéficient [8]. into Ay). The energy balance

For a linear resource relaxing to the thermodynamic
equilibrium along the stationary Lagrangian pathfor an

g =9(M-TY), (8

unsteady relaxation, the kinetics related to EQ. H8s the f=6+p (14)
linear form
ﬂ =T'-T, (9) and the mass balance in terms of conserved fluxemgh
dr ' cross-sections 1’ and 1 as well as 2’ and 2
where the non-dimensional timesatisfies Eq. (38) below and n =Ny (15)

is related to the overall conductargef Eg. (8). Subscript 1 is
neglected in equations describing dynamical paths.

The resource (or a finite “upper stream”) is upegchd are combined with Eq. (13) describing the continwit the
whenever Carnot temperatuE is higher than resource’s entropy flux in the reversible part of the systdthis yields
temperaturdl;. Whereas the resource is downgraded (relaxes to
the thermodynamic equilibrium with an infinite “lew stream” &~ WY _ £y =ty
or the environment of temperaturg,) whenever Carnot . T, (16)
temperaturd” is lower than resource’s temperatiiie In linear L 2
systems, power-maximizin@' is proportional to the resource’s
temperaturél; at each time instant [6]. For more details and,
particular, the case of two finite streams with stant heat
capacities see a book by Sieniutycz ard\iski [11]. S _& P Hom (17)

The notion of Carnot temperature can be extendeti¢mical Ty Ty
systems where also the Carnot chemical potentiatges [10]. \whence
We shall also make some remarks here.

The structure of Eqg. (1) also holds to systems withss
transfer provided that instead of pure heat fiuthe so called
total heat flux (mass transfer involving heat fl@x)s introduced
satisfying an equation

iliminating & andn; from these equations yields

P _&a-tom_&a-fhm (18)
Ty Ty Ty

which leads to a power expression

Q=q+Tsm +..T§NK..+ TSNy, (10)
. , e -5 =0-2)+ T H2yny  (19)
or, since the heat flux equals the difference betwéotal Ty Ty Ty
energy fluxe and flux of enthalpies of transferred components,
g=&h, In Eqg. (19) powep is expressed in terms of fluxes continuous
through the conductors. To proceed further we resetsider
Q=c&— M. ...~ Uy . = €-G (11) quantitatively the entropy produced in the system.
The entropy production in the system follows frohe t

whereG is the flux of Gibbs thermodynamic function (GibbsP@lance of fluxes in the bulks of the streams

flux). The equality
£=Q+G (12) g=22- Lt (s,-s)my (20)
T, T
is fundamental in the theory of chemical enginendicates
that power can be generated by two propelling Bukeat flux Eliminating g, from this resultwith the help of the energy
Q and Gibbs fluxG, each generation having its own efficiencybalance (14) we obtain
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o5 = (o + hlnl)(% - T—ll)

(21)
M H2 p
(== .
SR AL

An equivalent form of this equation is the formula

T2 o _H

=5@0-5)+T - -Tyo, 22

p =& T1) 2(.|.1 Tz)nl 205 (22)

which may be compared with the same power evaldfated
the endoreversible part of the system

T2 My My
=50-H)+Tr(=-==)n . 23
p =& Tl') 2(T1' T2|)1 (23)
The comparison of Eqs (22) and (23) yields an egyual
T
£1(1- )+ T (L - £y, ~Too
1 1 12

(24)

_ Ty My _ Hy
=g (1-2)+ T, (AL - H2
1 T, )+ T, (Tl- T, M

from which the entropy production can be expressadrms
of bulk driving forces and active driving forcesgasures of
process efficiencies). We finally obtain

_a Ty T
=adz_T2
T, Ty T
2 1 1 (25)
ey Tz B Ky Koy
T T, Ty To T,

This expression generalizes Eq. (3) for the casenvehsingle

1

JS TI

_ I
= £y( T1)+(T1 =l (28)

Introducing into the above formula total he@i satisfying
Q =& — ymwe finally obtain

— 1 _i H -H

o= QA (29)
where Q;=q;+T;5;n; is the total heat flux propelling the power
generation in the system.

Carnot variable§” andy/ are two free, independent control
variables applied in power maximization of steadyd a
dynamical generators. The resulting equation (2%pimally
equivalent with a formula obtained for the purelgsipative
exchange of energy and matter between two bodigs wi
temperature3; andT’ and chemical potentiatg and/.

[ll.  INTERNAL IMPERFECTIONS INENERGY SYSTEMS

The ideas referring to endoreversible systems may b
generalized to those with internal dissipationslith cases a
single irreversible unit can be characterized by twops
shown in Fig. 2 which presents the temperatureepptr
diagram of an arbitrary irreversible stage. Eaalgestcan work
either in the heat-pump mode (larger, external lpopig. 2)
or in the engine mode (smaller, internal loop ig. B2).

Ty heat pump

§ m—e

reaction A+A,=0 undergoes in the system. Equation (25)rig. 2. Two basic modes with internal and extedissipation: power

leads again to the definition of Carnot temperatime
agreement with Eq. (3) and to Carnot chemical piateof
the (first) component

o 26
(T (26)

—Hay
1 T2'

In a special case of an isothermal process theeafmwmula
yields a chemical control variable

H = o + = (27)

which has been used earlier to study an isotheemgihe [12].
After introducing the Carnot temperature in accoodawith Eq.
(3), total entropy production of the endoreversilgewer
generation by the simple reaction+A,=0 (isomerisation or
phase change of,/Anto Ay), takes the following simple form

yield in an engine and power consumption in a lpeehp. Primed
temperatures characterize the circulating fluid.

The related analysis follows the earlier analysésthe
problem which take into account internal irreveitgies by
applying the factor of internal irreversibilitiesp [11]. By
definition, @= AS,/AS;: (whereAS;: andAS, are respectively
the entropy changes of the circulating fluid alathg two
isothermsTy and T, in Fig. 2) equals the ratio of the entropy
fluxes across the thermal maching,= Js,/ Js;. Because of
the second law inequality at the steady state,fdHewing
inequalities are validls,/Js; >1 for engines ands,/Js; <1 for
heat pumps; thus the considered rationeasures the internal
irreversibility. In fact, @ is a synthetic measure of the
machine’s imperfection@ satisfies inequality >1 for engine
mode and® <1 for heat pump mode of the system. A typical
goal is to derive efficiency, entropy productiondapower
limits in terms of@. Applications of this quantity are discussed
in the book by Sieniutycz andzsvski [11].

405



International Journal of Chemical, Materials and Biomolecular Sciences
ISSN: 2415-6620
Vol:4, No:6, 2010

We shall now present an exposition of the formulas

describing efficiencies, power yield and entropgdarction in
systems with internal imperfections. This preséomat
corresponds with the assumption that it is an @exkalue of
@, evaluated within the boundaries of operative petars of
interest which is used in most of analyses of tla¢mmachines.
In the analysis we shall make use of the fact tlvat,
agreement with Eq. (13), the thermal efficiency poment of
any endoreversible thermal or chemical engine daaya by
written in the formn=1-Q./Q;. By evaluatingtotal rate of

pA =2 (33)
T,

T,

We have already stressed that one can evalateom the
averaged value of the internal entropy productiomat
describes the effect of irreversible processesimitie thermal
machine. Clearly, in many caseés is a complicated function
of the machine’s operating variables. In those dempases

one applies the data af!" = dS" / dtto calculateaveraged

entropy productiorgs (the sum of external and internal partsyalues of the coefficient. In our analysis the quantitg is

as the difference between the outlet and inlebpgtfluxes we
find in terms of the first-law efficiency

_Ql(l_”)_g:% —_ _L
05—71_2 T, a-n T1)

(30)

0.8y = allITIE-0)
enbropy &
production

MNewton
- Fourier
=0

shiort cireuit
power consurption

point Carmot
engine et range
=te
S openy cireuit
point
»

0 t

>
efficiency

Fig. 3. Qualitative sketch illustrating entropy guztion in chemical
engines versus chemical efficieney in a flow operation with
simultaneous mass transfer and power productiom. thermal

engines the picture is qualitatively similar preadthat the chemical
efficiency {is replaced by the thermal efficiengy

treated as the process constant. For chillers ametge
generators experimental datacxrlgnt = dSint / dt are available
that allow the calculation of. For more information, see the
book by Sieniutycz and dewski [11] and many references
therein.

Consequently, thermal efficieneycan be evaluated in terms
of suitable parameters characterizing the imperfeathine

|nt
L
Tl'

(34)

/7:1—%:1—(1+T1.

After eliminating 7 from Egs. (30) and (34) we conclude
that, quite generally, total entropy productioneratan be

written as

_QlT T. (451)77.35
QT -Ty=o( @D 69

The first term in the resulting expression the dess the
internal entropy source (within the thermal machiaed the
second one the external entropy source (withimélervoirs).

Equivalently, after using the definition of the emal

Equation (30) is a general relationship as no ia‘beciirreversibilityfactor (32) we obtain for the enrpgeneration

assumptions are involved in its derivation. It esathat the
entropy production in an arbitrary engine is dikectlated to
the deviation of the thermal efficiency from theresponding
Carnot efficiency. This conclusion leads to an intgiat
analytical formula for the total entropy sourcetthdl enable
its direct optimization. The entropy balance ofimaversible
machine contains internal entropy productigft as a source

term in the expression

Q_Q_ o @1
T2' Tl'
After defining the coefficient

O =1+T,oMIQ (32)

called the internal irreversibility factahe internal entropy
balance takes the form usually applied for thenmathines

o, = 1dS§‘+dQ( Y (36)
Tl

In the last two equations the Carnot temperaflirewas
introduced that satisfies the thermodynamic dedini{3)
T =T,T,./T, 3
In terms of the Carnot temperatuie and factor @ the
efficiency 17 , Eq. (33), assumes the simple, pseudo-Carnot
form

,7:1—45% . (37)

which is quite useful and general enough to desdtilermal,

radiative and chemical engines.

A particularly interesting role of the above formsilis
observed for radiation engines which are energyesys
driven by the black radiation. In these systema&itux G =
0, whereas total heat fllQ is identical with the energy flug
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i.e. Q = & Their power of entropy production follows from evaluate the efficiency worsening. Yet, the knowgkeaf the

Egs. (35) and (36) as

o.=¢ ((15—,1)+(i'_i) (38)
T T T
or
T o, 11
o.=2Lo"+g(=-2)- (39)
s T s 1(T, Tl)

The first of these equations can be applied imntelgiathe

entropy productiongs is also necessary in calculations of
generalized exergies [11]. In the dynamical casserdial is
also the best time behavior af

The majority of research papers on power limitslighled
to date deals with systems in which there are tafinite
reservoirs. To this case refer steady-state armlgdethe
Chambadal-Novikov-Curzon-Ahlborn engine (CNCA ermjin
in which energy exchange is described by Newtotaan of
cooling [2], or of the Stefan-Boltzmann engine yatem with
the radiation fluids and energy exchange governgdhie

second calls for a functiofi(T;, &) as the one shown below Stefan-Boltzmann law [3]. Entropy production chaesistic

of Eq. (40).

When the energy exchange in both reservoirs depamdse
difference of temperatures in powar(a=4 for the radiative
energy exchange and 1 for the Newtonian one)are.

Q=6=0/(TT-TH (40)
then, sinceT, = (T3 -&/g,)"?, from the radiation law, the
following formula describes the power of entropygetion

1 1
+g(=-2)-
(5 Tl)

o = TE-&/g)"

S T, Us (41)

This means that only in the “endoreversible” case,when
the power of internal entropy production vanisties,external
entropy production is simply related to the prodeicenergy
flux & and the suitable difference of temperature recigsy
(T')% (T)™%, as in the two-body contact. In the general cdse
a finite internal entropy production the externartpof o
follows in terms of its internal part in the form

o (42)

ext — (Tf_£1/9'1)1/a -T' Uism +51(i, _i) ’
T T T
or the sum of both parts of the entropy productigrees with
Eq. (42). Therefore, the analytical description tbérmal
converters in terms of the Carnot temperature itiqudarly
simple.
The efficiency worsening caused by the dissipatien
described in a general way by the inverted forni8ty
n=n.-T0,l& (43)
Of course, the pseudo-Carnot formula, Eq. (37) akslongs
to the class of imperfect efficiencies since it t@nexpressed
in the form
o 1
=N —T(=-=). 44
n=ne Z(T' T) (44)

1

This result implies the ratioy/& consistent with Egs. (35)
and (38). Equations for entropy productian, presented
above, are helpful in definite situations when avents to

for these systems is shown in Fig. 3.

In a CNCA engine the maximum power point may be
related to the optimum value of a single, free @ustrained)
control variable which may be efficienay, heat fluxq,;, or
Carnot temperaturel’. When the internal irreversibilities
within the power generator play a role, the pseGdoaot
formula (37) applies in place of Eq. (6), wher@ is the
internal irreversibility factor [5].

In terms of bulk temperatureg, T, and @one finds for
linear systems at the maximum power point

Topt = (T @T,)Y2. (45)

For the Stefan-Boltzmann engine exact expressiorntte
optimal point cannot be determined analyticallyt, yéhis
temperature can be found graphically from the cphaffT’).

A pseudo-Newtonian model, [5, 7], which treats #tate
dependent energy exchange with coefficiefi®), omits to a
Bonsiderable extent analytical difficulties asstezlawith the
use of the Stefan-Boltzmann equation. The restésmming
from this model show that the formula (45) is a @joo
approximation also in nonlinear cases.

IV. A THEORY FORDYNAMICAL ENERGY PRODUCTION

Whenever the resources are finite the previousadsie
analysis is replaced by a dynamic one, and the ematical
formalism is transferred from the realm of functoto the
realm of functionals. This refers to the case whee
propelling fluid flows at a finite rate; in this s& the Carnot
temperature and the resource temperature decréasg the
process path. Here the optimization task is to &indoptimal
profile of the Carnot temperatuii@ along the resource fluid
path that assures an extremum of the work consuared
delivered and — simultaneously — the minimum ofittiegral
entropy production. Figure 4 below illustrates the evalati
idea of the dynamic work limit for a system of aoerce and
infinite bath. This idea leads to a generalizedrgxefor a
finite duration of the state change and a minimaversibility.

Dynamical energy vyield requires the knowledge of an
extremal curve rather than an extremum point. Téssls to
variational metods (to handle extrema of functiehat place
of static optimization methods (to handle extrem& o
functions). For example, the use of a pseudo-Ndatomodel
to quantify the dynamic power yield from radiati@ives rise
to a non-exponential optimal curve describing thdiation
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relaxation to the equilibrium. The non-exponengizhpe of the
relaxation curve is the consequence of nonlineapgmties of
the radiation fluid. Non-exponential are also otlmmrves
describing the radiation relaxation, e.g. thoséofaihg from
exact models involving the Stefan-Boltzmann equefi, 5,
7]. Optimal (e.g. power-maximizing) temperature tfe
resource,T(t), is accompanied by the optimal contfB(t);

numerical problem leads to Bellman's recurrenceaggu,
solvable by the method of the dynamic programmihg].[
The problem of generalized exergy falls into theegary of
finite-time potentials, an important issue of conpsrary
thermodynamics [8]. This problem is solved with toncept
of multistage energy production or consumption, ieheach
stage represents

they both are components of the dynamic optimimatiooperation [3], as in Fig.1.

solution.

Energy limits of dynamical processes are
connected with exergies, the classical exergy asdrdte-
dependent extensions. To obtain the classical gxé&am
work functionals it suffices to assume that the rried
efficiency of the system is identical with the Gatrefficiency.
On the other hand, non-Carnot efficiencies, infaezh by
rates, lead to ‘generalized exergies’. The benéfitm
generalized exergies is that they define strongergy limits
than those predicted by classical exergies [1,8]9,1

The classical exergy defines bounds on the commark w

delivered from (or supplied to) slow, reversibl®gesses [8].
Such bounds are reversible since the magnitudéeofvork
delivered during the reversible approach to equilib is
equal to the one of the work supplied, after thiainand final
states are inverted, i.e. when the second proegssses to the
initial state of the first. Our approach leads the't
generalization of the classical exergy for finisges. During
the approach to the equilibrium the so-called emgiode of
the system takes place in which the work is rekbadaring
the departure- the so-called heat-pump mode odourhich

inherently V. DYNAMICAL ENERGY GENERATION FROMRADIATION

Energy transfer rates in reservoirs (streams) withlinear
media can be described by various models. As amgleaof
the above theory we consider the radiation engiviésh are
thermal machines driven by the radiation fluidmadium
exhibiting nonlinear properties. Usually one asssitiet the
energy transfer in a reservoir is proportionaltte difference
of absolute temperatures in certain poveerThe case o =4
refers to the radiatiora=-1 to the Onsagerian kinetics aarell
to the Fourier law of heat exchange. (In the Onsagecase

the quantitiesg; are negative in the common formalism

considered.)
As the first case of the radiation engine modeling

consider a “symmetric nonlinear case” in which tthe energy
exchange process in the energy exchange in eaemnvoas

satisfies the Stefan-Boltzmann equation. Next wesicter
“hybrid nonlinear case” in which the upper-temperatfluid

is still governed by the kinetics proportional te tdifference
of (T4)i, whereas the Kkinetics in the lower reservoir is

work is supplied. WorkW delivered in the engine mode is\wtonian.

positive by assumption. In the heat-pump méde negative,

or the positive work {A) must be supplied to the system. To

find a generalized exergy, optimization problems set, for
the maximum of the work delivered [max] and for the
minimum of the work supplied [min\], e.g. [12]. While the
reversibility property is lost for such exergy, ikinetic)
bounds are stronger and more useful
thermostatic bounds. This substantiates role ofetktended
exergy for evaluation of energy limits in practisgkstems.
With the functionals of power generation (consummptiat
disposal one can formulate the Hamilton-JacobisBafi
theory (HJB theory) for the extended exergy andatesl
extremum work. The HJB theory is the basic ingredi@
variational calculus and optimal control [8,11]. HWJB
equation extends the classical Hamilton-Jacobi wouay
the addition of extremum conditions, and it is esisd to

than classical

Here are the equations of tegmmetric nonlinear cas@he
energy exchange process in the upper reservosfisatiEg.
(40), and an equation of the same type and withstrae

coefficient a is valid for the energy exchange in the lower

reservoir, namely
&, = Qz = gz(Tg' _Tza) (46)

To express the internal balance equation for tiepy
@G (Ti-TH/Tr = G(T3-TH/T» (47)
in terms of T" and T+ we substituteT, =T, T, /T into

(47). Next we solve the result obtained with resgecT;.
This leads to an equation describing (in term¥ pthe upper

develop numerical methods in complex cases (wititest temperature of the circulating flufE:

dependent coefficients) when the problem cannosdieed
analytically. Due to the direct link between theBHtheory
and dynamic programming the associated numeric#thods
make use Bellman’s recurrence equation [13]. Thesthods
are complementary with respect of the Pontryagiriisciple
[8], as both are effective seeking methods of fiomet
extrema. Yet, in spite of its power, Pontriagin'sgiple does

not yield the principal functio’/ which is a general work

potential describing the change of the extendedggxehe
main result being sought. Otherwise, when a HIBatqgu is
known, the exergy (or work) is explicit, and thesaete

(48)

Tf—T’a Jl/a.

T, =| T2-
1 (Tl % 0g,M T+,

From this expression and Eq. (40) the energy §iuollows
in terms ofT". This flux is obtained in the form

Ti-T™®
@g,(T'/T,)" " +q,

& = 0.0, (49)

the standard Curzon-Ahlborn-Neviko
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which represents “thermal characteristics” of thgtam. An

We consider nowhybrid nonlinear casein which the

expression fofT, corresponding with (48) follows from the radiation law governs the energy flow only in thppar

thermodynamic  definition  of  Carnot
T, =T,T,/T . Also, &= &(1-77), where s is defined by the

pseudo-Carnot expression, Eqg. (37). Thus all necgss

guantities are known.

temperaturereservoir, whereas the lower one is governed byNggtonian

model

& =0,(T, - T,) . (53)

For a=1 the kinetics of heat exchange depends on theThe efficiency of an imperfect unit is still sated by
difference of two temperaturely —T’, as in the case of the expressiory = 1 - @T»/Ty, Eq. (37). To express the internal

direct two-body contact. Yet, in nonlinear procastiee heat
flux (49) emerges as function of three (not merakpo)

temperaturesT’, T; andT,. This means that the modeling rule

involving the formalism of the two-body contact t{sked

whena=1) is invalid in the case of nonlinear processl

we can evaluate power limits by maximizing the powe
related to equation (49) with respect to the fraenGt control,
T; see Eq. (52) below.

For a=4 the model describes the radiation engine usually

called the Stefan-Boltzmann engine. In spite of thedel’'s
simplicity, its two “resistive parts” take rigordysnto account
the entropy generation caused by simultaneous emissd
absorption of black-body radiation, the model's ey
which some of FTT adversaries seem not to be awfarEhis
entropy generation is just the external part ofttiial entropy
production that follows as the “classical” sum:

Usex1 = “:10—1'_1 _Tl_l) +é&, (Tz_l _Tle) , (50)

balance equation for the entropy

= 9,(T, ~T)/T2 (54)

D9, (T -T/Tz

in terms ofT" and T, we substituteT,, =T, T, /T" into (54).
This leads td” in terms ofTy
— T')

g, (T7-T1) = 9,(T, (55)

and whence to the mechanical powen terms ofT;.. The
thermal efficiency of the engine can be obtainethénform

T

- T,
T [

? T, - 0o, (TE-TH!
T 9.(T1 - T/ 9,

n=1- (56)

which contains the temperatufie as an effective control
variable. This result leads to the mechanical pewgression
with the explicit controlTy:

where eackly, is determined by the Stefan-Boltzmann law.

For the “symmetric’kinetics”, governed by the diffeces in

DT,
T° the Carnotrepresentation of the total entropy production W= Ifﬂdt-f 9T -T; ){ :

follows from equations (38) and (49)

Tla—T': ((qs 1) (1 1)] (51)
oM IT) +g,| T T T,

as = 9192

Superiority of Carnot control’ over the energy flux control
& may be noted. Since the energy flux expressioh ¢d8not
be inverted to get an explicit functiom’ (&), analytical
expressions for the energy-flux representationhef éntropy
production or the associated mechanical powecannot
generally be found in an analytical form. Still wan express
the entropy production and powgin terms of Carnot control,
T', and then evaluate the work limit by maximizingrivdV
with respect to the free Carnot control,’. The work
expression to be minimized is

—¢Ljdt
T

Whenever analytical difficulties occur (fardifferent from
the unity), the maximization can be performed nucadly by
dynamic programming using Carnotas the free control.

Ti-

—Tl(l (52)
¢gl(T /TZ) + gZ

t! t
= ngndt = J. 9,9
t' t'

57
_Tf')/gzjdt &)

1/a

T, - 99, (T?

Since from Eq. (40)T, =(T?—-&/9,) 7, the energy flux
representation of Eq. (57) is obtained in the form

DT,
W = é‘/]dt:é‘(l— 2
;... ! ' (Tf_‘sl/ gl)ll _4551/ 9,

]. (58)

Equations (57) or (58) allow analytical or graphica
maximization of work with respect to a single cohtrariable,
Tpror &. This leads to the limits on work production in
imperfect units. A suitable control may be the @arn
temperature itself, its function or an operatottearms of the
process variables. Operator structure ©f is frequent in
dynamical problems.

In dynamical systems differential forms of expreasi are
necessary. For a suitably defined timéassociated with the
resource fluid; see Eqg. (32) beloahd for an arbitrary heat
transfer (Newtonian or not) the internal entropgdurction is

Tdrl

59
T (rl,T) 59

S = j o(T)
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whereas its external part

= 2yt

(60)
IURANEA

jccrx

The minimization must involve total entropy prodaatas
the quantity which determines the lost work in thalr
equations of availabilities. The sum of Egs. (504 460)
the integral
(61)

e 1
j M i)Tldfl-

The limiting production or consumption of mechahica

energy is associated with extremum work (52) or) (b7
minimum of overall entropy production (31). Oftengossible
to determine explicit form of functions describir@arnot
temperatureT' in terms of the current fluid’s temperatufe
and its time derivative. Such functional structaléows to
apply the variational calculus in the optimizatianalysis. If
this function is difficult to find in an explicitofm then
equations (59) and (60) should be written in thenfan which
T'and T, are two variables in the Pontryagin’s algorithm
the optimal control. In that case a differentiahsaint must
be added which links rateTddt with state variablel; and
control T' (Eq. (63) below).

We shall again specialize with what we callgdnmetric
nonlinear caselt involves the radiative heat transfe=4) in
both upper and lower reservoirs and correspondstivit form
(51) of the intensity of total entropy production.

We shall define the nondimensional timeby the equality

& 10, =-Gc(T)dT, /(a,a,Fdx) = -dT, /d7, (62)
which means that the driving energy flux can besuezd in
terms of the temperature drop of the propellingdfiper unit
of the nondimensional time. Comparing the resultainied
with & of Eq. (49) we obtain the basic differential edpmat

Ti-T"

S L (63)
20g,(T'IT,)*  +g,

dT,/dr, = -9

This formula constitutes the differential consttain the
problem of minimization of the total entropy protioo (61)
by Pontryagin’s maximum principle. This is partady
important in view of the fact that the method ofiational
calculus cannot effectively be used (as opposethdocase
considered below).

We shall now specialize to what we called thgbrid
nonlinear caselt involves the radiative heat transfe=4) in
the upper reservoir and a convective one in thestawne. In
terms of the ratd, =dT, / dr, we obtain

rf

s =-[e(r,) it Tdr,  (64)
r T+ Tla )g + T1¢91 19,
and
st= —IC(E)( 1 - _Tl)Tld 5 (69

v (Tla + Tla )g + Tl‘pgl 19, !

To obtain an optimal path associated with the limgit
production or consumption of mechanical energy shm of
the above functionals i.e. the overall entropy picizhn

i (66)

r'f 1.
=~ [ ; )hdr,
¢ (ReiekeTog g,

has to be minimized for a fixed duration and defirend
states of the radiation fluid. The most typical wey do
accomplish the minimization is to write down anénhsolve
the Euler-Lagrange equation of the variational [rob
of\nalytical solution is very difficult to obtain, tis one has to
rest on numerical approaches. For Egs. (61) or (66%e
approaches involve the dynamic programming algosth
(Bellman's equations; [8, 13]) which are, in fadiscrete
representations of the HJB equations of the vanali
problem. Analytical aspects of HIB equations arealyaed
throughout the Sects. 6-9 of the present paper.

VL.

Two different kinds of work, first associated witte resource
downgrading during its relaxation to the equililbniiand the
second — with the reverse process of resource dipgraare
essential. During the engine mode work is releadedng heat-
pump mode work is supplied. The optimal work folkoim the
form of a generalized potential which depends @nethd states
and duration. For appropriate boundary condititvesgrincipal
function of the variational problem of extremum Wwat flow
coincides with the exergy as the function that abtrizes
quality of resources.

We are now in position to formulate the HJB thedoy
systems propelled by energy flex Total power obtained from
an infinite number of infinitesimal stages reprdsen the
resource relaxation is determined as the Lagrangetibnal of
the following structure

FINITE RESOURCES ANDFINITE RATE EXERGIES

t'
W[T' T]_j%Uij— yxﬁmaTyMt 67)
wherefy is power generatlon mtensnga - resource fluxg(T)-
specific heat,7(T, T") - efficiency in terms of statd and
control T', further T — enlarged state vector comprising state
and time, t — time variable (residence time or holdup time) fo
a resource contacting with energy transfer surfdear. a
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constant mass flux of a resource stream, one ctenaize v — 2
power per unit mass flux, i.e. the quantity of speovork a——C{\/Te -yT@+c 6V/0T)} =0 (70)
dimension called ‘work at flow'. A non-dimensioni@ne 7 is d

often used in the description ) . . . .
which is the Hamilton-Jacobi equation of the prohldts

solution can be found by the integration of workeirsity

(68) along an optimal path, between limitsand T'. A reversible
(path independent) part ¥fis the classical exergy(T, T°, 0).
Whenever analytical difficulties are serious methofl

This definition assures that is identical with the number of dynamic programming is applied to solve a discreitiB
the energy transfer units, and related to systéimis constants, equation which is in, fact, Bellman's equation ofndmic

X andHry (relaxation constant and height of the transfét).un programming for a multistage cascade process [13].

Equation (68), which links non-dimensional and fitsistimes, Details of modeling of multistage power productiém

x _aaF = a’avth _t
HTU GC GC

contains resource’s flows, stream velocity through cross- Sequences of engines are discussed in the previous

. . ublications [5, 9, 11].
section AY , and heat transfer exchange surface per unit volunﬁ)e [ ]

a [51 VI Ex

o _ . . EXAMPLES OFHJB EQUATIONS IN POWER SYSTEMS
The functionfy in Eq. (67) contains thermal efficiency, i ) Q . i ]
described by a practical counterpart of the Cafootula. !N this section we shall display some Hamilton-&&kco

WhenT > T, efficiency s decreases in the engine mode beloy?€llman equations for the power systems with raafatA
ne and increases in the heat-pump mode abpvét the limit sunablt_e example is a radiation engine whose pantegral is
of vanishing rateslT/dt= 0 andT' - T . Work of each mode approximated by a pseudo-Newtonian model of radiaf
simplifies then to the classical exergy. er]rirg );n?))ijc(gla;gies;sociated with an optimal function
Solutions to work extremum problems can be obtaibgd P
variational methods, i.e. via Euler-Lagrange edumtiof g
variational calculus. However, such solutions dd cmntain Pt (A P , (71
direct information about the optimal work functiod = Ve T )_rﬁg)x {[Gmc”‘(l P et
max(W /G). Yet, V can be obtained by solving the related

Hamilton-Jacobi-Bellman equation (HJB equationifg).

wherev =a(T3)(T'-T). Alternative forms use expressions of
| - | i= Carnot temperatur&’ in terms of other control variables [5].
b s [, ogion Optimal power (71) can be referred to a pseudolikeeetics
1 mole — ’ H . 3; ’
= dT/dt = (T, T') consistent with rate=a(T°)(T'-T). A general
form of HIB equation for work functiov is

e

work supplied worle rel eased

heat-pump mode engine mode
v ov
W <0 W0 -2 +max fo(T,T)-=—f(T,T") |=0, 72
electrolyser mode battery mode at T'(t;{ O( ) aT (T )J ( )

ming- roblem
oW AW problemn

wherefy is defined as the integrand in Eq. (71).
A more exact model or radiation conversion relakes
assumption of the pseudo-Newtonian transfer andiespfhe

[ . T
T‘2 environment (infinite bath) @ Stefan-Boltzmann law. For theymmetricmodel of radiation
T=T° wi=pe conversion (both reservoirs composed of radiatierofatain
f
Fig. 4 In finite-rate processes limiting work produced aonsumed i —tj‘Gc(T) - oTe Ta_1a i (73)
differ in both process modes B 3 T (@@ T8t 4Tt

For the Newtonian energy transfer (linear kinetics) . 1, 01 -
Here @ = @g,/g, and coefficients = ga,c,, (py) — is related

to molar constant of photons densjfyand Stefan-Boltzmann

constanta. In the physical space, power exponert for

. . ) ~ radiation anch=1 for a linear resource. With a dynamical state
Extremum work functionV = max@W /G) contained in equation following from Eq. (63)

equations of this type is a function of the finidte and total
duration. dT Ta_pa

After the evaluation of optimal control and its stitution to — == (74)
Eq. (69) one obtains a nonlinear equation dt (@ (T /T8t +yrat

Y, v T®
_ _ —c(1- T_ = 69
or ngx{( T c T,))( T)} 0 (69)
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applied in general Eq. (72) we obtain a Htiation

} (75)

ov

_ . Te Ta -T2
—= rpg\;({{Gc(l <1'>?) +0V /BTJB

[5]. Dynamics (74) is the characteristic equatmiq. (75).

For a hybrid modelof the radiation conversion (upper

reservoir composed of the radiation and lower rwesenf a
Newtonian fluid), the power production expressias the form

W= je (T)[l ]udt
whereas the related Hamilton-Jacobi-Bellman eqoasio

_ _eT LoV L (77)
ot rp?f{ [G (Dd T')+an]u} 0

(76)

where by definition:
TI = (Ta + B—l-l— a—lu)l/a + (pﬂ_l—r a—lugl / 92

is the Carnot temperature of this particular pnob]8].

The HJB approach can also be applied when onerng thse
general equations of nonlinear macrokinetics [Iri}his case
one may consider coupled transfer of magsand energysd).
On this ground one can develop the nonlinear theowhich
thermal conductances are variable i.e. are statgifins

VIII.

By applying the feedback control, either optimahperature
T’ or some other optimal control is implemented asgtientity
maximizing the hamiltonian with respect to Carremnperature
at each point of the path. The Pontryagin's vaealr the

SOLUTIONS OFHJB EQUATIONS IN ENERGY SYSTEMS

energy problem ig = - 0V/OT. Expressions extremized in HIB

equations are some Hamiltoniaht, The maximization ofH
leads to two equations. The first expresses optimatrol T' in

1/2
= TeT
1+c lav /aT

This expression is next substituted into Eq. (#8);result is the
nonlinear Hamilton-Jacobi equation

(80)

2
g—\;+cT(\/l+c'16V/6T —\/TEIT) =0 (81)
which contains the energy-like (extremum) Hamiléoni
H(T,a—v):cT(\/l+c‘10V/6T —\/TE/T)Z- (82)
oT

Expressing extremum Hamiltonian (82) in terms afesvariable
T and Carnot contrdl ' yields an energy-like function satisfying
the following relation

E(T,u) = f, —ua Te(r T) . (83)

E is the Legendre transform of the work lagrandiemn - f, with
respect to the rate= dT/dr .

Assuming a numerical value of the Hamiltonian, baypne
can exploit the constancy dfl to eliminate 0V/OT. Next
combining equatiotd=h with optimal control (80), or with an
equivalent result for heat flow contnetT ‘- T

1/2
TeT
us|————| -T
1+c oVvV/oT

yields optimal rateu=T in terms of temperaturd and the
Hamiltonian constarit

T={#vh/cTe (-

(84)

(85)

+v/h/cT® YHT.

terms of T andz = - dV/JT. For the linear kinetics of Eq. (69) we A more general form of this result which appliessystems

obtain

TeT

oV O T) v, _) 0

(78)
aT T aT

whereas the second
maximizing operation

is the original equation {@éhout

ov oV

+ o (T =T)+ c(1——)(T -T)=0.  (79)

or

with internal dissipation (facto®) and applies to the pseudo-
Newtonian model of radiation is

T=[i\/ h, [1_1,\/ h, ]]‘rs{(hﬂ,d),T)T.
oc, (T) oc, (T)

The coefficient, defined in the above equation, is an
intensity index andh,=h/T. The result is valid the temperature
dependent heat capacity,(T)=4a,T°. Positive & refer to
heating of the resource fluid in the heat-pump maedel the
negative - to cooling of this fluid in the engineode.

(86)

To obtain optimal control functiof(z, T) one should solve the Therefore pseudo-Newtonian systems produce poveeximg
second equality in Eq. (78) in terms™f The result is optimal With the optimal rate

Carnot controll" in terms ofT andz = -dV/dT,

T=¢(h,, T,®)T (87)
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Equations (86) and (87) describe the optimal ttejgcin
terms of state variabl@ and constanh,. The corresponding
optimal control (Carnot control) is

T'=[1+£&(h,, ®,T))T . (88)

V=h-h' -Ts,-s)
- (4133, 22V 2T e(T 7 - T
+ (413)a,Te (- )T -T ).

f3/2) (91)

Generalized exergy chang¥ prohibits processes from

In comparison with the linear systems, the pseud@perating below the heat-pump mode (lower boundwork

Newtonian relaxation curve is not exponential. Kufd] has
illustrated the optimal temperature of radiationvdgraded in
engine mode or upgraded in the heat-pump modealsed4]
and [5].

HJB theory of energy systems can also be based
properties of entropy production. Equations (64)(6ontain
expressions representing Carnot temperaflirein terms of
the upper reservoir temperatufe and the time derivative of
this quantity. They prove that the success in aiiie
Lagrange functionals (necessary when one wantppty ahe
method of calculus of variations) is crucially degent on the
possibility of getting Carnot temperatufein the form of an
explicit analytical function of” and dr’/dt. For the symmetric
nonlinear model of the engine such explicit functiis
impossible to find, yet the possibility exists hretcase of the
hybrid nonlinear model. For the latter model one tteerefore

supplied) and above the engine mode line (uppend@ar work
produced). The so-called endoreversible limitsespond with
@ =1; weaker limits of classical exergy are represegiby the
straight lineA= A“®S The classical availability is potential or
Sfate function whose change between two arbitraafes
describes the reversible work. On the other hardelized
availability functions are irreversible extensiafghis classical
function including minimally irreversible processes

Regions of possible improvements are found whereifapt
machines are replaced by those with better perfocea
including limits for Carnot machines. The genesizxergy of
radiation at flow, [14], follows in analytical forfinom Eq. (91)
after applying exergy boundary conditions. Yet ttassical
exergy of radiation at flow resides in the discdssxergy
equation in Jeter's 1981 form, [15], rather thaiP@iela’s 1964
form, [14]. The zero-rate limit, i.e. the change déssical

write down explicit Euler-Lagrange equations of thgnhermal availability appears in Eq. (91) in thendiard way.

variational problem and perform the minimization thfe
entropy production.

IX. RATE DEPENDENTEXERGIES ASGENERALIZED WORK
POTENTIALS

Let us begin with linear systems. Substituting terafure
control (88) with a constanf into work functional (67) and
integrating along an optimal path yields an extienvark
function

. . i
VT o -T ) —cTe I

| T! (89)
—ere [ T
cte Tf

This expression is valid for every process modegiration of
Eq. (86) subject to end conditiofié?)=T and T()=T leads to
Vin terms of the process duration.

For radiationcv(T):4aoT3, whereg, is the radiation constant.
The optimal path consistent with Egs. (87) and (&8)the form

1372
+(4)9a 212, -1/2(T3/2_T|3

-In(T /Ty =c-7'

The integration limits refer to the initial stai® gnda current
state of the radiation fluid, i.e. temperaturds and T

corresponding withe' and 7. Optimal curve (90) refers to the

case when the radiation relaxation is subject tooastraint
resulting from Eq. (87).

The corresponding extremal work function per uoiume of
flowing radiation is

X. POWERSYSTEMSDRIVEN BY CHEMICAL AFFINITIES

The developed approach can be extended to cheinzhl
electrochemical engines. Here we shall make orfiswabasic
remarks. In chemical engines mass transports petéc in
transformation of chemical affinities into mechahipower [12,
16]. Yet, as opposed to thermal machines, in chendoes
generalized streams or reservoirs are present,bleapaf
providing both heat and substance. Large streamsfioite
reservoirs assure constancy of chemical potentatshlems of
extremum power (maximum of power produced and minim
of power consumed) are static optimization problefwr a
finite “upper stream”, however, amount and chempatential
of an active reactant decrease in time, and camrsldaroblems
are those of dynamic optimization and variationalcalus.
Because of the diversity and complexity of chemayatems the
area of power producing chemistries is extremebatr

The simplest model of power producing chemical e@gs
that with an isothermal isomerization reactiogtA,=0, [3, 12].
Power expression and efficiency formula of a chaimsystem
follow from the entropy conservation and energyabeé of a
power-producing zone (‘active part’). In an ‘endaesible
chemical engine’ total entropy flux is continuodsough the
active zone. When a formula describing this coitinis
combined with energy balance we find in an isotlacase

P =t~ p2)y (92)
where the feed fluxy; equals ton, an invariant molar flux of
reagents. Process efficiendys defined as power yield per flux

n. This efficiency is identical with the chemicafiaity of our
reaction in the chemically active part of the syst®Vhile { is
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not dimensionless, it describes correctly the systa terms of
Carnot variabley/, which satisfies Eq. (27)

(=i ~U.

For a steady engine the following function desaibleemical
Carnot control/ in terms of fuel fluxn, and its mole fractior

y:%+Q+Rﬂ{‘_m£] (94)

ng," +%

Since Eq. (93) is valid, Eq. (94) also characteribe efficiency
control in terms of and fuel fractiorx.
Equation (94) shows that an effective concentratbrihe

reactant in upper reservolfes= X1 —gy 1nis decreased, whereas

an effective concentration of the product in loveservoin,e;=

X + g5in is increased due to the finite mass flux. Therefo

chemical efficiency decreases nonlinearly with
When the effect of resistancag)( is ignorable or fluxn is
very small, reversible Carnot-like chemical effiag, ., is
attained. The power function, described by the pcod(n)n,
exhibits a maximum for a finite value of the fuiekf n.
Application of Eq. (94) to the Lagrangian relaxatjwath leads
to a work functional

W==[ {¢,+RTin XM+ X) +dX/dr ) dX
5 X, — jdX /dr, dr,

(95)

whose maximum describes the dynamical limit of $igstem.

Here X=x/(1-x) and equals the ratio of upper to lower mass

conductanceg,/gs.

The path optimality condition may be expresse@ims of the

constancy of the following Hamiltonian
. 1+ X i
H(X,X)=RmX? —2+1 |.
X X,

For low rates and large concentratiotis (mole fractions x
close to the unity) optimal relaxation rate of fhel resource is
approximately constant.

Yet, in an arbitrary situation optimal rates amestdependent
SO as to preserve the constancyHoh Eg. (96). Extensions of
Eq. (94) are known for multicomponent, multireact®ystems
[27].

Power formula which treats the internal imperfewidas the
form generalizing “endoreversible” Eq. (23)

(96)

_ T, s
=61-P )+ T, (2 -¥=H)n, ., 97
P=60-00) + T - ©7)

2

where ¥ is the coefficient of chemical losses which takes
account the imperfections of the species transfiooms caused
by incomplete conversions [17].

XI.

To understand the role of electrochemical reactionthe
power yield we consider performance bounds of falls.

FUEL CELLS AT STEADY STATE CONDITIONS

(93) These systems are electrochemical flow enginesefieap by

chemical reactions, which satisfy requirements isagb by
chemical stoichiometry. The performance of fuellsceb
determined by magnitudes and directions of allastreand by
mechanism of electric current generation.
distinction for the work production and consumptianits
applies here as well.
electrochemical engines whereas those which congawer
are electrolyzers. Figure 5 illustrates a soliddexfuel cell
engine (SOFC) and refers to the power yield mode.

A fuel cell is an electrochemical energy convendrich
directly and continuously transforms a part of cleatenergy
into electrical energy by consuming fuel and oxidaruel
cells have recently attracted great attention byueiof their
inherently clean, efficient, and reliable performand heir

'main advantage in comparison to heat engines is thr

efficiency is not a major function of device size.
While both electronic and ionic transfers are neapsto
sustain power generation, it is the overall chemieaction

which is the source of power, and it is the chemigait

property which constitutes the first major compdnehthe
theory of power generation in fuel cell enginese Tdecond
major component involves the kinetics of electrpiaic and
thermal transfer phenomena.

Fuelin Diepleted fiel
atud water out

oy

Hy H04

fAnode

Ilea.k

1 Electrolyte
L}

Cuathode

Fig. 5. Principle of a solid oxide fuel cell

The basic structure of fuel cells includes elegtmlayer in
contact with a porous anode and cathode on eitll. s
Gaseous fuels are fed continuously to the anodgaftive
electrode) compartment and an oxidant (i.e., oxyfgem air)
is fed continuously to the cathode (positive elsibd)
compartment. Electrochemical reactions take platetha
electrodes to produce an electric current. Theti@ads the
electrochemical oxidation of fuel, usually hydrogemd the
reduction of the oxidant, usually oxygen. Thesepprties
make fuel cells similar to the chemical engine iof .

This formalism can be genera”zed to ('_:Ornp|e)(l multi Voltage Iowering in fuel cells below the reVerSiWUeEo

reaction chemical systems [17].

is a good measure of their imperfection only wiE8rcan be
identified with the so-called idle run voltagg, see discussion

The mode

Units which produce power are
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below and Fig. 6a. With the concept of effectivenliveear
resistances operating voltage of a general fudl cah be
represented as the departure from the idle ruagek,.

represents ohmic losses throughout the fuel cslth& voltage
losses increase with current, the initially inciegspower
begins finally decrease for sufficiently large @mts, so that
maxima of power are observed (Fig. 6b).

The final voltage equation used for the calculatbthe fuel
cell voltage in Wierzbicki’'s model is:
(98)

V= EO - Vinl= E 'Vact 'Vconc -

ohm

= EO - I(Racl + R(:on(:'*' Rohm)

The rate dependent losses, which are called pataig
include three main sources: activation polarizatifcy),
ohmic polarization (Vonn), and concentration polarization
(Meond- They refer to the equivalent activation resis&afRy),
equivalent ohmic resistance Rf,), and equivalent
concentration resistanc®(,). Large number of approaches
for calculating these polarization losses has bregiewed in
the literature by Zhao, Ou and Chen, [18].

. AE i
- _ - , 99
V =Ey(T, py,) —1Ax( sz)ex;{ RT)+ Bln{l ] (99)

iL(Tv sz)

where the limiting current is

_Ea
exp( = ) Py,
L =C—R— (100)

a) Voltage-power-current characteristics of SOFC and C; is a experimentally determined parameter. Power

density is simply the product of voltayeand current density

' | T=800 °C 030 - i. In an ideal situation (no losses) the cell vatagydefined by

! 025 % the Nernst equation. Yet, while the first term odi. §99)

2 s 4 B 00 g defines the voltage without load, it nonetheledsedainto

£ 06 e ois % account losses of the idle run, which are the efiédlaws in
~ g electrode constructions and other imperfectionsciwidause

1 7\\ oo that the open circuit voltage will in reality bewler than the
02— \%5 oo \QJ%D@OWHZ 005 theoretical value. Activation polarizatiovi is neglected in
0 : ? : b 0 this model. The losses include ohmic polarizationd a

0.4 0.6 0.8 1

0.0 0.2 0

concentration polarization. The second term of E2P)

quantifies ohmic losses associated with electriistance of

electrodes and flow resistance of ions throughetleetrolyte.

The third term refers to mass transport lossesn@ya, is the

particular current arising when the fuel is consdnie the

b) Characteristics of SOFC at varions temperatares reaction with the maximum possible feed rate. Fwonarison,
the data oZhao, Ou and Chen, [18], are shown in Fig. 7.

Current density [A/em?]

Power density 100 % H. Power density 60 % 11,

Power density 40 % H, Power density 25 % H,

12 0.30
1 0.25 Valtage, power and polatizations
)
= 0.8 0.20 % Open circuit voltage Power den_531ty
% g Wim?x10
& 06 015 F o9 6
0.4 y 753 0.10 §N [ & ctivation
/ \ 7?)55\ \ pL 2 s N 4
0.2 / \ \\ \ 0.05 =
0 T T T T T T T T T 0.00 03 Ohrde 2
00 01 02 03 04 05 06 . 07 08 09 10 Concertration
Current density [A/em?]

Power density at 800 °C

Power density at 750 °C Power density

at 700 °C

Fig. 6. Voltage-current density and power - curresgnsity
characteristics of the SOFC for various fuels imgerature 80C

(8) and at various temperatures (b). Continuousslirepresent the (orms of current density for a fuel cell using hygn (97% H+ 3%
Aspen Plu8" calculations testing the model consistency with th H,0) as fuel and air (21% 0 79% N) as oxidant (Zhao, Ou and

experiments. These lines were obtained in WierzsidWsD thesis
[19], supervised by the present author and J. 3uvioints refer to

experiments of Wierzbicki and Jewulski in Warsawstitute of
Energetics (Wierzbicki, [19], and his ref. 18).

Activation and concentration polarizations occur keith
anode and cathode locations, while the resistidarization

XIl.

o 05 1 15 E 425
Current density AfmZ 0

Fig. 7. Data of the cell voltage, polarizationsd grower density in

Chen [18]), consistent with the data of Wierzbi¢kB)].

FINAL REMARKS

The present paper provides the unifying thermodyomam
method for determining power production limits ineegy

systems. These limits are enhanced in comparistn thbse
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predicted by the classical thermodynamics. As opgde the
classical thermodynamics, these bounds depend migtam

changes of the thermodynamic state of participataspurces
but also on process irreversibilities, ratios akeam flows,
stream directions, and mechanism of heat and meassfér.

To understand the problem of bounds and theirraistin
for the work production and consumption, recalt tihe work-
producing process is the inverse of the work-comsgm
process (the final state of the second procesmifntitial state
of the first, and conversely), when durations oé ttwo
processes and their end states are fixed to beathe.

In thermostatics the two bounds on the work, thenloon
the work produced and that on the work consumenhcicte.
However thermostatic bounds are often too far freality to
be really useful. The generalized bounds, obtaihe by
solving HJB equations, are stronger than thoseigiest by
thermostatics. They do not coincide for procesdesvark
production and work consumption; they are ‘thermetc'
rather than 'thermostatic' bounds. Only for in&hjt long
durations or for processes with excellent trangéer infinite
number of transfer units) the thermokinetic boursduce to
the classical thermostatic bounds.

A real process which does not apply the optimakquol
but has the same boundary states and duratioreagptimal
path, requires a real work supply that can onlydoger than
the finite-rate bound obtained by the optimizatiGmilarly,
the real work delivered from a nonequilibrium wgnieducing
system (with the same boundary states and durhtibmwith a
suboptimal control) can only be lower than the esponding
finite-rate bound. Indeed, the two bounds, for @cpss and its
inverse, which coincide in thermostatics, diverga
thermodynamics, at a rate that grows with any
guantifying the process deviation from the stagbdwior, e.g.

Hamiltonian H. For sufficiently high values of rate indices
(large H), work consumed may far exceed the classical worp,’

work produced can be much lower than classical vane
vanish.

Functions of optimal work obtained via optimizatiane
generalizations of the classical exergy, [20], floe case of
imperfect (dissipation—involving) downgrading anilization
of resources. The generalized exergy in proceseparting
from the equilibrium (resource relaxation, downgnadl is
larger than the one in processes approaching thiibegum
(resource utilization, upgrading). This property eszges
because one respectively adds or subtracts theugtrad T°
and entropy production in equations describinggteeralized
availability. Limits for mechanical

those defined by the classical exergy. Thus, irh bubdes,
generalized exergies provide enhanced bounds irpaoson
with those predicted by classical exergy.

In the realm of fuel cells these issues are radhtifresh but
there is a potential of implementing them especiaf
connection with control problems [21, 22]. Electiemical
systems and particularly fuel cells are especiatlyortant in

energy yield or
consumption provided by exergidsare always stronger than Tu,

2415-6620
No:6, 2010

this context by virtue of their inherently clearfi@ent, and
reliable performance. The methodology extending fémailiar
for the classical thermal machines has also be&méad to
the complex multi-component and multi-reaction cloain
engines, [17].

XIII.

Clearly, with thermokinetic models, we can confr@mtd
surmount the limitations of applying classical thedynamic
bounds to real processes. The consequence are cedhan
power limits, stronger than those of classical rireynamics.
This is a direction with many open opportunitiespecially
for separation and chemical systems. More inforonatelated
to power limits in energy systems can be foundun earlier
papers [9, 23] and in the book [11]. A challengaxiension is
also the optimization of the fuel cell-heat engimgbrid
systems [24].

CONCLUSION

NOMENCLATURE
A, generalized exergy per unit volume [Jm

A" surface area perpendicular to flow’[m
a temperature power exponent in kinetic equation [-]
g;vo:folc constant related to the Stefan-Boltzmann cohgiam
K™
a, total area of energy exchange per unit volumé] [m
E°, E; Nernst ideal voltage and idle run voltage, respelst
[Vl
G resource flux [g8, mols?]
g, g partial and overall conductance f8s7
ifo, fi profit rate and process rates

inde'? Hamiltonian function

Hry height of transfer unit [m]

h numerical value of Hamiltonian [J#™]

h, specific and volumetric enthalpies Flgm”]
I“electric current density [Af]

n flux of fuel reagents [g5 mols!|

p = W power output [J§

p2 molar constant of photons density [mdii®s™]

qheat flux between a stream and power generatd} [Js
Q total heat flux involving transferred entropies’J

S, S, entropy and entropy produced [JK

AS; entropy change of circulating fluid along isotheFin
AS, entropy change of the circulating fluid along e T
s, s, specific and volumetric entropy [Jg*, J K'm™]

T variable temperature of resource [K]

Ty, T, bulk temperatures of reservoirs 1 and 2 [K]

T, temperatures of circulating fluid (Fig.1) [K]

T® constant temperature of environment [K]

T Carnot temperature control [K],

T = u rate of control off in non-dimensional time [K]

t physical time [s]

uandu rate controlsd 76rand dr/dt, [K, Ks¥]

V voltage,maximum work function, resp.[V, Jmil

v velocity of resource stream [fis

W work produced, positive in engine mode [J]

416



International Journal of Chemical, Materials and Biomolecular Sciences
ISSN: 2415-6620
Vol:4, No:6, 2010

w specific work at flow or power per unit flux ofrasource
[J/mol]

x mass fraction [-], length coordinate [m]

z adjoint variable

Greek symbols

a, & partial and overall heat coefficients
respective cross-sections [JstK™]

B effective coefficient of radiation transfer reldtéo molar

constant of photons densip}, and Stefan-Boltzmann [5]

constant of radiation} = ga, c, l( p?n)_l[s’l]

£total energy flux, conservative along a conducist][

n = pla; first-law thermal efficiency [-]

x= pc(aa,) ™ time constant assuring the identity of ratjp
with number of transfer units [s]

4 chemical potential [Jmd]

' Carnot chemical potential [Jmt

@ factor of internal irreversibility [-]

o Stefan-Boltzmann constant for radiation P&tk
o, entropy production of the system [3&]
£intensity index [-]

{ chemical efficiency [-]

rdimensionless time or number of transfer units [-]

Subscripts

C Carnot point

m molar flow

v per unit volume

1,2 first and second fluid
0 idle run voltage

Superscripts

e environment

i initial state

f initial state

0 ideal (equilibrium) voltage

Abbreviations

CNCA Chambadal-Novikov-Curzon-Ahlborn engine
HJB Hamilton-Jacobi-Bellman

HJ Hamilton Jacobi equation.
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