
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1043

Abstract—This paper gives an overview of how an OWL

ontology has been created to represent template knowledge models
defined in CML that are provided by CommonKADS.
CommonKADS is a mature knowledge engineering methodology
which proposes the use of template knowledge model for knowledge
modelling. The aim of developing this ontology is to present the
template knowledge model in a knowledge representation language
that can be easily understood and shared in the knowledge
engineering community. Hence OWL is used as it has become a
standard for ontology and also it already has user friendly tools for
viewing and editing.

Keywords—Ontology, OWL, Template Knowledge Models,
CommonKADS

I. INTRODUCTION
HE area of KBS development has matured over the years.
It started with first-generation expert systems with a

single flat knowledge base and general reasoning engine,
typically built in a rapid-prototyping approach [1]. It was
essentially based on the process of knowledge transfer [2].
Maintenance of such systems was very difficult. Hence the
approach changed to a methodological approach which was
similar to that of software engineering with knowledge as its
main focus. Knowledge Engineering is no longer simply a
means of mining the knowledge from the expert. It now
encompasses methods and techniques for knowledge
acquisition, modelling, representation and use of knowledge
[3]. Several methodologies and frameworks have been
developed over years e.g. CommonKADS [3], Protégé[4],
MIKE [5], and MOKA[6].

CommonKADS [3] is one of the most mature second
generation knowledge engineering methodologies. KBS
development is based on the construction of a number of
separate models that capture the desired features of the system
and its environment. It has knowledge modelling as one of its
main activity. The knowledge modelling activity consists of a
selection and refinement of available model templates. CML,
a frame-based language [7], is used for building the
knowledge models. The template knowledge models also are
defined using CML also.

One of the main criticisms associated with existing
knowledge engineering methodology is its steep learning

B. A. Gobin (phone: 230-7494911 e-mail: baby_gobin@hotmail.com) and
R. K. Subramanian (phone: 230-4541041 fax: 230-4657144 e-mail:
rks@uom.ac.mu) are with the Department of Computer Science and
Engineering of the University of Mauritius.

curve due to complexities associated with the methodology
and the language used for knowledge representation. In an
attempt to help in decrease complexity associated with
knowledge representation language we propose the use of
OWL[8] instead of CML for the template knowledge model.
OWL has become the standard language for ontologies and is
understood by many in the knowledge engineering
community. Ontologies are used by all methodologies for
representing the domain knowledge. Some methodologies and
development environment e.g. Protégé and IBROW[9] use
ontology to represent the reasoning component from a generic
perspective which can then be used each time a knowledge
model needs to be developed. Protégé e.g. has a library of
PSM developed in UPML[10].

CommonKADS used ontologies only for the representation
of the domain knowledge. We create an ontology that will
contain template models proposed by CommonKADS so that
can be easily shared and used and this work explains how the
ontology was created. It first gives an overview of knowledge
modelling in CommonKADS, followed by an overview of
OWL. The ontology is then explained.

II. KNOWLEDGE MODELLING IN COMMONKADS

A. Knowledge Model
In CommonKADS the knowledge model has three parts:

domain knowledge, task knowledge and inference knowledge.

o Domain Knowledge
The domain knowledge specifies the domain specific

knowledge and the information types that are needed in the
application. It is basically a description of the knowledge that
will be found in the system. The description can be
categorized into two major groups: 1) domain schemas and 2)
the knowledge base. The domain schema is a schematic
description of the domain-specific knowledge and information
through a number of type definitions. From a software
engineering point of view the domain schema resembles the
data model. The domain schema uses a set of modelling
construct for domain knowledge specifications. There are
three main modelling constructs are: CONCEPTS,
RELATION and RULE TYPE. The knowledge base is the
instantiation of the domain schema.

o Inference Knowledge
The inference knowledge describes how domain knowledge

can be used to carry out reasoning process. The inference

An Owl Ontology for Commonkads Template
Knowledge Models

B. A. Gobin, and R. K. Subramanian

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1044

knowledge is the inferences which describe the lowest level of
functional decomposition. It consists of the knowledge roles
needed for the inference and a small specification about the
inference. The knowledge roles describe the input and the
output. Another component of the inference knowledge are
the transfer functions which describe the function that

o Task Knowledge
The task knowledge describes the goals that need to be

achieved by the system and the strategies that will be used to
achieve them. It consists of the task which defines the
complex reasoning function and the task methods which
describe how the task is realised through the decomposition
into other subfunctions e.g. subtasks or inference or a transfer
function. It also defines a control structure which describes in
what order the subfunctions need to be carried out.

B. Template Knowledge Model
CommonKADS supports the partial reuse of knowledge

models to support the knowledge modelling process. As
compared to software engineering, knowledge intensive task
are limited and can be categorised as shown in Fig. 1.
Knowledge engineer can use these templates to build a system
with respect to the task that need to be accomplished instead
of starting everything from scratch. The advantages of reuse
are as follows:
• It prevents from "re-inventing the wheel"
• It is cost/time efficient
• It decreases complexity
• It provides for quality-assurance

Hence a catalogue of task templates is provided for the
above tasks. The task templates consist of the task definition
and the task methods. They are reusable combination of model
elements that have an inference structure, a typical control
structure and a typical domain schema from task point-of-
view.

Fig. 1 Hierarchy of knowledge-intensive task types on the type of
problem being solved

III. AN ONTOLOGY FOR TEMPLATE KNOWLEDGE MODELS
Ontology is a term borrowed from philosophy where

ontology means a doctrine about existence in which general
foundations, principles of existence, its structure and laws are
studied. Gruber [11] defines ‘ontology’ as ‘a formal, explicit
specification of a shared conceptualization’, and definitions in
Gruberian spirit have been and still are accepted by most
ontological engineers. This definition is based on the idea of
conceptualization i.e. a simplified version of the real world
that we want to represent. They provide a shared and common
understanding of a domain that can be communicated across
people and application systems. ‘Conceptualisation’ refers to
the understanding of concepts and relationships that may
exists or do exist between them. A representation of a shared
knowledge in a specific domain that has been commonly
agreed to refers to the ‘specification’ of conceptualisation [9].
An ontology should be: 1) representing knowledge specific to
a domain, 2) shared, 3) used.

Our aim is thus to build an ontology of the template
knowledge models so that it can be shared throughout the
knowledge engineering community. However instead of using
CML or UPML for knowledge representation we use OWL.
OWL is a Semantic Web [13] Language for the following
reasons:
1. It provides more features than frame based knowledge
representation languages. OWL has more expressive power
as compared to frame based languages. It provides for a series
of OWL primitives and allows constraints checking. Also
rules can be represented in an OWL document using SWRL.
2. It is the standard language for knowledge representation.
OWL has been adopted by many as the language for
ontologies. Hence is understood by many knowledge
engineers and domain expert.
3. User-friendly tools are available for the creation and
manipulation of the OWL documents. Protégé 2000[14] has
proved to be a very mature and easy to use ontology editor.
This tool will be used in our framework to cater for the
manual changes that need to be made to the generate
knowledge models. The OWL classes, instances and
properties can be viewed and modified so as the rules using
the SWRL tab.
4. APIs are available for the manipulations of the OWL
documents. The Jena API can be used to extract or created
classes and properties. Hence once the ontology of the
template knowledge models have been created, the template
required for a specific task can be extracted for generation of a
knowledge model.

Due to these advantages we make use of Semantic Web
Technologies for representing the knowledge model. We also
believe that defining the ontology in this format will enable us
to develop an easy mechanism for the automatic generation of
the knowledge model since an OWL file is basically an RDF
document. They can be manipulated using Jena API. Thus the
template knowledge model ontology, domain ontologies and
the application knowledge model are all defined in OWL.
OWL Web Ontology Language is a language for defining
Web ontologies. OWL is mainly based on OIL and
DAML+OIL[15], therefore the main features of OWL are

knowledge intensive tasks

planning

synthetic tasks

design

modelling

assignment

scheduling

analytic tasks

classification

assessment

monitoring

diagnosis

prediction

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1045

very similar to the languages introduced above. OWL
document consists of three main components:

• Sequence of axioms and facts plus reference to other
ontologies

• Axioms used to associate class and property IDs with
either partial or complete specifications of their
characteristics and to give other logical information
about classes and properties

• Fact which state information about particular
individuals in the form of a class that the individual
belongs to plus properties and values

It is these components that are used to create an ontology.

In the next section we explain the different classes, properties
and instances that we created to represent the template
knowledge models defined by CommonKADS.

IV. REPRESENTING THE TEMPLATE KNOWLEDGE IN OWL
A. Representing task knowledge
Each knowledge intensive task as per CommonKADS

catalogue is represented as subclass of the main class task as
shown in Fig. 2. The subclasses of the main class “task” are:
assessment ⊆ task , diagnosis ⊆ task , classification ⊆ task,

monitoring ⊆ task, prediction ⊆ task, design ⊆ task,

modelling ⊆ task, planning ⊆ task, scheduling ⊆ task,

assignment ⊆ task
We chose to create it as a subclass rather than an instance as

it becomes easier to extract related classes and properties with
respect to this task from the template knowledge model
ontology.Subtasks of the knowledge intensive task are then
instances of the subclass created. E.g. for the knowledge
intensive task “assessment” a subclass “assessment” is
created which has as instance “abstract_case” and
“match_case” which are the subtask of the task
“assessment”.

The same applies for all other components of the
knowledge model except for inferences e.g. to represent task
methods we have a class “task_method” which has a subclass
“assessment_method” to represent the task method for the
task “assessment” and instances “abstact_method” and
“match_method”. The different subclasses of the main class
“task_method” are as follows:
assessment_method ⊆ task_method , diagnosis_method ⊆
task_method , classification_method ⊆ task_method ,
monitoring_method ⊆ task_method , prediction_method ⊆
task_method , design ⊆ task_method , modelling_method ⊆
task_method , planning_method ⊆ task_method ,
scheduling_method ⊆ task_method , assignment_method ⊆
task_method

Subclasses of the main classes “control_structure” and
“statement” are as follows:
assessment_cs ⊆ control_structure , diagnosis_cs ⊆
control_structure , classification_cs ⊆ control_structure,
monitoring_cs ⊆ control_structure, prediction_cs ⊆
control_structure, design_cs ⊆ control_structure,
modelling_cs ⊆ control_structure, planning_cs ⊆
control_structure, scheduling_cs ⊆ control_structure,
assignment_cs ⊆ control_structure
assessment_statement ⊆ statement , diagnosis_statement ⊆
statement, classification_statement ⊆statement,
monitoring_statement ⊆ statement, prediction_statement ⊆
statement, design_statement ⊆ statement,
modelling_statement ⊆statement, planning_statement ⊆
statement, scheduling_statement ⊆ statement,
assignment_statement ⊆ statement

Fig. 3 gives a snapshot of the classes and the instances of
the class “assessment” which is the subclass of the class
“task”, as seen in Protégé 2000. The two instances are
“abstract_case” and “match_case”. Table I gives the
properties defined for the classes and some instances created
for each class used to represent the task knowledge.

Fig. 2 Task Knowledge represented in UML

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1046

Fig. 3 Template knowledge model in Protégé 2000

TABLE I
PROPERTIES AND INSTANCES OF CLASSES REPRESENTING THE TASK KNOWLEDGE

Class Properties Instances
task goal (DP)a

has_input_role(OP) a
has_output_role(OP)
has_task_method(OP)

e.g. instances of class “assessment” :
• abstract_case
• match_case

task_method has_inference(OP)
has_control_structure (OP)
has_intermediate_role (OP)

e.g. instances of class “assessment_method”
:

• abstract_case_method
• match_case_method

control_structure has_statement(OP)

e.g. instances of class “assessment_cs” :

• abstract_cs
• match_cs

statement has_action(DP)

has_statement_order (OP)
has_condition_inference(OP)
 has_control_condition(OP)
 has_action_inference(OP)
 has_control_structure(OP)
 has_control_loop(OP)

e.g. instances of class “abstract”
 abstracted_case

• assessment_statement1

a DP= Datatype Property OP = Object Property

B. Representing the Inference Knowledge
The class “inference” has as subclasses the different

inferences that are found in the catalogue provided by

CommonKADS (Fig. 4). The subclasses are defined based on
general inferences and not on the task several task methods
can call inferences bearing the same name e.g. the inference
“select” is called in the task method for “assessment” and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1047

“diagnosis”. Therefore in our ontology representing the
template knowledge model, we will have class “select” which
is a subclass of the class “inference” which has two instances
one instance is for the task “assessment” called
“assessment_select” and the second for the task “diagnosis”
called “diagnosis_select”. The same applies for other
inferences which are called in different task methods e.g.
inference “specify”. Table II contains the properties for each
class as well as some examples of instances which have been
created.

Fig. 4 Inference Knowledge Represented in UML

Subclasses for the classes “inference”, “role” and

“statement” are as follows:

abstract ⊆ inference , cover ⊆inference, evaluate
⊆inference, generate ⊆inference, match ⊆inference,
design ⊆inference, select ⊆inference, specify ⊆inference,
verify ⊆inference

TABLE II:

PROPERTIES AND INSTANCES OF CLASSES REPRESENTING THE
INFERENCE KNOWLEDGE

Class Properties Instances
Inference has_input_role(OP) a

has_output_role(OP)
has_static_role(OP)
specifications(DP) a

e.g. instances of class
“abstract” :
assessment_abstract

Role type (OP)
domain_mapping(OP)

e.g. of instances of the
class

• casedescription
• decision

a DP = Datatype Property OP = Object Property

assessment_role ⊆ role , diagnosis_role⊆ role,
classification_role ⊆role, monitoring_role ⊆role,
prediction_role ⊆ role, design_role ⊆ role, modelling_role
⊆role, planning_role ⊆ role , scheduling_role ⊆ role,
assignment_role ⊆ role

C. Representing Domain Knowledge
Fig. 5 shows the different classes used to represent the

domain knowledge. Subclasses for the classes “concepts”,
“rule_type” and “relations” are as follows:

Fig. 5 Domain Knowledge Represented in UML

assessment_concepts ⊆ concepts , diagnosis_ concepts ⊆
concepts, classification_ concepts ⊆ concepts, monitoring_
concepts ⊆ concepts, prediction_ concepts ⊆ concepts,
design_ concepts ⊆ concepts, modelling_ concepts ⊆
concepts, planning_ concepts ⊆ concepts, scheduling_
concepts ⊆ concepts, assignment_ concepts ⊆ concepts

assessment_rule_type ⊆ rule_type , diagnosis_rule_type⊆
rule_type, classification_rule_type ⊆ rule_type,
monitoring_rule_type ⊆ rule_type, prediction_rule_type ⊆
rule_type, design_rule_type ⊆ rule_type,
modelling_rule_type ⊆ rule_type, planning_rule_type ⊆
rule_type, scheduling_rule_type ⊆ rule_type,
assignment_rule_type ⊆ rule_type

assessment_relations ⊆ relations , diagnosis_relations⊆
relations , classification_relations ⊆relations,
monitoring_relations ⊆ relations, prediction_relations ⊆
relations , design_relations ⊆ relations ,
modelling_relations ⊆ relations , planning_relations ⊆
relations , scheduling_relations ⊆ relations ,
assignment_relations ⊆ relations

Table III contains the properties for each class as well as
some examples of instances which have been created.

TABLE III
PROPERTIES AND INSTANCES OF CLASSES REPRESENTING THE DOMAIN

KNOWLEDGE
Class Properties Instance
concepts specification (DP) a

instances of class
“assessment_concepts” :
• case_criterion
• case_decision

rule_type specification (DP)
 has_concept1 (OP) a
 has_concept2(OP)

e.g. instances of class
“assessment_relation” :
 application

relations specification (DP)

e.g. instances of class “”:
• abstraction_rules
• decision_rules
• requirement_rules

a DP = Datatype Property OP = Object Property

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1048

V. FUTURE WORKS
The main difficulty faced during the creation of the

ontology was the representation of the control structure. We
introduced a new concept called statement to represent each
statement in the control structure. It contains all the
constructs defined by CommonKADS that can be found in a
control structure. They are represented as the properties of the
concept. Each statement is of the control structure is
represented as an instance of the class concept. Up to now we
have seen this as the best solution. As future work we shall
continue our investigation on how to best represent the
control structure. We have not opted for OWL-S because we
want all our templates to be represented in only one OWL
document. The main reason behind this is also because we
want to use this ontology for the semi automatic generation of
knowledge models. Research in the automatic generation of
knowledge model can help to bring in solutions to issues
related to the knowledge modelling process. Therefore in
view to 1) decrease learning and development overheads, 2)
standardise knowledge modelling process, 3) implement
reuse, 4) link knowledge model phase to implementation
phase, we have conceptualised a framework for semi-
automatic of knowledge model. Though we would have like
to provide for full automation, we are of the opinion that full
automation is not feasible since interactions with knowledge
engineers/domain experts are necessary. We use OWL and
SWRL in our framework to build our knowledge model so
that it can be represented in an easy format which can be
understood not only by knowledge engineers having expertise
in AI but also by domain experts also. This in turn can help
decrease the communication gap between these two experts,
which is one of the reasons for knowledge acquisition
bottlenecks. The components of the knowledge model are
generated from the the ontology for template knowledge
models proposed that we have created. The generic
application knowledge model is then adapted to the domain of
application based on the domain ontologies which are in
OWL and rules that are input by the knowledge engineer.
The relevant concepts and properties are extracted based on
the knowledge about the domain schema in the generic
application knowledge model. As for the rules, they are input
as “if-then” statements, which are automatically converted
into SWRL and added to the adapted knowledge model. Also
the framework will allow the mapping of the knowledge
models on Java classes, which will act as a bridge between
the modelling stage and implementation stage, hence
providing for smooth transition between these two stages.

REFERENCES
[1] P. Speel, A.T. Schreiber, W. Van Joolingen, J. van Heijstg and G.

Beijer, “Conceptual modelling for knowledge based systems”,
Encyclopedia of Computer Science and Technology, Marcel Dekker
Inc., New York, 2001.

[2] R.Studer, V.R. Benjamins and D. Fensel,. “Knowledge engineering:
principles and method”, Data & Knowledge Engineering, vol 25. 1998,
pp. 161-197.

[3] A. Th Schreiber, J. Akkermans, A. Anjewierden, R de Hoog, N.
Shadbolt, W. van de Velde , B. Wielinga Knowledge engineering and
management:the commonkads methodology, MIT Press, 2000

[4] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso , M.
Crubezy , H. Eriksson ,N. F. Noy and S. W. Tu, “The evolution of
protege: an environment for knowledge-based systems development”,
International Journal of Human Computer, 2003, 58(1), pp 89-123

[5] J. Angele, D. Fensel, D. Landes and R. Studer, “Developing knowledge
based systems with MIKE”, Journal of Automated Software
Engineering, 1998, 5(4), 389-418.

[6] M. Callot 1999, “Methodology and tools oriented to knowledge
engineering applications, MOKA public report No.2” [Online].
Available : http://www.kbe.conventry.ac.uk/MOKA

[7] H. Knublauch, “An agile development methodology for knowledge-
based systems including a java framework for knowledge modelling and
appropriate tool support”, Ph.D . Dissertation, University of Ulm,2002.

[8] G. Antoniou, F. van Harmelen, “Web ontology language: OWL”, in:
Handbook on Ontologies in Information Systems, 2003, pg 67--92

[9] D. Fensel, E. Motta, F. van Harmelen, V. R Benjamins., M Crubezy.,
S. Decker, M Gaspari., R. Groenboom, W. Grosso, M. Musen, E.
Plaza, G. Schreiber, R Studer. and B. Wielinga, “The unified problem-
solving method development language UPML”, Knowledge and
Information Systems”, 1999,5(1), 83-131.

[10] Fensel D., Motta E., Benjamins V., Decker S.,Gaspari M., Groenboom
R., Grosso W. , F. van Harmelen, M. Musen , E. Plaza, G. Schreiber, R.
Studer, A. Ten, B. Wielinga, “An intelligent brokering service for
knowledge component reuse on the world-wide web”, in The 11th
Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW98), Banff, Canada, 1998.

[11] T. R.Gruber, “A translation approach to portable ontologies”,
Knowledge Acquisition, vol 5 pp 199-220,1993.

[12] T. Dillon, E.Chang, M. Hadzic, Wongthongtham P. , “Differentiating
conceptual modelling from data modelling, knowledge modelling and
ontology modelling and a notation for ontology modelling”, in 2008
Proc of the fifth Asia-Pacific conference on conceptual modelling -
Volume 79.

[13] S. Decker, F.van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I.
Horrocks, M. Klein, and S. Melnik, “The semantic web - on the
respective roles of XML and RDF”, IEEE Internet Computing, vol
4,2000.

[14] M. Horridge, H. Knublauch, A. Rector, R. Stevens, C. Wroe, A practical
guide to building owl ontologies using the prot´eg´e-owl plugin and co-
ode tools edition 1.0.,2004.

[15] Sinuhe A., Ying D., Ruben L., Stollberg M. AND Fensel D., 2004.
“Semantic web languages. strengths and weakness.” Presented at the
Int. Conf. in Applied computing (IADIS04), Lisbon Portugal,23-26
March2004.

