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An iterative updating method for damped
gyroscopic systems

Yongxin Yuan

Abstract—The problem of updating damped gyroscopic systems
using measured modal data can be mathematically formulated as
following two problems. Problem I: Given Ma ∈ Rn×n,Λ =
diag{λ1, · · · , λp} ∈ Cp×p, X = [x1, · · · , xp] ∈ Cn×p, where p < n
and both Λ and X are closed under complex conjugation in the sense
that λ2j = λ̄2j−1 ∈ C, x2j = x̄2j−1 ∈ Cn for j = 1, · · · , l, and
λk ∈ R, xk ∈ Rn for k = 2l+1, · · · , p, find real-valued symmetric
matrices D,K and a real-valued skew-symmetric matrix G (that is,
GT = −G) such that MaXΛ2+(D+G)XΛ+KX = 0. Problem
II: Given real-valued symmetric matrices Da,Ka ∈ Rn×n and a
real-valued skew-symmetric matrix Ga, find (D̂, Ĝ, K̂) ∈ SE such
that ‖D̂−Da‖2+‖Ĝ−Ga‖2+‖K̂−Ka‖2 = min(D,G,K)∈SE

(‖D−
Da‖2 + ‖G − Ga‖2 + ‖K − Ka‖2), where SE is the solution set
of Problem I and ‖ · ‖ is the Frobenius norm. This paper presents an
iterative algorithm to solve Problem I and Problem II. By using the
proposed iterative method, a solution of Problem I can be obtained
within finite iteration steps in the absence of roundoff errors, and
the minimum Frobenius norm solution of Problem I can be obtained
by choosing a special kind of initial matrices. Moreover, the optimal
approximation solution (D̂, Ĝ, K̂) of Problem II can be obtained by
finding the minimum Frobenius norm solution of a changed Problem
I. A numerical example shows that the introduced iterative algorithm
is quite efficient.

Keywords—model updating, iterative algorithm, gyroscopic sys-
tem, partially prescribed spectral data, optimal approximation.

I. INTRODUCTION

THROUGHOUT this paper, we shall adopt the following
notation. Cm×n and Rm×n denote the set of all m ×

n complex and real matrices, SRn×n and SSRn×n denote
the set of all n × n symmetric and skew-symmetric matrices
in Rn×n. AT , tr(A) and R(A) stand for the transpose, the
trace and the column space of the matrix A, respectively. In
represents the identity matrix of order n. For A,B ∈ Rm×n,
an inner product in Rm×n is defined by (A,B) = tr(BTA),
then Rm×n is a Hilbert space. The matrix norm ‖ · ‖ induced
by the inner product is the Frobenius norm. Given two matrices
A = [aij ] ∈ Rm×n and B ∈ Rp×q , the Kronecker product of
A and B is defined by A⊗B = [aijB] ∈ Rmp×nq. Also, for
an m×n matrix A = [a1, a2, · · · , an], where ai, i = 1, · · · , n,
is the i-th column vector of A, the stretching function vec(A)
is defined as vec(A) = [aT1 , a

T
2 , · · · , aTn ]T . Let A,B and X
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be some matrices with appropriate dimensions, then we have
the following well-known identity [1].

vec(AXB) = (BT ⊗A)vec(X).

Vibrating structures such as bridges, highways, buildings,
automobiles and rotating machinery are often modeled using
finite element techniques. These techniques generate structured
matrix second-order differential equations

Maq̈(t) + (Da +Ga)q̇(t) +Kaq(t) = 0. (1)

The vector q(t) represents the generalized coordinates of
the system. Ma,Ka, Da and Ga are, respectively, called the
analytical mass, stiffness, damping, and gyroscopic matrices.
In many practical applications, Ma is symmetric and positive
definite (Ma > 0), Ka and Da are real-valued symmetric,
and Ga is always real-valued skew-symmetric (that is, GT

a =
−Ga). If a fundamental solution to (1) is represented by

q(t) = xeλt,

then the scalar λ and the vector x must solve the quadratic
eigenvalue problem (QEP)

(λ2Ma + λ(Da +Ga) +Ka)x = 0. (2)

Complex numbers λ and nonzero complex vectors x for
which this relation holds are, respectively, the eigenvalues and
eigenvectors of the system. It is known that the equation of
(2) has 2n finite eigenvalues over the complex field, provided
that the leading matrix coefficient Ma is nonsingular. Note that
the signification of the system (1) usually can be interpreted
via the eigenvalues and eigenvectors of Eq.(2). Because of
this connection, a lot of efforts have been devoted to the QEP
in the literature. Many applications, properties and numerical
methods for the QEP are surveyed in the thesis by Tisseur and
Meerbergen [2].

Accurate models are essential in analyzing systems un-
der various excitations, boundary conditions and parame-
ter changes. Analytical models, obtained by finite element
techniques, inevitably deviate from the true model due to
uncertainties in geometry, boundary conditions, discretization
error, modeling error of joints, variation of material properties,
ignorance of nonlinear effect, and other simplifications, etc.
Consequently, eigenvalues and eigenvectors that are extracted
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from the test results do not agree with the predicted values
from the analytical model. Model updating is the process of
using the test results to correct the model so that it agrees,
either completely or approximately, with the experimental
data.

In the past decades, various techniques for updating mass
and stiffness matrices for undamped systems (i.e., Da =
0, Ga = 0) using measured response data have been dis-
cussed by Baruch [3], Baruch and Bar-Itzhack [4], Berman
[5], Berman and Nagy [6], Wei [7, 8, 9], Yang et al. [10],
Yang and Chen [11], and Yuan [12]. For an account of
the earlier methods, see the authoritative book by Friswell
and Mottershead [13], an integral introduction of the basic
theory of finite element model updating is given. For damped
structured systems, the theory and computation have been
considered by Friswell et al. [14], Pilkey [15], Kuo et al.
[16], Chu et al. [17] and Yuan [18]. It is well known that
the damped gyroscopic systems are another important class
of nonproportionally damped systems. They correspond to
spinning structures where the Coriolis inertia forces are taken
into account. Examples of such systems include helicopter
rotor blades and spin-stabilized satellites with flexible elastic
appendages such as solar panels or antennas. The numerical
methods for quadratic eigenvalue problems of gyroscopic sys-
tems can see [2, 19-24]. In view of in analytical model (1) for
structure dynamics, the effect of damping and Coriolis forces
on structural dynamic systems is not well understood because
it is purely dynamics property that can not be measured stati-
cally. Therefore, the correction of damped gyroscopic systems
is very important. However, we observe that the iterative meth-
ods for model updating have received little attention in these
years. In this paper we will develop an iterative method for the
finite element model updating of damped gyroscopic systems
which can incorporate the measured model data into the finite
element model to produce an adjusted finite element model
on the damping, gyroscopic and stiffness matrices that closely
match the experimental modal data. The problem of updating
damping, gyroscopic and stiffness matrices simultaneously can
be mathematically formulated as follows.
Problem I. Let Λ = diag{λ1, · · · , λp} ∈ Cp×p and X =
[x1, · · · , xp] ∈ Cn×p be the measured eigenvalue and eigen-
vector matrices, where p < n and both Λ and X are closed
under complex conjugation in the sense that λ2j = λ̄2j−1 ∈ C,
x2j = x̄2j−1 ∈ Cn for j = 1, · · · , l, and λk ∈ R, xk ∈ Rn

for k = 2l + 1, · · · , p, find real-valued symmetric matrices
D,K and a real-valued skew-symmetric matrix G such that

MaXΛ2 + (D +G)XΛ +KX = 0. (3)

It is well known that Da, Ga and Ka are good approximations
of D,G and K. The strategy for obtaining an improved model
is to find D,G and K that satisfy (3) and deviate as little as
possible from Da, Ga and Ka. Thus, we should further solve

the following optimal approximation problem.
Problem II. Let SE be the solution set of Problem I. Find
(D̂, Ĝ, K̂) ∈ SE such that

‖D̂ −Da‖2 + ‖Ĝ−Ga‖2 + ‖K̂ −Ka‖2 =
min(D,G,K)∈SE

(‖D −Da‖2 + ‖G−Ga‖2 + ‖K −Ka‖2).
(4)

The paper is organized as follows. In Section 2, an efficient
iterative method is presented to solve Problem I and Problem
II. Then several properties of Algorithm 1 are proved. By using
the proposed iterative method, a solution of Problem I can be
obtained within finite iteration steps in the absence of roundoff
errors, and the minimum Frobenius norm solution of Problem
I can be obtained by choosing a special kind of initial matrices.
In addition, the optimal approximation solution of Problem II
is provided by finding the minimum Frobenius norm solution
of a new matrix equation. In Section 3, a numerical example
is used to test the effectiveness of the proposed algorithm.

II. THE SOLUTION OF PROBLEM I AND PROBLEM II

Let αi = Re(λi) (the real part of the complex number λi),
βi = Im(λi) (the imaginary part of the complex number λi),
yi = Re(xi), zi = Im(xi) for i = 1, 3, · · · , 2l − 1, and

Λ̃ = diag
{[

α1 β1
−β1 α1

]
, · · · ,

[
α2l−1 β2l−1

−β2l−1 α2l−1

]
,

λ2l+1, · · · , λp} ∈ Rp×p,
(5)

X̃ = [y1, z1, · · · , y2l−1, z2l−1, x2l+1, · · · , xp] ∈ Rn×p. (6)

Then, the equation of (3) can be equivalently written as

DX̃Λ̃ +GX̃Λ̃ +KX̃ = F, (7)

s. t. G ∈ SSRn×n, D,K ∈ SRn×n,

where F = −MaX̃Λ̃2.
Now, we can describe an iterative algorithm for solving
Problem I as follows.

Algorithm 1
S 1. Input matrices X̃ ∈ Rn×p, Λ̃ ∈ Rp×p and Ma ∈

SRn×n, and choose arbitrary n× n symmetric matrices
D1,K1 and a skew-symmetric matrix G1.

S 2. Calculate
R1 = F −D1X̃Λ̃−G1X̃Λ̃−K1X̃;
P1 = 1

2 (R1Λ̃
T X̃T + X̃Λ̃RT

1 );
Q1 = 1

2 (R1Λ̃
T X̃T − X̃Λ̃RT

1 );
W1 = 1

2 (R1X̃
T + X̃RT

1 );
s := 1.

S 3. If Rs = 0, then stop and (Ds, Gs,Ks) is a solution to
the equation of (7), that is, a solution of Problem I; elseif
Rs �= 0 but Ps = 0, Qs = 0 and Ws = 0, then stop and
the equation of (7) has no solution; else s := s+ 1.
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S 4. Calculate
Ds = Ds−1 +

‖Rs−1‖2

‖Ps−1‖2+‖Qs−1‖2+‖Ws−1‖2Ps−1;

Gs = Gs−1 +
‖Rs−1‖2

‖Ps−1‖2+‖Qs−1‖2+‖Ws−1‖2Qs−1;

Ks = Ks−1 +
‖Rs−1‖2

‖Ps−1‖2+‖Qs−1‖2+‖Ws−1‖2Ws−1;
Rs = F −DsX̃Λ̃−GsX̃Λ̃−KsX̃

= Rs−1 − ‖Rs−1‖2

‖Ps−1‖2+‖Qs−1‖2+‖Ws−1‖2

(Ps−1X̃Λ̃ +Qs−1X̃Λ̃ +Ws−1X̃);
Ps =

1
2 (RsΛ̃

T X̃T + X̃Λ̃RT
s ) +

‖Rs‖2

‖Rs−1‖2Ps−1;

Qs =
1
2 (RsΛ̃

T X̃T − X̃Λ̃RT
s ) +

‖Rs‖2

‖Rs−1‖2Qs−1;

Ws =
1
2 (RsX̃

T + X̃RT
s ) +

‖Rs‖2

‖Rs−1‖2Ws−1.

S 5. Go to S 3.
From Algorithm 1, we can easily see that Qs, Gs ∈ SSRn×n

and Ps, Ds,Ws,Ks ∈ SRn×n for s = 1, 2, · · · .
Definition 1 Assume that Y, Z ∈ Rm×n. The matrices Y, Z

are called orthogonal each other if tr(Y TZ) = 0.
About Algorithm 1, we present the following basic proper-

ties.
Lemma 1: The sequences {Ri}, {Pi}, {Qi} and {Wi} gen-

erated by Algorithm 1 satisfy

tr(RT
j Ri) = 0, and tr(PT

j Pi) + tr(QT
j Qi)

+tr(WT
j Wi) = 0 for i, j = 1, 2, · · · , s, i �= j.

(8)

Proof. Since tr(RT
j Ri) = tr(RT

i Rj), tr(P
T
j Pi) = tr(PT

i Pj),
tr(QT

j Qi) = tr(QT
i Qj) and tr(WT

j Wi) = tr(WT
i Wj), then

we only need to show that

tr(RT
j Ri) = 0, and tr(PT

j Pi) + tr(QT
j Qi)

+tr(WT
j Wi) = 0 for 1 ≤ i < j ≤ s.

We use the mathematical induction to prove this conclusion,
and we do it in two steps.
We first show that

tr(RT
i+1Ri) = 0, and tr(PT

i+1Pi) + tr(QT
i+1Qi)

+tr(WT
i+1Wi) = 0 for i = 1, 2, · · · , s. (9)

For i = 1, by Algorithm 1 and noting that P1,W1 ∈ SRn×n

and Q1 ∈ SSRn×n, we have

tr(RT
2 R1)

= tr((R1 − δ1(P1X̃Λ̃ +Q1X̃Λ̃ +W1X̃))TR1)

= tr(RT
1 R1)− δ1tr(Λ̃

T X̃TPT
1 R1

+ Λ̃T X̃TQT
1 R1 + X̃TWT

1 R1)

= ‖R1‖2 − 1

2
δ1tr(Λ̃

T X̃TPT
1 R1 +RT

1 P1X̃Λ̃

+ Λ̃T X̃TQT
1 R1 +RT

1 Q1X̃Λ̃ + X̃TWT
1 R1 +RT

1W1X̃)

= ‖R1‖2 − 1

2
δ1tr(P

T
1 R1Λ̃

T X̃T + PT
1 X̃Λ̃RT

1

+ QT
1 R1Λ̃

T X̃T −QT
1 X̃Λ̃RT

1 +WT
1 R1X̃

T +WT
1 X̃R

T
1 )

= ‖R1‖2 − δ1tr(P
T
1 P1 +QT

1Q1 +WT
1 W1)

= 0,

where δ1 = ‖R1‖2

‖P1‖2+‖Q1‖2+‖W1‖2 .
Applying the proved result tr(RT

2 R1) = 0, we get

tr(PT
2 P1) + tr(QT

2Q1) + tr(WT
2 W1)

=
1

2
tr((R2Λ̃

T X̃T + X̃Λ̃RT
2 )P1) +

‖R2‖2
‖R1‖2 ‖P1‖2

+
1

2
tr((R2Λ̃

T X̃T − X̃Λ̃RT
2 )

TQ1) +
‖R2‖2
‖R1‖2 ‖Q1‖2

+
1

2
tr((R2X̃

T + X̃RT
2 )W1) +

‖R2‖2
‖R1‖2 ‖W1‖2

=
1

2
tr(R2(P1X̃Λ̃ +Q1X̃Λ̃ +W1X̃)T

+ (P1X̃Λ̃ +Q1X̃Λ̃ +W1X̃)RT
2 )

+
‖R2‖2
‖R1‖2 ‖P1‖2 + ‖R2‖2

‖R1‖2 ‖Q1‖2 + ‖R2‖2
‖R1‖2 ‖W1‖2

=
1

2

‖P1‖2 + ‖Q1‖2 + ‖W1‖2
‖R1‖2

tr((R2(R1 −R2)
T + (R1 −R2)R

T
2 )

+
‖R2‖2
‖R1‖2 ‖P1‖2 + ‖R2‖2

‖R1‖2 ‖Q1‖2 + ‖R2‖2
‖R1‖2 ‖W1‖2

= 0.

Suppose that (9) holds for i = t− 1. For i = t, we have

tr(RT
t+1Rt)

= tr((Rt − δt(PtX̃Λ̃ +QtX̃Λ̃ +WtX̃))TRt)

= tr(RT
t Rt)− δttr(Λ̃

T X̃TPT
t Rt

+ Λ̃T X̃TQT
t Rt + X̃TWT

t Rt)

= ‖Rt‖2 − 1

2
δttr(Λ̃

T X̃TPT
t Rt +RT

t PtX̃Λ̃

+ Λ̃T X̃TQT
t Rt +RT

t QtX̃Λ̃ + X̃TWT
t Rt +RT

t WtX̃)

= ‖Rt‖2 − 1

2
δttr(P

T
t RtΛ̃

T X̃T + PT
t X̃Λ̃RT

t

+ QT
t RtΛ̃

T X̃T −QT
t X̃Λ̃RT

t +WT
t RtX̃

T +WT
t X̃R

T
t )

= ‖Rt‖2 − δttr(P
T
t (Pt − ‖Rt‖2

‖Rt−1‖2Pt−1)

+ QT
t (Qt − ‖Rt‖2

‖Rt−1‖2Qt−1)

+ WT
t (Wt − ‖Rt‖2

‖Rt−1‖2Wt−1))

= ‖Rt‖2 − δttr(P
T
t Pt +QT

t Qt +WT
t Wt)

= 0,

where δt =
‖Rt‖2

‖Pt‖2+‖Qt‖2+‖Wt‖2 .

tr(PT
t+1Pt) + tr(QT

t+1Qt + tr(WT
t+1Wt)

=
1

2
tr((Rt+1Λ̃

T X̃T + X̃Λ̃RT
t+1)Pt) +

‖Rt+1‖2
‖Rt‖2 ‖Pt‖2
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+
1

2
tr((Rt+1Λ̃

T X̃T − X̃Λ̃RT
t+1)

TQt) +
‖Rt+1‖2
‖Rt‖2 ‖Qt‖2

+
1

2
tr((Rt+1X̃

T + X̃RT
t+1)Wt) +

‖Rt+1‖2
‖Rt‖2 ‖Wt‖2

=
1

2
tr(Rt+1(PtX̃Λ̃ +QtX̃Λ̃ +WtX̃)T

+ (PtX̃Λ̃ +QtX̃Λ̃ +WtX̃)RT
t+1)

+
‖Rt+1‖2
‖Rt‖2 ‖Pt‖2 + ‖Rt+1‖2

‖Rt‖2 ‖Qt‖2 + ‖Rt+1‖2
‖Rt‖2 ‖Wt‖2

=
1

2

‖Pt‖2 + ‖Qt‖2 + ‖Wt‖2
‖Rt‖2

tr((Rt+1(Rt −Rt+1)
T + (Rt −Rt+1)R

T
t+1)

+
‖Rt+1‖2
‖Rt‖2 ‖Pt‖2 + ‖Rt+1‖2

‖Rt‖2 ‖Qt‖2 + ‖Rt+1‖2
‖Rt‖2 ‖Wt‖2

= 0.

Therefore, (9) holds for i = t. By the principle of induction,
we know (9) holds for all i.

Next, assume that tr(RT
i+dRi) = 0, and tr(PT

i+dPi) +
tr(QT

i+dQi)+tr(WT
i+dWi) = 0 for 1 ≤ i ≤ s and 1 < d < s.

We will prove
tr(RT

i+d+1Ri) = 0, and tr(PT
i+d+1Pi) + tr(QT

i+d+1Qi) +
tr(WT

i+d+1Wi) = 0.

tr(RT
i+d+1Ri)

= tr((Ri+d − δi+d(Pi+dX̃Λ̃

+ Qi+dX̃Λ̃ +Wi+dX̃))TRi)

= −δi+dtr(Λ̃
T X̃TPT

i+dRi

+ Λ̃T X̃TQT
i+dRi + X̃TWT

i+dRi)

= −1

2
δi+dtr(Λ̃

T X̃TPT
i+dRi +RT

i Pi+dX̃Λ̃

+ Λ̃T X̃TQT
i+dRi +RT

i Qi+dX̃Λ̃

+ X̃TWT
i+dRi +RT

i Wi+dX̃)

= −1

2
δi+dtr(P

T
i+dRiΛ̃

T X̃T + PT
i+dX̃Λ̃RT

i

+ QT
i+dRiΛ̃

T X̃T −QT
i+dX̃Λ̃RT

i

+ WT
i+dRiX̃

T +WT
i+dX̃R

T
i )

= −δi+dtr(P
T
i+d(Pi − ‖Ri‖2

‖Ri−1‖2Pi−1)

+ QT
i+d(Qi − ‖Ri‖2

‖Ri−1‖2Qi−1)

+ WT
i+d(Wi − ‖Ri‖2

‖Ri−1‖2Wi−1))

= 0,

where δi+d = ‖Ri+d‖2

‖Pi+d‖2+‖Qi+d‖2+‖Wi+d‖2 .

From the above results, we have tr(RT
i+d+1Ri) = 0 and

tr(RT
i+d+1Ri+1) = 0. Hence we can get

tr(PT
i+d+1Pi) + tr(QT

i+d+1Qi) + tr(WT
i+d+1Wi)

=
1

2
tr((Ri+d+1Λ̃

T X̃T + X̃Λ̃RT
i+d+1)Pi)

+
1

2
tr((Ri+d+1Λ̃

T X̃T − X̃Λ̃RT
i+d+1)

TQi)

+
1

2
tr((Ri+d+1X̃

T + X̃RT
i+d+1)Wi)

=
1

2
tr(Ri+d+1(PiX̃Λ̃ +QiX̃Λ̃ +WiX̃)T

+ (PiX̃Λ̃ +QiX̃Λ̃ +WiX̃)RT
i+d+1)

=
1

2
ξ tr((Ri+d+1(Ri −Ri+1)

T + (Ri −Ri+1)R
T
i+d+1)

= 0,

where ξ = ‖Pi‖2+‖Qi‖2+‖Wi‖2

‖Ri‖2 .
Thus the conclusion (8) holds by the principle of induction.
The proof is completed.

Lemma 2: Let Problem I be consistent, and (D∗, G∗,K∗)
be an arbitrary solution of Problem I. Then, for any ini-
tial matrix triplet (D1, G1,K1) with G1 ∈ SSRn×n and
D1,K1 ∈ SRn×n, we have

tr((D∗ −Di)
TPi) + tr((G∗ −Gi)

TQi)
+tr((K∗ −Ki)

TWi) = ‖Ri‖2 for i = 1, 2, · · · , (10)

where the sequences {Di}, {Pi}, {Gi}, {Qi}, {Ki}, {Wi} and
{Ri} are generated by Algorithm 1.
Proof. We prove the conclusion by induction. For i = 1, we
have

tr((D∗ −D1)
TP1) + tr((G∗ −G1)

TQ1)

+ tr((K∗ −K1)
TW1)

=
1

2
tr((D∗ −D1)

T (R1Λ̃
T X̃T + X̃Λ̃RT

1 ))

+
1

2
tr((G∗ −G1)

T (R1Λ̃
T X̃T − X̃Λ̃RT

1 ))

+
1

2
tr((K∗ −K1)

T (R1X̃
T + X̃RT

1 ))

=
1

2
tr(FRT

1 −D1X̃Λ̃RT
1 −G1X̃Λ̃RT

1 −K1X̃R
T
1 )

+
1

2
tr(FTR1 − Λ̃T X̃TDT

1 R1

− Λ̃T X̃TGT
1 R1 − X̃TKT

1 R1)

=
1

2
tr(R1R

T
1 ) +

1

2
tr(RT

1 R1)

= ‖R1‖2.
Now assume the conclusion (10) holds for 1 ≤ i ≤ t − 1.
Then we can get

tr((D∗ −Dt)
TPt) + tr((G∗ −Gt)

TQt)

+ tr((K∗ −Kt)
TWt)

= tr((D∗ −Dt−1
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− ‖Rt−1‖2
‖Pt−1‖2 + ‖Qt−1‖2 + ‖Wt−1‖2Pt−1)

TPt)

+ tr((G∗ −Gt−1

− ‖Rt−1‖2
‖Pt−1‖2 + ‖Qt−1‖2 + ‖Wt−1‖2Qt−1)

TQt)

+ tr((K∗ −Kt−1

− ‖Rt−1‖2
‖Pt−1‖2 + ‖Wt−1‖2 + ‖Wt−1‖2Wt−1)

TWt)

= tr((D∗ −Dt−1)
TPt) + tr((G∗ −Gt−1)

TQt)

+ tr((K∗ −Kt−1)
TWt)

=
1

2
tr((D∗ −Dt−1)

T (RtΛ̃
T X̃T + X̃Λ̃RT

t ))

+
‖Rt‖2

‖Rt−1‖2 tr((D
∗ −Dt−1)

TPt−1)

+
1

2
tr((G∗ −Gt−1)

T (RtΛ̃
T X̃T − X̃Λ̃RT

t ))

+
‖Rt‖2

‖Rt−1‖2 tr((G
∗ −Gt−1)

TQt−1)

+
1

2
tr((K∗ −Kt−1)

T (RtX̃
T + X̃RT

t ))

+
‖Rt‖2

‖Rt−1‖2 tr((K
∗ −Kt−1)

TWt−1)

=
1

2
tr((D∗ −Dt−1)

T (RtΛ̃
T X̃T + X̃Λ̃RT

t ))

+
1

2
tr((G∗ −Gt−1)

T (RtΛ̃
T X̃T − X̃Λ̃RT

t ))

+
1

2
tr((K∗ −Kt−1)

T (RtX̃
T + X̃RT

t )) + ‖Rt‖2

=
1

2
tr(FTRt − Λ̃T X̃TDT

t−1Rt

− Λ̃T X̃TGT
t−1Rt − X̃TKT

t−1Rt)

+
1

2
tr(FRT

t −Dt−1X̃Λ̃RT
t

− Gt−1X̃Λ̃RT
t −Kt−1X̃R

T
t ) + ‖Rt‖2

=
1

2
tr(RT

t−1Rt) +
1

2
tr(Rt−1R

T
t ) + ‖Rt‖2

= ‖Rt‖2.

Thus we complete the proof of Lemma 2 by the principle of
induction.

From Lemma 2, we can easily see that if there exists a
positive number l such that Pl = 0, Ql = 0 and Wl = 0
but Rl �= 0, then the equation of (7) has no solution. Hence,
the solvability of Eq.(7) can be determined automatically by
Algorithm 1.

Theorem 1: Assume that Problem I is consistent. Then for
any arbitrary initial matrix triplet (D1, G1,K1) with G1 ∈
SSRn×n and D1,K1 ∈ SRn×n, a solution of Problem I
can be obtained with finite iteration steps in the absence of
roundoff errors.

Proof. Assume that Rl �= 0, l = 1, 2, · · · , np. From Lemma 2,
we know ‖Pl‖2+‖Ql‖2+‖Wl‖2 �= 0. Then we can calculate
Rnp+1 and (Dnp+1, Gnp+1,Knp+1) by Algorithm 1. From
Lemma 1, we have

tr(RT
np+1Rt) = 0, t = 1, 2, · · · , np,

and

tr(RT
j Ri) = 0, i, j = 1, 2, · · · , np, i �= j.

Therefore, {R1, R2, · · · , Rnp} forms an orthogonal basis
of the real-valued matrix space Rn×p, which implies that
Rnp+1 = 0, that is, (Dnp+1, Gnp+1,Knp+1) is a solution of
Problem I.

Lemma 3: The equation of (7) has a solution (D,G,K)
with G ∈ SSRn×n and D,K ∈ SRn×n if and only if the
matrix equations

DX̃Λ̃ +GX̃Λ̃ +KX̃ = F,

Λ̃T X̃TD − Λ̃T X̃TG+ X̃TK = FT ,
(11)

are consistent.
Proof. If the equation of (7) has a solution (D∗, G∗,K∗)
with G∗ ∈ SSRn×n and D∗,K∗ ∈ SRn×n, then D∗X̃Λ̃ +
G∗X̃Λ̃ + K∗X̃ = F, and (D∗X̃Λ̃ + G∗X̃Λ̃ + K∗X̃)T =
Λ̃T X̃TD∗ − Λ̃T X̃TG∗ + X̃TK∗ = FT . That is to say,
(D∗, G∗,K∗) is a solution of (11).
Conversely, if the matrix equations of (11) has a solution, say,
D = U, G = V, K = Z. Let D∗ = 1

2 (U + UT ), G∗ =
1
2 (V −V T ), K∗ = 1

2 (Z+ZT ), then G∗ is a skew-symmetric
matrix and D∗,K∗ are symmetric matrices, and

D∗X̃Λ̃ +G∗X̃Λ̃ +K∗X̃
= 1

2 (UX̃Λ̃ + V X̃Λ̃ + ZX̃) + 1
2 (U

T X̃Λ̃− V T X̃Λ̃ + ZT X̃)
= 1

2F + 1
2 (F

T )T = F.

Hence, (D∗, G∗,K∗) is a solution of (7).

The following lemma comes from [25].
Lemma 4: Suppose that the consistent system of linear

equations Ax = b has a solution x ∈ R(AT ), then x is the
unique minimum Frobenius norm solution of the system of
linear equations.
Using the Kronecker product and the stretching function, we
know that the equations of (11) are equivalent to

[
Λ̃T X̃T ⊗ In Λ̃T X̃T ⊗ In X̃T ⊗ In
In ⊗ Λ̃T X̃T In ⊗ (−Λ̃T X̃T ) In ⊗ X̃T

]⎡
⎣ vec(D)

vec(G)
vec(K)

⎤
⎦

=

[
vec(F )
vec(FT )

]
.
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Assume that H ∈ Rn×n is an arbitrary matrix, then we have
⎡
⎣ vec(HΛ̃T X̃T + X̃Λ̃HT )

vec(HΛ̃T X̃T − X̃Λ̃HT )

vec(HX̃T + X̃HT )

⎤
⎦

=

⎡
⎣ X̃Λ̃⊗ In In ⊗ X̃Λ̃

X̃Λ̃⊗ In In ⊗ (−X̃Λ̃)

X̃ ⊗ In In ⊗ X̃

⎤
⎦
[

vec(H)
vec(HT )

]

=

[
Λ̃T X̃T ⊗ In Λ̃T X̃T ⊗ In X̃T ⊗ In
In ⊗ Λ̃T X̃T In ⊗ (−Λ̃T X̃T ) In ⊗ X̃T

]T
[

vec(H)
vec(HT )

]
∈

R

([
Λ̃T X̃T ⊗ In Λ̃T X̃T ⊗ In X̃T ⊗ In
In ⊗ Λ̃T X̃T In ⊗ (−Λ̃T X̃T ) In ⊗ X̃T

]T)
.

It is obvious that if we choose

D1 = HΛ̃T X̃T + X̃Λ̃HT , G1 = HΛ̃T X̃T − X̃Λ̃HT ,

K1 = HX̃T + X̃HT ,
(12)

then all Ds, Gs and Ks generated by Algorithm 1 satisfy⎡
⎣ vec(Ds)

vec(Gs)
vec(Ks)

⎤
⎦ ∈

R

([
Λ̃T X̃T ⊗ In Λ̃T X̃T ⊗ In X̃T ⊗ In
In ⊗ Λ̃T X̃T In ⊗ (−Λ̃T X̃T ) In ⊗ X̃T

]T)
.

It follows from Lemma 4 that if we choose a initial matrix
triplet by (12), where H is an arbitrary matrix, then a solu-
tion (D∗, G∗,K∗) obtained by Algorithm 1 is the minimum
Frobenius norm solution of Problem I. In summary of above
discussion, we have proved the following result.

Theorem 2: Suppose that Problem I is consistent. If we
choose the initial matrices by (12), where H is an arbitrary
matrix, or especially, D1 = 0, G1 = 0 and K1 = 0, then we
can obtain the unique minimum Frobenius norm solution of
Problem I within finite iterative steps.

Now we show that the solution of Problem II can be
derived by finding the minimum norm solution of a new matrix
equation. Assume that Problem I is consistent. Obviously the
solution set SE of Problem I is nonempty, then for a given
matrix triplet (Da, Ga,Ka), we have

DX̃Λ̃ +GX̃Λ̃ +KX̃ = −MaX̃Λ̃2

⇔ (D −Da)X̃Λ̃ + (G−Ga)X̃Λ̃ + (K −Ka)X̃

= −MaX̃Λ̃2 −DaX̃Λ̃−GaX̃Λ̃−KaX̃.

Let

D̃ = D −Da, G̃ = G−Ga, K̃ = K −Ka,

F̃ = −MaX̃Λ̃2 −DaX̃Λ̃−GaX̃Λ̃−KaX̃,

then the matrix approximation Problem II is equivalent to
finding the minimum Frobenius norm solution of the matrix
equation

D̃X̃Λ̃ + G̃X̃Λ̃ + K̃X̃ = F̃ , (13)

s. t. G̃ ∈ SSRn×n, D̃, K̃ ∈ SRn×n.

Applying Algorithm 1, and taking the initial matrices by
(12), where H is an arbitrary matrix, or especially, D̃1 = 0,
G̃1 = 0 and K̃1 = 0, we can obtain the minimum Frobenius
norm solution (D̃∗, G̃∗, K̃∗) of (13). Once (D̃∗, G̃∗, K̃∗) is
obtained, the solution of the matrix optimal approximation
Problem II can be computed. In this case, can be expressed as

D̂ = Da + D̃∗, Ĝ = Ga + G̃∗, K̂ = Ka + K̃∗. (14)

III. A NUMERICAL EXAMPLE

In this section, we will give a numerical example to illustrate
our results. All the tests are performed using MATLAB 6.5.
Because of the influence of the error of calculation, the
iteration will not stop within finite steps. Hence, we regard
(Ds, Gs,Ks) as a solution of the considered problem if the
corresponding residue satisfies ‖Rs‖ ≤ 1.0e− 010.

Example 1. Consider a 7-DOF system modelled analytically
with mass, gyroscopic, and stiffness matrices given by

Ma = 0.03×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

52 22 18 −13 0 0 0
22 12 13 −9 0 0 0
18 13 104 0 18 −13 0

−13 −9 0 24 13 −9 0
0 0 18 13 104 0 18
0 0 −13 −9 0 24 13
0 0 0 0 18 13 104

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Da =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

25.8258 15.9831 −6.8154
15.9831 59.1804 −12.6864
−6.8154 −12.6864 59.6436
13.3326 13.8510 0
0.1395 0.1053 −6.2304

−0.1053 −0.0792 12.9024
0 0 0.1395

13.3326 0.1395 −0.1053 0
13.8510 0.1053 −0.0792 0

0 −6.2304 12.9024 0.1395
117.1368 −12.9024 14.0112 0.1053
−12.9024 59.6436 0 −6.2304
14.0112 0 117.1368 −12.9024
0.1053 −6.2304 −12.902 59.6436

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ga =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 15.9831 −6.8154
−15.9831 0 −12.6864

6.8154 12.6864 0
−13.3326 −13.8510 0
−0.1395 −0.1053 6.2304
0.1053 0.0792 −12.9024

0 0 −0.1395

13.3326 0.1395 −0.1053 0
13.8510 0.1053 −0.0792 0

0 −6.2304 12.9024 0.1395
0 −12.9024 14.0112 0.1053

12.9024 0 0 −6.2304
−14.0112 0 0 −12.9024
−0.1053 6.2304 12.9024 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

Ka = 600×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3 −2 3 0 0 0
3 6 −3 3 0 0 0

−2 −3 4 0 −2 3 0
3 3 0 12 −3 3 0
0 0 −2 −3 4 0 −2
0 0 3 3 0 12 −3
0 0 0 0 −2 −3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The measured eigenvalue and eigenvector matrices Λ and X
are given by

Λ = diag{−71.087 + 55.495i,−71.087− 55.495i,

−19.507 + 39.177i,−19.507− 39.177i}

and

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1714 + 0.3902i 0.1714− 0.3902i
−0.3786− 0.3146i −0.3786 + 0.3146i
−0.0063− 0.1350i −0.0063 + 0.1350i
0.0855 + 0.5370i 0.0855− 0.5370i

−0.0657− 0.0451i −0.0657 + 0.0451i
−0.1868− 0.4171i −0.1868 + 0.4171i
0.0738 + 0.0431i 0.0738− 0.0431i

0.4628 + 0.2187i 0.4628− 0.2187i
−0.5110 + 0.0243i −0.5110− 0.0243i
−0.3022− 0.2606i −0.3022 + 0.2606i
0.1293− 0.0539i 0.1293 + 0.0539i
0.4070 + 0.1619i 0.4070− 0.1619i

−0.0065 + 0.0671i −0.0065− 0.0671i
−0.3158− 0.0366i −0.3158 + 0.0366i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Test 1. Choosing initial iterative matrices D1 = 0, G1 = 0
and K1 = 0. By Algorithm 1, after 13 iteration steps, we
get the minimum Frobenius norm solution of Problem I as
follows.

D14 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.0350 −7.3983 16.0777
−7.3983 13.4950 28.2103
16.0777 28.2103 −47.6215
10.4515 −23.8379 −7.9163

−32.2720 −10.7902 35.6826
−10.5444 25.4311 0.3282
23.0742 4.9442 −11.3227

10.4515 −32.2720 −10.5444 23.0742
−23.8379 −10.7902 25.4311 4.9442
−7.9163 35.6826 0.3282 −11.3227

−21.6123 31.6409 3.7644 −21.6979
31.6409 57.1259 26.1558 −85.4500
3.7644 26.1558 25.3634 −29.2406

−21.6979 −85.4500 −29.2406 99.6122

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G14 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0000 −6.7377 −8.0588
6.7377 0.0000 −30.9780
8.0588 30.9780 −0.0000

−1.2158 −34.0188 18.5950
−38.6231 −19.7042 61.9164
−7.8206 21.6911 3.8357
36.4310 15.7616 −70.7559

1.2158 38.6231 7.8206 −36.4310
34.0188 19.7042 −21.6911 −15.7616

−18.5950 −61.9164 −3.8357 70.7559
−0.0000 −67.2390 −29.2425 61.9985
67.2390 0.0000 −15.1970 −49.8023
29.2425 15.1970 0.0000 −27.4853

−61.9985 49.8023 27.4853 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K14 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9201 −0.2805 −2.7237 −0.1034
−0.2805 −0.0944 1.5355 −0.0387
−2.7237 1.5355 3.9447 0.1669
−0.1034 −0.0387 0.1669 1.2746
4.9203 −3.3070 −5.9154 −0.9910
0.8169 −0.4975 −1.0632 −1.0895

−3.7965 2.6824 4.2561 0.6674

4.9203 0.8169 −3.7965
−3.3070 −0.4975 2.6824
−5.9154 −1.0632 4.2561
−0.9910 −1.0895 0.6674
8.3247 1.9996 −5.7547
1.9996 1.0734 −1.3660

−5.7547 −1.3660 3.9314

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with corresponding residual

‖R14‖ = ‖F −D14X̃Λ̃−G14X̃Λ̃−K14X̃‖ = 2.5677e−012.
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Test 2. Choosing initial iterative matrices D̃1 = 0, G̃1 = 0
and K̃1 = 0. By Algorithm 1, we get the minimum Frobenius
norm solution (D̃∗, G̃∗, K̃∗) of Eq.(13) as follows.

D̃∗ = D̃14 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8613 −1.5193 2.7099
−1.5193 −1.6506 3.2150
2.7099 3.2150 −5.9458
0.2863 −3.2481 −0.9176

−3.2564 −1.0203 3.7313
−0.3986 2.0852 −0.0354
2.0024 0.3289 −0.7599

0.2863 −3.2564 −0.3986 2.0024
−3.2481 −1.0203 2.0852 0.3289
−0.9176 3.7313 −0.0354 −0.7599
−5.9295 2.9333 1.9747 −1.3325
2.9333 3.9074 1.2042 −6.6729
1.9747 1.2042 0.2575 −1.6034

−1.3325 −6.6729 −1.6034 7.7265

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G̃∗ = G̃14 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0000 −1.2427 −0.9730
1.2427 0.0000 −2.5346
0.9730 2.5346 0.0000
0.4217 −2.9375 1.3438

−3.6149 −1.7040 5.7363
−0.5062 1.6916 0.4763
3.2792 1.4012 −6.5728

−0.4217 3.6149 0.5062 −3.2792
2.9375 1.7040 −1.6916 −1.4012

−1.3438 −5.7363 −0.4763 6.5728
0.0000 −6.1061 −2.6883 5.9064
6.1061 0.0000 −0.9247 −4.4698
2.6883 0.9247 −0.0000 −1.9688

−5.9064 4.4698 1.9688 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K̃∗ = K̃14 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1477 −0.0097 −0.3159
−0.0097 −0.0503 0.1516
−0.3159 0.1516 0.4305
−0.0129 0.0445 0.0358
0.4606 −0.2844 −0.5687
0.0448 −0.0463 −0.0820

−0.3314 0.2180 0.3875

−0.0129 0.4606 0.0448 −0.3314
0.0445 −0.2844 −0.0463 0.2180
0.0358 −0.5687 −0.0820 0.3875
0.1819 −0.1254 −0.1320 0.0809

−0.1254 0.7523 0.1703 −0.5036
−0.1320 0.1703 0.1043 −0.1162
0.0809 −0.5036 −0.1162 0.3362

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with corresponding residual

‖R14‖ = ‖F̃ −D̃14X̃Λ̃−G̃14X̃Λ̃−K̃14X̃‖ = 2.2388e−013.

Therefore, by (14), the optimal approximation solution of
Problem II is

D̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

24.9645 14.4638 −4.1055
14.4638 57.5298 −9.4714
−4.1055 −9.4714 53.6978
13.6189 10.6029 −0.9176
−3.1169 −0.9150 −2.4991
−0.5039 2.0060 12.8670
2.0024 0.3289 −0.6204

13.6189 −3.1169 −0.5039 2.0024
10.6029 −0.9150 2.0060 0.3289
−0.9176 −2.4991 12.8670 −0.6204
111.2073 −9.9691 15.9859 −1.2272
−9.9691 63.5510 1.2042 −12.9033
15.9859 1.2042 117.3943 −14.5058
−1.2272 −12.9033 −14.5058 67.3701

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ĝ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0000 14.7404 −7.7884
−14.7404 0.0000 −15.2210

7.7884 15.2210 0.0000
−12.9109 −16.7885 1.3438
−3.7544 −1.8093 11.9667
−0.4009 1.7708 −12.4261
3.2792 1.4012 −6.7123

12.9109 3.7544 0.4009 −3.2792
16.7885 1.8093 −1.7708 −1.4012
−1.3438 −11.9667 12.4261 6.7123
0.0000 −19.0085 11.3229 6.0117

19.0085 0.0000 −0.9247 −10.7002
−11.3229 0.9247 −0.0000 −14.8712
−6.0117 10.7002 14.8712 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K̂ = 1000×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2001 1.8000 −1.2003
1.8000 3.5999 −1.7998

−1.2003 −1.7998 2.4004
1.8000 1.8000 0.0000
0.0005 −0.0003 −1.2006
0.0000 −0.0000 1.7999

−0.0003 0.0002 0.0004

1.8000 0.0005 0.0000 −0.0003
1.8000 −0.0003 −0.0000 0.0002
0.0000 −1.2006 1.7999 0.0004
7.2002 −1.8001 1.7999 0.0001

−1.8001 2.4008 0.0002 −1.2005
1.7999 0.0002 7.2001 −1.8001
0.0001 −1.2005 −1.8001 2.4003

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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