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An Iterative Algorithm to Compute the Generalized
Inverse A

(2)
T,S Under the Restricted Inner Product

Xingping Sheng

Abstract—Let T and S be a subspace of Cn and Cm, respectively.
Then for A ∈ Cm×n satisfied AT ⊕ S = Cm, the generalized
inverse A

(2)
T,S is given by A

(2)
T,S = (PS⊥APT )†. In this paper, a

finite formulae is presented to compute generalized inverse A
(2)
T,S

under the concept of restricted inner product, which defined as <
A, B >T,S=< PS⊥APT , B > for the A, B ∈ Cm×n. By this
iterative method, when taken the initial matrix X0 = PT A∗PS⊥ , the
generalized inverse A

(2)
T,S can be obtained within at most mn iteration

steps in absence of roundoff errors. Finally given numerical example
is shown that the iterative formulae is quite efficient.

Keywords—Generalized inverse A
(2)
T,S , Restricted inner product,

Iterative method, Orthogonal projection.

I. INTRODUCTION

As for our topic, we first recall the definition of generalized
inverse A

(2)
T,S of a matrix A ∈ Cm×n, which has a range T

and null space S.
Definition 1.1[1]. Let A ∈ Cm×n be of rank r, T be a

subspace of Cn of dimension s ≤ r and S be a subspace of
Cm of dimension m − s. If X satisfies

XAX = X, R(X) = T, N(X) = S

then X is called the generalized inverse A
(2)
T,S of A.

It is well-known that the common important generalized
inverses are all the generalized inverse A

(2)
T,S , which have the

prescribed range T and the null space S of {2}-(or outer)
inverse of A. These were introduced in [1,2].

The outer generalized inverse A
(2)
T,S has been widely used in

various fields, for instance, in statistics, control theory, power
systems, nonlinear equations, optimization and numerical anal-
ysis, and so on. The applications and computations of the outer
generalized inverse can be found in [1-12,14-16].

First using finite iterative method to solve the linear system
can be seen in [17]. But using this method to compute the
generalized inverse only can viewed in author’s paper [13]. We
could not directly use finite iterative formulae to compute the
generalized inverse A

(2)
T,S , because its range and null space are

not orthogonal. In this paper, we first define a restricted inner
product. Then a restricted norm of a matrix A is generated
by this inner product. In the end, a finite iterative formulae to
compute the generalized inverse A

(2)
T,S is devised.

Throughout the paper, let Cm×n
r denote the set of all m×n

matrices with rank r over C. T and S is a subspace of Cn
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and Cm, respectively, with dimension s(s ≤ r). For any A ∈
Cm×n, we write R(A) for its range, N(A) for its null range.
A∗ and r(A) stands for the conjugate transpose and the rank
of A, respectively.

Let T and S be the subspace of Cn and Cm, respectively.
The restricted conjugate transpose on T and S of A∗

T,S

for a complex matrix A ∈ Cm×n is defined as A∗
T,S =

(PS⊥APT )∗ = PT A∗PS⊥ . In the same way, in the space
Cm×n, an restricted inner product on subspace T and S is de-
fined as < A,B >T,S=< PS⊥A,BPT >= tr(A∗PS⊥BPT )
for all A,B ∈ Cn×n. Then the restricted norm on the subspace
of T and S of a matrix A generated by this inner product is
the Frobenius norm of matrix PS⊥APT denoted by ‖ A ‖T,S .

In this paper the following Lemmas are needed in what
follows:

Lemma 1.1[1] Let A ∈ Cm×n be of rank r, any two of
the following three statements imply the third:

X ∈ A{1}
X ∈ A{2}

rankA = rankX

Lemma 1.2[1] Let A ∈ Cm×n be of rank r, T be a
subspace of Cn of dimension s ≤ r and S be a subspace
of Cm of dimension m−s. Then A has a {2} inverse X such
that R(X) = T and N(X) = S, if and only if

AT ⊕ S = Cm

In which case X is unique and it is denoted by A
(2)
T,S .

Lemma 1.3[1,2]Let A, T, S and G be the same as in Lemma
1.2. Then A has a {2} inverse A

(2)
T,S , and

A
(2)
T,S = (PS⊥APT )†

Lemma 1.4[1] (1)PL,MA = A if and only if R(A) ⊂ L ,
(2)APL,M = A if and only if N(A) ⊃ M

Throughout the paper, we assume that AT ⊕ S =
Cm(A∗S⊥ ⊕ T⊥ = Cn) , in other words the generalized
inverse A

(2)
T,S of a matrix A is existed.

About the restricted inner product on subspace T and S,
we have the following property.

Lemma 1.5 Let T and S be the subspace of Cn and Cm,
A,B ∈ Cm×n, then we have:

< A, B >T,S = < A, PS⊥BPT >=< PS⊥APT , B >

= < B, A >T,S =< B∗, PT A∗PS⊥ >

According to the definition and the properties of inner
product, the above equalities are right.
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II. ITERATIVE METHOD FOR COMPUTING A
(2)
T,S

In this section we first introduce an iterative method to
obtain a solution of the matrix equation PS⊥AXAPT =
PS⊥APT , where A ∈ Cm×n, T ⊂ Cn and S ⊂ Cm

satisfied AT ⊕ S = Cm. Then for any initial matrix X0 with
R(X0) ⊂ R(PT A∗) and N(X0) ⊃ N(A∗PS⊥), the matrix
sequence {Xk} generated by the iterative method converges
to its a solution within at most mn iteration steps in absence
of the roundoff errors. We also show that if let the initial
matrix X0 = PT A∗PS⊥ , then the solution X∗ obtained by
the iterative method is the generalized inverse A

(2)
T,S .

First we present the iteration method for solving the matrix
equation PS⊥AXAPT = PS⊥APT , the iteration method as
follow:

Algorithm 2.1
1. In put matrices A ∈ Cm×n, PS⊥ ∈ Cm×m, PT ∈ Cn×n

and X0 ∈ Cn×m with R(X0) ⊂ R(PT A∗) and N(X0) ⊃
N(A∗PS⊥);

2. Calculate

R0 = A − AX0A;
P0 = A(R0)∗T,SA;
k := 0;

3. If PS⊥RkPT = 0, then stop; else, k := k + 1;
4. Calculate

Xk = Xk−1 +
‖ Rk−1 ‖2

T,S

‖ Pk−1 ‖2
T,S

(Pk−1)∗T,S ;

Rk = A − AXkA

= Rk−1 −
‖ Rk−1 ‖2

T,S

‖ Pk−1 ‖2
T,S

A(Pk−1)∗T,SA;

Pk = A(Rk)∗T,SA +
‖ Rk ‖2

T,S

‖ Rk−1 ‖2
T,S

Pk−1;

5. Goto step3.
About Algorithm 2.1, we have the following basic proper-

ties.
Theorem 2.2 In Algorithm 2.1, if we take the initial

matrix X0 = A∗
T,S , then the sequences {Xi} and {Pi}

generalized by it such that
(1)R(Xk) ⊂ R(PT A∗), N(Xk) ⊃ N(A∗PS⊥) and

R(Pk) ⊂ R(APT ), N(Pk) ⊃ N(PS⊥A);
(2)if AT ⊕S = Cm and PS⊥RkPT = 0, then Xk = A

(2)
T,S ;

Proof (1)To prove the conclusion, we use the induction
When i = 0, we have

X0 = A∗
T,S = PT A∗PS⊥

P0 = A(R0)∗T,SA = APT R∗
0PS⊥A

this implies the conclusion is right.
When i = 1, we have

X1 = X0 +
‖ R0 ‖2

T,S

‖ P0 ‖2
T,S

(P0)∗T,S

= PT A∗(PS⊥ +
‖ R0 ‖2

T,S

‖ P0 ‖2
T,S

PS⊥R0PT A∗PS⊥)

= (PT +
‖ R0 ‖2

T,S

‖ P0 ‖2
T,S

)PT A∗PS⊥R0PT )A∗PS⊥

and

P1 = APT R∗
1PS⊥A +

‖ R1 ‖2
T,S

‖ R0 ‖2
T,S

P0

= APT (PT R∗
1PS⊥A +

‖ R1 ‖2
T,S

‖ R0 ‖2
T,S

PT R∗
0PS⊥A)

= (APT R∗
1PS⊥ +

‖ R1 ‖2
T,S

‖ R0 ‖2
T,S

APT R∗
0PS⊥)PS⊥A

This shows when i = 1, the conclusion is also right.
Assume that conclusion holds for all 0 ≤ i ≤ s(0 < s < k).

Then there exist matrices U , V , W , and Y such that

Xs = PT A∗U = V A∗PS⊥

Ps = APT W = Y PS⊥A

Further, we have that

Xs+1 = Xs +
‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

(Ps)∗T,S

= PT A∗U +
‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

PT A∗PS⊥Y ∗PS⊥

= PT A∗(U +
‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

PS⊥Y ∗PS⊥)

= V A∗PS⊥ +
‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

PT W ∗PT A∗PS⊥

= (V +
‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

PT W ∗PT )A∗PS⊥

and

Ps+1 = APT R∗
s+1PS⊥A +

‖ Rs+1 ‖2
L T, S

‖ Rs ‖2
T,S

Ps

= APT (R∗
s+1PS⊥A +

‖ Rs+1 ‖2
T,S

‖ Rs ‖2
T,S

W )

= (APT R∗
s+1 +

‖ Rs+1 ‖2
T,S

‖ Rs ‖2
T,S

Y )PS⊥A

This implies that

R(Xs+1) ⊂ R(PLA∗PL) and N(Xs+1) ⊃ N(PLA∗PL)

and

R(Ps+1) ⊂ R(APL) and N(Ps+1) ⊃ N(PLA)

By the principle of induction, the conclusion holds for all
i = 0, 1, · · ·

(2)From the lemma 1.4 and the results in (1) of the Theorem
2.2, we can easy to get PT X = XPS⊥ = X . According to
Algorithm 2.1, we know that, if PS⊥RkPT = 0, then we have
Xk ∈ (PS⊥APT ){1}. This implies r(Xk) ≥ r(PS⊥APT ),
then by the conclusion of (1) and AT ⊕ S = Cm, we can
easy get r(Xk) = r(PS⊥APT ). From Lemma 2.1 we know
Xk ∈ (PS⊥APT ){1, 2} with range R(PT A∗PS⊥) and null
space N(PT A∗PS⊥). If AT⊕S = Cm, then R(PT A∗PS⊥) =
R(PT A∗) = T and N(PT A∗PS⊥) = N(A∗PS⊥) = S. By
Lemma 1.3, it shows that Xk = (PS⊥APT )† = A

(2)
T,S .
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Theorem 2.3 Let X̃ be an solution of matrix equation
PS⊥AXAPT = PS⊥APT with R(X) ⊂ T and N(X) ⊂
S, then for any initial matrix X0 with R(X0) ⊂ T and
N(X0) ⊂ S, the sequences {Xi}, {Ri} and {Pi} generalized
by Algorithm 3.1 satisfy

< Pi, PS⊥(X̃ − Xi)∗PT >T,S=‖ Ri ‖2
T,S , (i = 0, 1, 2, · · ·).

Proof We prove the conclusion by induction. By Algo-
rithm 2.1 and lemma 1.4, when i = 0, we have

< P0, PS⊥(X̃ − X0)∗PT >T,S

= < PS⊥P0PT , PS⊥(X̃ − X0)∗PT >

= < P0, PS⊥(X̃ − X0)∗PT >

= < APT R∗
0PS⊥A, (X̃ − X0)∗ >

= < PT R∗
0PS⊥ , A∗(X̃ − X0)∗A∗ >

= < PT R∗
0PS⊥ , R∗

0 >=‖ R0 ‖2
T,S

And when i = 1, we have

< P1, PS⊥(X̃ − X1)∗PT >T,S

= < PS⊥P1PT , PS⊥(X̃ − X1)∗PT >

= < P1, PS⊥(X̃ − X1)∗PT >

= < P1, (X̃ − X1)∗ > by Theorem 2.2

=

〈

APT R∗
1PS⊥A +

‖ R1 ‖2
T,S

‖ R0 ‖2
T,S

P0, (X̃ − X1)∗
〉

= < APT R∗
1PS⊥A, (X̃ − X1)∗ >

+
‖ R1 ‖2

T,S

‖ R0 ‖2
T,S

< P0, (X̃ − X1)∗ >

= < PT R∗
1PS⊥ , R∗

1 > +
‖ R1 ‖2

T,S

‖ R0 ‖2
T,S

< P0, (X̃ − X0)∗ >

−‖ R1 ‖2
T,S

‖ P0 ‖2
T,S

< P0, (PT P ∗
0 PS⊥)∗ >

= ‖ R1 ‖2
T,S

Assume that the conclusion holds for i = s(s > 0), that
< Ps, PS⊥(X̃ − Xs)∗PT >T,S=‖ Rs ‖2

T,S , then i = s + 1,
we have

< Ps+1, PS⊥(X̃ − Xs+1)∗PT >T,S

= < PS⊥Ps+1PT , PS⊥(X̃ − Xs+1)∗PT >

= < Ps+1, PS⊥(X̃ − Xs+1)∗PT >

= < Ps+1, (X̃ − Xs+1)∗ > by Theorem 2.2

=

〈

APT R∗
s+1PS⊥A +

‖ Rs+1 ‖2
T,S

‖ Rs ‖2
T,S

Ps, (X̃ − Xs+1)∗
〉

= < APT R∗
s+1PS⊥A, (X̃ − Xs+1)∗ >

+
‖ Rs+1 ‖2

T,S

‖ Rs ‖2
T,S

< Ps, (X̃ − Xs+1)∗ >

= < PT R∗
s+1PS⊥ , R∗

s+1 > +
‖ Rs+1 ‖2

T,S

‖ Rs ‖2
T,S

< Ps, (X̃ − Xs)∗ >

−‖ Rs+1 ‖2
T,S

‖ Ps ‖2
T,S

< Ps, PS⊥PsPT >

= ‖ Rs+1 ‖2
T,S

By the principle of induction, the conclusion
< Pi, PS⊥(X̃ − Xi)∗PT >T,S=‖ Ri ‖2

T,S holds for all
i = 0, 1, 2, · · ·

Remark 1 From Theorem 2.3 we know that if PS⊥RiPT 	=
0, then PS⊥PiPT 	= 0. This result shows that if PS⊥RiPT 	=
0, then Algorithm 3.1 can not be terminated.

Theorem 2.4 For the sequences {Ri} and {Pi} generated
by Algorithm 2.1 with the X0 = PT A∗PS⊥ , if there exists a
positive number k such that Ri 	= 0 for all i = 0, 1, 2, · · · k,
then we have

< Ri, Rj >T,S= 0, < Pi, Pj >T,S= 0, (i 	= j, i, j = 0, 1, · · · , k)

Proof According to Lemma 1.5, we know that

< A, B >T,S= < B, A >T,S

holds for all matrices A and B in Cm×n, so we only need
prove the conclusion hold for all 0 ≤ i < j ≤ k. Using
induction and two steps are required.

Step1. Show that < Ri, Ri+1 >T,S= 0 and <
Pi, Pi+1 >T,S= 0 for all i = 0, 1, 2, · · · , k. To prove this
conclusion, we also use induction. According to Lemma 1.5
and Algorithm 2.1, when i = 0, we have

< R0, R1 >T,S=< PS⊥R0PT , R1 >

=

〈

PS⊥R0PT , R0 −
‖ R0 ‖2

T,S

‖ P0 ‖2
T,S

APT P ∗
0 PS⊥A

〉

= < PS⊥R0PT , R0 > −‖ R0 ‖2
T,S

‖ P0 ‖2
T,S

< PS⊥R0PT , APT P ∗
0 PS⊥A >

= ‖ R0 ‖2
T,S −‖ R0 ‖2

T,S

‖ P0 ‖2
T,S

< A∗PS⊥R0PT A∗, PT P ∗
0 PS⊥ >

= ‖ R0 ‖2
T,S −‖ R0 ‖2

T,S

‖ P0 ‖2
T,S

< P ∗
0 , PT P ∗

0 PS⊥ >

= ‖ R0 ‖2
T,S −‖ R0 ‖2

T,S

‖ P0 ‖2
T,S

‖ P0 ‖2
T,S= 0

and

< P0, P1 >T,S=< PS⊥P0PT , P1 >

=

〈

PS⊥P0PT , APT R∗
1PS⊥A +

‖ R1 ‖2
T,S

‖ R0 ‖2
T,S

P0

〉

= < PS⊥P0PT , APT R∗
1PS⊥A > +

‖ R1 ‖2
T,S

‖ R0 ‖2
T,S

< PS⊥P0PT , P0 >

= < A∗PS⊥P0PT A∗, PT R∗
1PS⊥ > +

‖ R1 ‖2
T,S

‖ R0 ‖2
T,S

‖ P0 ‖2
T,S

=
‖ P0 ‖2

T,S

‖ R0 ‖2
T,S

< (R0 − R1)∗, PT R∗
1PS⊥ > +

‖ R1 ‖2
T,S

‖ R0 ‖2
T,S

‖ P0 ‖2
T,S

=
‖ R1 ‖2

T,S

‖ R0 ‖2
T,S

‖ P0 ‖2
T,S −‖ P0 ‖2

T,S

‖ R0 ‖2
T,S

‖ R1 ‖2
T,S= 0

Assume that conclusion holds for all i ≤ s(0 < s < k),
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then

< Rs, Rs+1 >T,S=< PS⊥RsPT , Rs+1 >

=

〈

PS⊥RsPT , Rs −
‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

APT P ∗
s PS⊥A

〉

= < PS⊥RsPT , Rs > −
‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

< PS⊥RsPT , APT P ∗
s PS⊥A >

= ‖ Rs ‖2
T,S −‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

< A∗PS⊥RsPT A∗, PT P ∗
s PS⊥ >

= ‖ Rs ‖2
T,S −‖ Rs ‖2

T,S

‖ Ps ‖2
T,S〈

(Ps −
‖ Rs ‖2

T,S

‖ Rs−1 ‖2
T,S

Ps−1)∗, PT P ∗
s PS⊥

〉

= ‖ Rs ‖2
T,S −‖ Rs ‖2

T,S

‖ Ps ‖2
T,S

‖ Ps ‖2
T,S= 0

and

< Ps, Ps+1 >T,S=< PS⊥PsPT , Ps+1 >

=

〈

PS⊥PsPT , APT R∗
s+1PS⊥A +

‖ Rs+1 ‖2
T,S

‖ Rs ‖2
T,S

Ps

〉

= < A∗PS⊥PsPT A∗, PT R∗
s+1PS⊥ > +

‖ Rs+1 ‖2
T,S

‖ Rs ‖2
T,S

< PS⊥PsPT , Ps >

=
‖ Ps ‖2

T,S

‖ Rs ‖2
T,S

< (Rs − Rs+1)∗, PT R∗
s+1PS⊥ > +

‖ Rs+1 ‖2
T,S

‖ Rs ‖2
T,S

‖ Ps ‖2
T,S

= −‖ Ps ‖2
T,S

‖ Rs ‖2
T,S

‖ Rs+1 ‖2
T,S +

‖ Rs+1 ‖2
T,S

‖ Rs ‖2
T,S

‖ Ps ‖2
T,S= 0

By the principle of induction, < Ri, Ri+1 >T,S= 0, and
< Pi, Pi+1 >T,S= 0, hold for all i = 0, 1, · · · , k.

Step2. Assume that < Ri, Ri+l >T,S= 0, and <
Pi, Pi+l >T,S= 0, hold for all 0 ≤ i ≤ k and 1 < l < k, show
that < Ri, Ri+l+1 >T,S= 0, and < Pi, Pi+l+1 >T,S= 0.

< Ri, Ri+l+1 >T,S=< PS⊥RiPT , Ri+l+1 >

=

〈

PS⊥RiPT , Ri+l −
‖ Ri+l ‖2

T,S

‖ Pi+l ‖2
T,S

APT P ∗
i+lPS⊥A

〉

= −‖ Ri+l ‖2
T,S

‖ Pi+l ‖2
T,S

< PS⊥RiPT , APT P ∗
i+lPS⊥A >

= −‖ Ri+l ‖2
T,S

‖ Pi+l ‖2
T,S

< A∗PS⊥RiPT A∗, PT P ∗
i+lPS⊥ >

= −‖ Ri+l ‖2
T,S

‖ Pi+l ‖2
T,S

〈

Pi −
‖ Ri ‖2

T,S

‖ Ri−1 ‖2
T,S

Pi−1, PT P ∗
i+lPS⊥

〉

= 0

and

< Pi, Pi+l+1 >T,S=< PS⊥PiPT , Pi+l+1 >

=

〈

PS⊥PiPT , APT R∗
i+l+1PS⊥A +

‖ Ri+l+1 ‖2
T,S

‖ Ri+l ‖2
T,S

Pi+l

〉

= < PS⊥PiPT , APT R∗
i+l+1PS⊥A > +

‖ Ri+l+1 ‖2
T,S

‖ Ri+l ‖2
T,S

< PS⊥PiPT , Pi+l >

= < A∗PT PiPS⊥A∗, PS⊥R∗
i+l+1PT >

=
‖ Pi ‖2

T,S

‖ Ri ‖2
T,S

< (Ri−1 − Ri)∗, PT R∗
i+l+1PS⊥ >= 0

From step 1 and step 2, we have by principle induction
that < Ri, Rj >T,S= 0, and < Pi, Pj >T,S= 0, hold for all
i, j = 0, 1, · · · , k, i 	= j.

Remark 2 Theorem 2.4 implies that, for an initial matrix
X0 = PT A∗PS⊥ , since the R0, R1, · · · are orthogonal each
other, based on restricted inner product on subspace T and S,
in the finite dimension matrix space Cm×n, it is certainly there
exists a positive number k ≤ mn such that ‖ Rk ‖T,S= 0.
Then by Theorem 2.2, the generalized inverse A

(2)
T,S can be

obtained within at most mn iteration steps.
Remark 3 When T = R(A∗) and S = N(A∗), the

Algorithm 2.1 is exact the finite iterative method to computed
M-P inverse A†, which can be reviewed in [13]. Here we
recalled it as following:

Algorithm 2.2[13]

1. In put matrices A ∈ Cm×n and X0 ∈ Cn×m = A∗;
2. Calculate

R0 = A − AX0A;
P0 = AR∗

0A;
k := 0;

3. If Rk = 0, then stop; else, k := k + 1;
4. Calculate

Xk = Xk−1 +
‖ Rk−1 ‖2

‖ Pk−1 ‖2
P ∗

k−1;

Rk = A − AXkA

= Rk−1 − ‖ Rk−1 ‖2

‖ Pk−1 ‖2
AP ∗

k−1A;

Pk = AR∗
kA +

‖ Rk ‖2

‖ Rk−1 ‖2
Pk−1;

5. Goto step 3.
Remark 4 If G ∈ Cn×m satisfied R(G) = T and

N(G) = S with m,n are large, we can use the Algorithm
2.2 to compute the G†, the PT = PR(G) = GG† and
PS⊥ = PN(G)⊥ = G†G.

III. NUMERICAL EXAMPLES

In this section, we will give a numerical example ,which
is taken from [11], to illustrate our results. All the tests are
performed by MATLAB 6.1 and the initial iterative matrices
are chosen as X0 = PT A∗PS⊥ . Because of the influence of
the error of roundoff, we regard the matrix PS⊥APT as zero
matrix if ‖ A ‖T,S< 10−10.
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Example 3.1 Take

A =

⎛

⎝
−1 2 1 0
1 0 1 1
−1 −3 1 2

⎞

⎠ ∈ R3×4
3 ,

G =

⎛

⎜
⎜
⎝

3 1 0
−2 4 −2
−5 −4 1
0 7 −3

⎞

⎟
⎟
⎠ ∈ R4×3

2

We can easy show that AR(G) ⊕ N(G) = R3, then by
Lemma 2.1 we know that A

(2)
R(G),N(G) exists.

By directly computing,

PR(G) =
1
59

⎛

⎜
⎜
⎝

14 −10 −23 −1
−10 24 8 26
−23 8 42 −11
−1 26 −11 38

⎞

⎟
⎟
⎠

and

PN(G)⊥ = PR(GT ) =
1
59

⎛

⎝
102 13 9
13 30 −11
9 −11 6

⎞

⎠

Using Algorithm 2.1 and iterate 11 steps, we have X11 as
follow:

X11 =

⎛

⎜
⎜
⎝

−0.27419354838934 0.32258064516088 −0.17741935483885
0.09677419355105 0.70967741935533 −0.29032258064499
0.50000000000316 −0.99999999999942 0.50000000000020
−0.12903225806276 1.38709677419387 −0.61290322580634

⎞

⎟
⎟
⎠

with

‖ R11 ‖2
T,S=‖ A−AX11A ‖2

T,S= 1.950379437652951×10−21

On other hand, by computing, we obtain that

A
(2)
T,S =

1
62

⎛

⎜
⎜
⎝

−17 20 −11
6 44 −18
31 −62 31
−8 86 −38

⎞

⎟
⎟
⎠

Then from the above data, we can find that the iterative
sequence{Xk} converges to A

(2)
T,S .
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