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Abstract—The design of a feedback controller, so as to minimize 

a given performance criterion, for a general non-linear dynamical 
system is difficult; if not impossible. But for a large class of non-
linear dynamical systems, the open loop control that minimizes a 
performance criterion can be obtained using calculus of variations 
and Pontryagin’s minimum principle. In this paper, the open loop 
optimal trajectories, that minimizes a given performance measure, is 
used to train the neural network whose inputs are state variables of 
non-linear dynamical systems and the open loop optimal control as 
the desired output. This trained neural network is used as the 
feedback controller. In other words, attempts are made here to solve 
the “inverse optimal control problem” by using the state and control 
trajectories that are optimal in an open loop sense. 

 
Keywords—Inverse Optimal Control, Radial basis function 

neural network, Controller Design. 

I. INTRODUCTION 
EURAL networks can be applied in two ways in the 
design of control systems. It can be used to obtain a 

mathematical model of the real system to be controlled. It can 
also be used to design a controller, once a model of the real 
system is available. If the model is an accurate representation 
of the real system and the controller has been designed 
correctly, then the controller will work on the real system. 
Both these tasks can be performed by neural network if 
properly trained [2]-[5] Controllers are designed to meet the 
specification around an operating point (where linear model is 
valid) and then via a scheduler, a controller emerges, which 
can accomplish the control objectives over the whole 
operating range. The existing conventional theory cannot meet 
control demands required today. New control laws to perform 
novel control functions should be designed while the system is 
in operation. Consequently, the mathematical complexity 
increases. Thus an intelligent controller is required to replace 
the conventional controllers. This is where neural network 
comes into scenario of the control system design. 

The ability of neural networks to deal with non-linear 
systems is perhaps the most important from the control theory 
viewpoint. The great diversity of non-linear systems is the 
primary reason why no generally applicable theory for non-
linear control design has yet evolved. However it is the ability 
of neural networks to represent non-linear mappings and 
hence to model non-linear systems, which is the feature that 
can be readily exploited in the synthesis of non-linear 
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controllers. 
The methodology used to solve the inverse optimal control 

problem consists of the following steps: 
Step 1. The open loop optimal control trajectory is obtained 

using calculus of variations and Pontryagin’s minimum 
principle [1] 

Step 2. Train an RBF neural network using the input-output 
training set obtained above. 

Step 3. Use the trained neural network as a feedback controller.  

II.  INVERSE OPTIMAL CONTROL PROBLEM 
Instead of asking for the control law corresponding to a 

given performance index, it is better to seek the performance 
criteria for which a given control law is optimal. This problem 
has come to be called the inverse optimal control problem; it is 
analogous to the older problem of the inverse problem of the 
calculus of variations. 

We employ the inverse optimal control approach which 
circumvents the task of solving Hamilton-Jacobi equation and 
results in a controller optimal with respect to a meaningful 
cost functional [8]. In this approach, a stabilizing feedback 
control is designed first, and then it is shown that it optimizes 
a cost functional. The main characteristic of the inverse 
approach is that a cost function is a posteriori determined for 
the stabilizing feedback control law [9]-[11]. This approach, 
originated by Kalman to establish certain gain and phase 
margins of linear quadratic regulators [12], was introduced 
into nonlinear control in [13], and it was recently revived in 
[14] to develop a methodology for design of robust nonlinear 
controllers. 

III. SOLUTION TO THE OPTIMAL CONTROL PROBLEM 
We consider the dynamic system 
 

x = a [x(t), u(t), t ]               (1) 
 

where nx ∈R  and mu ∈R denote the state and the control 
vectors, respectively. 

The problem is to find the admissible control *u  that 
minimizes the performance index 

  
f

0

t

f f
t

J = h [ x(t ), t ] + g [ x(t), u(t), t ] dt∫      (2) 

 
where 0t  and ft are the initial and final time; h and g are 
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scalar functions *u  is the optimal control and *x  is the 
optimal state trajectory. Assuming that the state and control 
trajectories are not constrained by any boundaries, that the 
final time ft  is free, we can summarize the two-point 
boundary value-problem that results from the variational 
approach by the equations [3] 
 

* * *Hx (t)= =a[(x (t),u (t),t]
p

∂
∂

          (3) 

 

* Hp (t)=-
x

∂
∂

                    (4) 

 

       
T

* * * * *a g=- [x (t),u (t),t] p (t)- [x (t),u (t),t]
x x

∂ ∂⎧ ⎫
⎨ ⎬

∂ ∂⎩ ⎭
     (5) 

 

 [ ] [ ]
TH a g0= = x(t),u(t),t P(t)+ x(t),u(t),t

u u u
∂ ∂ ∂⎧ ⎫− ⎨ ⎬
∂ ∂ ∂⎩ ⎭

  (6) 

 
 *

0x (t)=x                 (7) 
 

 * *
f f

HP (t )= x (t )
x

∂ ⎡ ⎤− ⎣ ⎦∂
          (8) 

 
Equations (3)-(6) are in general nonlinear. We assume that 

the above equations along with the split initial conditions in 
(7) and (8) can be solved by using a suitable iterative 
numerical procedure like steepest descent or variation of 
extremals. The state and control trajectories resulted from this 
solution are optimal in an open loop sense and is used to 
design the neural feedback controller. The methodology 
adopted is as follows: 

IV. METHODOLOGY TO OBTAIN FEEDBACK CONTROLLER 
USING ANN 

For a general non-linear control problem, the calculus of 
variation approach to solve the optimal control problem leads 
to a two-point boundary value problem, which can be solved 
using methods like steepest descent, variation of extremals etc. 
[6], [7]. This results in an open loop control and the 
corresponding trajectories. Using these control and state 
trajectories training data are generated to train the radial basis 
neural network, whose inputs are the state trajectories and the 
target is the open loop optimal control trajectory. This neural 
network is then used as the feedback controller to control the 
non-linear dynamic system. This methodology is explained in 
Fig. 1. The structure of radial basis function neural network 
(RBFNN) is shown in Fig. 2. The RBFNN consists of three 
layers, an input layer, a hidden layer and an output layer. 
Hidden units are known as radial centres. Each radial centre is 
represented by a vector iC , 1,..., ,i L= where L is the number 
of radial centres in the hidden layer. The transformation from 
the input space to the hidden unit space is nonlinear whereas 

the transformation from the hidden unit space to output space 
is linear. The dimension of each centre for 2 input network is  
2 X 1. The training of an RBFNN requires optimal selection of 
the centre iC  and the weights iW , 1,..., ,i L=  There are many 
approaches to update centres and weights namely, pseudo-
inverse approach and gradient-descent approach etc. In this 
work, gradient-descent algorithm is used to update the centres 
and weights. The number of input neurons is 2, hidden 
neurons are 100 and output neurons are 1.  
 

*
fu

0x

e

*
tu

*
fx

 
Fig. 1 ANN as the feedback controller 

 

 

Fig. 2 A 2 input and 1 output RBF network 

V.  NUMERICAL EXAMPLE  
The continuous stirred tank chemical reactor with the 

following state equations is considered. 
 

1

2
1 1 2

1

25x (t)
x (t)+2x (t) = -2 [x (t) + 0.25] + [x (t) + 0.5] e

- [x (t) + 0.25]u(t)
   (9) 

 
1

2
2 2 2

25x (t)
x (t) 2x (t) 0.5 x (t) [x (t) 0.5]e += − − +     (10) 

 
where x1(t) is the normalized value of deviation in temperature 
from the steady state value, x2(t) is the normalized value of the 
deviation in concentration from the steady state value and u(t) 
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is the normalized control which refers to the rate of removal of 
heat by coolant from the reactor. The performance measure is 
 

0.78
2 2 2

1 2
0

J(u)= [x x Ru (t)]dt+ +∫          (11) 

 
indicating that the desired objective is to maintain the 
temperature and concentration close to their steady-state 
values without expending large amounts of control effort. R is 
the weighting factor, which we shall select (arbitrarily) as 0.1. 
The co-state equations are determined from the Hamiltonian, 
 

1

1

1

1

2 2 2
1 2 1 1

2 1

2 2 2

H[x(t),u(t),p(t)]

x (t) x (t)+Ru (t) p (t)[-(2x (t) 0.25)
25x (t)
x (t) 2(x (t) 0.5)e [x (t) 0.25]u(t)

25x (t)
x (t) 2p (t)[0.5 x (t) [x (t) 0.5] e

=

+ + +

++ + − +

++ − − +

  (12) 

 

1

1

1

1

1
1

1 1 1 2 2
1

1 2 2 2
1

Hp = -
x

25 x (t)
50 x (t) + 2= -2x + 2p (t)-p (t)[x (t)+0.5] e

[x (t) + 2]
25 x (t)

50 x (t) + 2-p (t)u(t)+p (t) [x (t)+0.5] e
[x (t) + 2]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂
∂

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

(13) 

 

1 1

1 1

2
2

2 1 2

Hp =
x

25 x (t) 25 x (t)
x (t) + 2 x (t) + 2= 2x (t) p (t) e +p (t) 1 + e

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−

− −

∂
∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (14) 

 
The algebraic equation that must be satisfied is 
 

1 1
H =2Ru(t) p (t)[x (t)+0.25]=0
u

∂
−

∂
         (15) 

 
The guessed initial conditions for solving the co-state 

equations are 1p (0)=2  and 2p (0)=2 . The desired final values 
of co-state are 1p (0.78)=0 and 2p (0.78)=0 . The influence 
function matrix differential equations are 

 

x x p
a α c 0

p (t)= p (t)+ p (t)
b -1-α 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

        (16) 

 

( )2 1p x p
d α f g

p (t)= 2+p (t) p (t) p (t)+ p (t)
e 2 α 1+α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

  (17) 

where 
1

1

25x (t)
x (t)+2α = e

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠                

    2 1 1
2 2

1

50[x (t)+0.5] [x (t)+0.5]p (t)a= 2+
R[x (t)+2]

− −  

   2
2 2

1

50[x (t)+ 0.5]b= α
[x (t)+2]

 

   
2

1[x (t)+0.25]c=
2R

−  

2
1 2 1

4
1

100[23 x (t)][x (t)+ 0.5] p (t)d= α+ 2R[x (t)+ 2]
−    

2 1
2

1
2

50[p (t) p (t)]e= α
[x (t)+2]

−  

1 12
2 2

1

[x (t)+0.5]p (t)50[x (t)+ 0.5]f=2 α+
[x (t)+2] R

−  

2
2 2

1

50[x (t)+ 0.5]g= α
[x (t)+2]

 

 
Equations (9), (10), (13)-(17) are solved using the boundary 

conditions xP (0)=0 and pP (0)=I . The state and costate values 

appearing in (16) and (17) are obtained by integrating the 
reduced state and costate equations (9), (10), (13) and (14) 
with the initial conditions [ ]Tx(0)= 0.05 0.00  and iP(0)=P (0) . 
After integrating (9), (10), (13), (14), (16) and (17) from 
t=0.0  to t=0.78 , the matrix pP (0.78) is used to determine 

i+1P (0)  as 
 

( ) ( ) ( ) ( )
-1(i+1) (i) i

p i
P P P P0 = 0 – 0.78 0.78⎡ ⎤⎣ ⎦      (18) 

 
The initial guess used to start the iterative procedure is 
 

( ) ( )0
P 0

1.0
=

0.5
⎡ ⎤
⎢ ⎥
⎣ ⎦

  and            (19) 

 
5

1 2P P(0.78) + (0.78) 10−≤           (20) 
 

is the stopping criterion used. The method converged after 35 
iterations to yield the initial co-state values 
 

   1P (0)=1.0782    and   2P (0)=0.1918  
 
The minimum value of the performance measure obtained is 

J* = 0.0266. The optimal state trajectories are plotted in Fig. 3. 
Fig. 4 shows the performance index minimized. 
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Fig. 3 The open loop (optimal) state trajectories 

 
An RBFNN has been trained using the trajectories resulted 

from the above open loop optimal control problem. The values 
of the optimal state trajectories x1(t) and x2(t) are used as the 
input training samples x1(k) and x2(k), k = 0, 1, ... , 100. The 
desired values of the output is derived from the optimal 
control trajectory u(t) as u(k), k = 0, 1, 2, . . . ,100. The 
network has been trained using the MATLAB software [4] and 
obtained the convergence after adding 100 neurons in the 
hidden layer. 
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Open Loop Control Trajectory
Control Trajectory using ANN

 
Fig. 4 The control trajectories 

 
The trained neural network is used as the optimal feedback 

controller as shown in the Fig. 1. The resulting comparisons of 
the state and control trajectories are given in Figs. 3 and 4. 
The same is tested adding 10% zero mean random noise 
(ZMRN) of the initial value of the states yielded satisfactory 
results shown in Fig. 5. 
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Fig. 5 The control trajectory with 10% ZMRN 

VI. CONCLUSION 
The design of a controller for a general non-linear 

dynamical system is considered. For many control problems 
the open loop control that optimizes a performance index can 
be obtained rather easily using numerical integration. The 
main characteristics of the methodology is in the fact that the 
cost function for the control problem is obtained posteriori by 
solving the open loop optimal control problem using calculus 
of variations and Pontryagin’s minimum principle. The 
optimal trajectories so obtained are used to train the neural 
network and is then used as the neural feedback controller. 
Furthermore, the methodology used is free from the hard task 
of obtaining the solution of the Hamilton Jacobi Bellman 
(HJB) Equation. From the stimulation studies it is clear that 
such feedback controller is feasible and it is also shown that 
such a controller is robust.  
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