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An Integrated Framework for the Realtime
Investigation of State Space Exploration

Jörg Lässig and Stefanie Thiem

Abstract—The objective of this paper is the introduction to a
unified optimization framework for research and education. The
OPTILIB framework implements different general purpose algorithms
for combinatorial optimization and minimum search on standard con-
tinuous test functions. The preferences of this library are the straight-
forward integration of new optimization algorithms and problems
as well as the visualization of the optimization process of different
methods exploring the search space exclusively or for the real time
visualization of different methods in parallel. Further the usage of
several implemented methods is presented on the basis of two use
cases, where the focus is especially on the algorithm visualization.
First it is demonstrated how different methods can be compared
conveniently using OPTILIB on the example of different iterative
improvement schemes for the TRAVELING SALESMAN PROBLEM.
A second study emphasizes how the framework can be used to find
global minima in the continuous domain.

Keywords—Global Optimization Heuristics, Particle Swarm Opti-
mization, Ensemble Based Threshold Accepting, Ruin and Recreate

I. INTRODUCTION

There is an ample number of optimization problems like
the problem TRAVELING SALESMAN (TSP) or KNAPSACK.
They belong to the class of the NP-complete problems and
thousands of them are known today and still new problems
within this large class of problems are discovered regularly
but no efficient algorithms for their solution are known. Many
of these problems are of high practical relevance and there
are different methods to deal with them in practice in an
acceptable way. In general the means of choice are

• brute force methods or ”more intelligent” superpolyno-
mial methods,

• approximation schemes or
• general purpose optimization heuristics.

OPTILIB is a framework which integrates different methods
of the third algorithm class for different problems to solve and
visualize them during the solution process. Further the frame-
work is designed for education and prototype implementations.

II. RELATED WORK

To solve combinatorial optimization problems one can
choose under a variety of heuristic algorithms. An obvious
disadvantage of this algorithm class is that they can perform
arbitrary bad, which means one does not know, how far a
solutions is still away from the optimal solution. But the
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advantage of these methods is that they perform very good
in practice and can find ”good” solutions in a short time.

The methods can be classified in two major categories.
There are relatively simple iterative improvement approaches
as Simulated Annealing (SA) [9], Threshold Accepting (TA)
[10] or the Great Deluge Algorithm (GD) [13] but also more
involved techniques which deal with more than one candidate
solution as Genetic Algorithms [3] or newer paradigms as Ant
Colony Optimization [11], Particle Swarm Optimization (PSO)
[12] and also ensemble based techniques of the iterative ap-
proaches as Ensemble Based Simulated Annealing or Ensemble
Based Threshold Accepting (EBTA) [4].

III. THE OPTILIB FRAMEWORK

There are only very few analytical results about the per-
formance comparison of the methods above. In general, it
depends on the problem and the problem instance, which
method outperforms others. Hence, it is important, to be
able to compare these methods empirically solving different
problems to obtain strengths and weaknesses. The best way to
do so is to integrate them in one general framework. OPTILIB
is a Java based Framework extending the Open Source Physics
Library [8]. It integrates various optimization algorithms ap-
plicable to arbitrary optimization problems exclusively or in
parallel with predetermined amounts of available running time
to compare them in a ”fair competition”. The framework
provides a rich toolbox to visualize the different solutions
and the algorithms during the solution finding process as well.
Further it is able to visualize different methods concurrently
for real time comparative analysis and supports parallel and
hybrid optimization schemes. This is very interesting for the
direct visualization of the convergence behavior of the methods
and also for teaching and education, as already mentioned.

Very interesting is also a comparison of these methods
applied to standard continuous test functions as the ACKLEY
or the ROSENBROCK function. It turns out that some methods
are suited for continuous problems and others perform better
in the combinatorial case.

The objective of these studies is not the comprehensive
investigation of the problems posed above but the introduction
to the OPTILIB optimization framework. In the next sections
the features of the framework and the implemented methods
are described in more detail. On the basis of two case studies
the framework is shown in action providing exemplary results
and focusing also on the visualization components in the
framework concerning problem instances and the progress of
the applied optimization algorithms.
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Fig. 1. Basic structure of the OPTILIB framework with different applications including various states, the problem including a specific instance and algorithms
for the solution integrated in one container class for the central control

IV. DESIGN AND MODULAR CONCEPT

To guarantee the modularity and generality to implement
arbitrary optimization methods for arbitrary problems it is
indispensable to separate the functionality in several basic
classes which implement major concepts as instance, state,
problem, algorithm, and application class. Thus the framework
makes extensive use of concepts as abstract and generic classes
as well as interfaces to achieve a unified approach for the
implementation.

The basic structure is shown in Fig. 1. The different classes
contain the following functionalities:

• In a class for the instance the input data is represented.
This class is not problem specific but stores data which
can be potentially used in many different problems.

• A class for the state implements the representation of
solutions in the parameter space of a special problem.
Besides this solution it contains also the corresponding
objective value.

• For each problem there is a problem class which receives
a valid instance in the constructor. Further this class im-
plements necessary move classes, applicable by different
algorithms as described later on. This class implements
also a Drawable interface for the visualization of the
problem.

• A generic algorithm class implements a solution method
and is instantiated with a valid problem instance and
state in the constructor. Methods provide functionalities to
control the optimization process stepwise and to visualize
it.

• In a container class an arbitrary number of different
algorithm objects can be managed. This gives also rise
to the opportunity to run the different algorithms with a

customized running time assignment.
• The application class is responsible for the declaration

of the problem and algorithm objects and manages the
execution of the algorithms and the visualization. It can
be used to implement arbitrary optimization scenarios up
to complex hybrid schemes including the exchange of
interim solutions during the optimization process.

Example: For the problem TSP an instance is basically a
vector of n points in m dimensional space and supports basic
methods to obtain the coordinates and other instance data. The
state implements a tour and methods to get information about
the ith city in the tour or about the position of city i, functions
to get the previous and the next city, and manipulating oper-
ations as exchange and flip. The problem class implements
move classes as Exchange, Lin2Opt [4] or Ruin & Recreate
[6]. There are different algorithms which make use of these
move classes in different ways as SA and TA, ensemble based
methods with adaptive schedules, PSO and others.

V. CASE STUDIES

A. The Traveling Salesman Problem

An advantage of TSP is that it is a standard problem,
very often investigated and considered in literature before.
To benchmark different methods the TSPLIB95 [1] is used,
offering various TSP instances.

TSP is defined as follows: A salesman has to start at one
city and must visit predetermined cities, returning to the start
point after visiting each. Which sequence of cities is the best
choice to minimize the traveling distance and which distance
is the smallest possible one? The tour length of a tour α is
further denoted with L(α).
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In this paper TSP is investigated with OPTILIB by applying
different iterative improvement schemes and using the features
of the framework to compare the different schemes. There are
different measures to compare them such as the mean final
tour length, which has been chosen for these studies. Important
for iterative improvement schemes is the choice of the move
class to get new states in state space. Here the move classes
Exchange, Lin2Opt and Ruin & Recreate are used, which are
shortly summarized in Table I. Various other TSP move classes
can be found in literature [4]. The Ruin & Recreate (RR)
principle was developed by SCHRIMPF et al. in 2000 [6]. This
strategy introduces a new kind of move class, which performs
large moves instead of smaller ones.

TABLE I
DIFFERENT TSP MOVE CLASSES WITH TIME COMPLEXITY

Class Name Description
Exchange Swap two random chosen cities in a tour
Lin2Opt Cut two random chosen connections in the tour and

reconstruct the tour by inserting two new connections
Ruin & Recreate This is described below

Now the RR principle is described in more detail. In a first
step a number of cities is deleted from the current tour. There
are at least two possibilities of this step:

• Choose A cities form all N cities, equally distributed;
delete these cities in the current tour α. This is called
Random Ruin.

• Choose one city C from all N cities, equally distributed.
Delete the A nearest neighbors of C in the current
solution α. This is called Radial Ruin.

To recreate a tour use best insertion, i.e. reinsert the deleted
cities in random order at the best possible position.

A general algorithmic template for a whole class of different
incremental optimization algorithms is Algorithm 1, where t
is a discrete time parameter and T a temperature parameter,
described below.

ALGORITHM 1 Scheme for Monte Carlo-type techniques
Require: problem P with a solution space F
Ensure: αfinal ∈ F

1: α← generate initial state(F)
2: for t← 1 to ∞ do
3: T ←get new temperature(α, t, T )
4: β ←get new state(α, t,F)
5: acceptance condition← true with probability Pβα,
6: false otherwise
7: if (acceptance condition) then
8: α← β
9: if (terminating condition) then

10: return α

The degrees of freedom within this template are the initial
state, the temperature schedule, the move class, the acceptance
condition and the terminating condition. Comparing different
methods, the initial state can be chosen at random in the same
way for all methods and the terminating condition is a fixed
number of iterations, i.e. t equals c for an integer constant c.

Besides random search the simplest possible approach is to
apply the Greedy algorithm which means to use

P
(GR)
βα =

{
1 | if ΔL ≤ 0
0 | if ΔL > 0 .

(1)

as acceptance condition. The parameter ΔL = L(β) − L(α)
is the length difference between the new and the old tour. The
temperature parameter is irrelevant for this method. A general
disadvantage of the Greedy algorithm is that it can get stuck in
local optima. Monte Carlo-type optimization algorithms like
SA, TA or GD are able to overcome local optima. For SA one
uses then

P
(SA)
βα =

{
1 | if ΔL ≤ 0
e−ΔL/(kB ·T ) | if ΔL > 0 .

(2)

For TA one uses the simpler step function for Pβα:

P
(TA)
βα =

{
1 | if ΔL ≤ T
0 | if ΔL > T .

(3)

FRANZ et al. [2] were able to prove that (3) is an optimal
decision rule for this kind of algorithm (it is not proven that
this is the only one).

A further simplification of TA results in the GD algorithm
with

P
(GD)
βα =

{
1 | if L(β) ≤ T
0 | if L(β) > T .

(4)

So far no temperature schedule is chosen for the parameter
T . The most common choice is an exponential schedule [4]
for single state methods but for EBTA an adaptive schedule is
investigated, reducing the temperature only if

〈L〉t−1 − 〈L〉t >
c · σL√

s
(5)

is satisfied, where c is a constant, s the ensemble size, 〈L〉t
the average tour length of the ensemble at time t, and σL
the ensemble’s standard deviation of the tour length in the
equilibrium at a fixed temperature. The temperature is then
reduced using

Tt+1 = Tt − c · T 2

σL
. (6)

This is called constant thermodynamic speed scheduling [5].
For our investigations all experiments have been performed

ten or more times (depending on the running time) and the
average values based on these results are provided.

Table II contains results for the different algorithms apply-
ing the move classes in Table I to the eil101 instance with
101 cities [1]. The entries are the values of the best and the
average tour lengths over all runs. For the number of iterations
the adaptive thermodynamic speed schedule in combination
with an adaptive convergence criterium has been used for
the ensemble based approach for each move class. Then the
same number of iterations has been applied to determine the
tour lengths for the other algorithms. Initial temperatures have
been all calculated based on the standard deviation of the tour
lengths during the unbiased random walk in the equilibrium.

For the move class RR the algorithms can be ordered
by their performance starting with EBTA, which has not
been reported to be applied in combination with RR so far,
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(a) Initial configuration (b) After 30 iterations (c) Final configuration (d) Length development

(e) Initial configuration (f) After 30 iterations (g) Final configuration (h) Length development

Fig. 2. Performance of TA with Ruin & Recreate for the TSP instances eil101 and pcb442 with the optimal tour lengths of 640.212 and 50,783.5 respectively

TABLE II
PERFORMANCE OF INCREMENTAL ALGORITHMS FOR DIFFERENT MOVE

CLASSES

Algorithm Best Tour Length (Average)

E
xc

ha
ng

e Greedy Algorithm 883.897 (1,023.287)
Simulated Annealing 708.586 (721.628)
Threshold Accepting 715.898 (727.764)
Great Deluge Algorithm 752.252 (785.841)
Ensemble based TA 753.957 (798.318)

L
in

2O
pt

Greedy Algorithm 680.358 (699.888)
Simulated Annealing 658.350 (663.177)
Threshold Accepting 653.846 (659.532)
Great Deluge Algorithm 699.725 (713.330)
Ensemble based TA 661.598 (666.994)

R
ui

n
&

R
ec

re
at

e Greedy Algorithm 651.043 (656.984)
Simulated Annealing 640.212 (643.188)
Threshold Accepting 640.212 (642.706)
Great Deluge Algorithm 646.790 (650.424)
Ensemble based TA 640.212 (641.220)

outperforming all other approaches, followed by TA, SA, GD
and GR with worst performance, as expected. For Lin2Opt and
Exchange the result is ambiguous. The inferiority of EBTA for
these move classes is most likely due to the ensemble size ten,
which reduces the number of available steps for each walker
dramatically. Fig. 2 visualizes the progress of the optimization
using the RR approach for the instances eil101 and pcb442.

B. PSO in the Continuous Domain

In recent years several biological motivated optimization al-
gorithms as Genetic Algorithms and Ant Colony Optimization
have been proposed. Another possibility is the usage of the
dynamics of swarms to find solutions to optimization problems

with continuous solution space. This algorithm was invented
by KENNEDY and EBERHART in 1995 and is named Particle
Swarm Optimization [12]. Meanwhile, many different versions
and additional heuristics have been introduced and some of
them are included in the OPTILIB framework.

The basic idea of Particle Swarm Optimization is that the
searchers can share information about the so far best solution
and additionally each searcher has an internal memory to store
its best so far solution. The movement of each searcher is then
given by a tradeoff between its current velocity, a movement
in the direction of its local best solution (cognitive component)
and the so far global optimum (social component).

Exemplary, the results for the parameter setup given in [7]
are presented, which is very competitive. The equations of
motion for a searcher i are given by

vi = w [vi + c1 ·R1 · (li − ri) + c2 ·R2 · (g − ri)] (7)
ri = ri + vi , (8)

where the weight is w = 2/|2−c−√c2 − 4c| with c = c1+c2.
The diagonal matrices R1 and R2 contain uniform random
numbers and thus randomly weight each component of the
connecting vector from the current position ri to the local
position li respectively global optimum g. By the choice of
the cognitive parameter c1 and the social parameter c2 one can
weight the influence of these two components against each
other. A good setup is given by c1 = 2.8 and c2 = 1.3.
The new position is obtained by adding the velocity to the
current position. The initial positions are chosen randomly in
the solution space and the initial velocities are 0.

The PSO algorithm is applied to a selection of test functions
included in OPTILIB and summarized in Table III. It is
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(a) 2D Plot (b) 3D Plot

(c) Initial configuration (d) Configuration after 10 iterations (e) Final configuration

Fig. 3. Search behavior for Particle Swarm Optimization for the ACKLEY function: red dots are the current positions, blue circles the so far best solutions
for each particle and the green circle is the global best solution.

possible to visualize the problem and additionally the move-
ment of the searchers in the solution space in real time. The
update frequency can be specified as simulation parameter. The
visualization shows that the swarm slowly concentrates more
and more around the global optimum during an optimization
run. Thus the swarm is able to explore the region around the
optimum very well and therefore finds in most cases the best
possible solution. An exemplary behavior of the searchers is
shown in Fig. 3 for the ACKLEY function in ten dimensions.

All results for the selected test functions are summarized in
Table IV, where the best solution and the average solution for
ten runs are given. The optimization run terminates when the
global optimum is approximated by an additive error of 10−6

or at most 20,000 function evaluations are done.

TABLE IV
PERFORMANCE OF PSO IN TEN DIMENSIONS

Function Best Solution
(Average Solution)

# Successful
Runs

# Function
Evaluations

Ackley 0.000000 10 8,310
Griewangk 0.017241 (0.080891) 0 20,000
Rastrigin 0.994961 (3.382872) 0 20,000
Rosenbrock 0.006679 (3.265508) 0 20,000
Sphere 0.000000 10 3,633
Step -60.000000 10 270

The results in Table IV show that PSO converges very
quickly to the global optimum for several test functions,
especially the ACKLEY, the Step and the Sphere function. For
the other functions the global optimum has not been obtained,
however, the visualization can help to find reasons for this

behavior. For instance most of the vector components of the
final solution of the RASTRIGIN function have reached their
optimal value but there are still one or more vector components
in a neighboring local minima. For the ROSENBROCK function
instead one can see that the swarm converges very slowly
and is still distributed along the valley in the ROSENBROCK
function, where the searchers mostly search at the slopes of
the valley and only slowly move to the global optimum. Thus,
with a limited number of function evaluations the swarm has
not the chance to converge at all.

VI. CONCLUSION AND FUTURE WORK

In the paper on hand a new framework has been introduced
for the solution of standard optimization problems by means
of different global optimization methods. The functionalities
of the framework have been demonstrated on the example
of standard incremental improvement methods and Particle
Swarm Optimization applied to the combinatorial standard
problem TRAVELING SALESMAN and continuous benchmark
functions. Special emphasis has been spent to the real-time
visualization and analysis qualities of the framework for
detailed investigations and comparative studies.

The framework is well suited for the fast implementation
of new optimization algorithms and problems as well as for
the visualization of the solution process, which can help to
get deeper understanding what the methods make work. This
qualifies it especially for the application in education and
research.

In future further algorithms are planned to be integrated,
in particular Ant Colony Optimization/ Systems, Genetic Al-
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TABLE III
SELECTION OF N-DIMENSIONAL FUNCTIONS INCLUDED IN OPTILIB

Function
Name

Function Definition Function Domain and Global
Minimum

Ackley
Function

f(x) = 20 + e − 20 exp[− 1
5

√
1
N

∑N

i=1
x2

i ] −
exp[ 1

N

∑N

i=1
cos(2πxi)]

Domain: xi ∈ [−32.768, 32.768]
Min. Position: x�

i = 0
Min. Value: f(x�) = 0

Griewangk
Function f(x) = 1 + 1

4000

N∑
i=1

x2
i −

N∏
i=1

cos

(
xi√

i

) Domain: xi ∈ [−600.0, 600.0]
Min. Position: x�

i = 0
Min. Value: f(x�) = 0

Rastrigin
Function f(x) = 10N +

N∑
i=1

[
x2

i − 10 cos(2πxi)
] Domain: xi ∈ [−5.12, 5.12]

Min. Position: x�
i = 0

Min. Value: f(x�) = 0

Rosenbrock
Function f(x) =

N−1∑
i=1

[
100
(
x2

i − xi+1

)2
+ (1 − xi)

2
] Domain: xi ∈ [−2.048, 2.048]

Min. Position: x�
i = 1

Min. Value: f(x�) = 0

Sphere
Function f(x) =

N∑
i=1

x2
i

Domain: xi ∈ [−5.12, 5.12]
Min. Position: x�

i = 0
Min. Value: f(x�) = 0

Step
Function f(x) =

N∑
i=1

�xi�
Domain: xi ∈ [−5.12, 5.12]
Min. Position: x�

i ∈ [−5.12,−5.0]
Min. Value: f(x�) = −6N

gorithms and Stochastic Tunneling, and further problems as
Scheduling and Spin Glasses.

Soon the framework will be available as open source library
for the community.
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