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 
Abstract—In recent years, the combined economic and emission 

power dispatch is one of the main problems of electrical power 
system. It aims to schedule the power generation of generators in 
order to minimize cost production and emission of harmful gases 
caused by fossil-fueled thermal units such as CO, CO2, NOx, and 
SO2. To solve this complicated multi-objective problem, an improved 
version of the particle swarm optimization technique that includes 
non-dominated sorting concept has been proposed. Valve point 
loading effects and system losses have been considered. The three-
unit and ten-unit benchmark systems have been used to show the 
effectiveness of the suggested optimization technique for solving this 
kind of nonconvex problem. The simulation results have been 
compared with those obtained using genetic algorithm based method. 
Comparison results show that the proposed approach can provide a 
higher quality solution with better performance. 
 

Keywords—Power dispatch, valve point loading effects, 
multiobjective optimization, Pareto solutions. 

I. INTRODUCTION 

HE economic environmental dispatch (EED) problem has 
received in the two past decades much attention. It aims to 

provide the optimum generation schedule for minimum 
production cost and minimum emission of harmful gases 
caused by fossil-fueled thermal units [1]–[3]. Within this 
context, several research works have been proposed to solve 
this problem. Various studies have considered the traditional 
EED problem where the production cost function of each 
thermal unit is approximated by a quadratic function [4]-[6]. 
Unfortunately, practical EED problem incorporates the valve-
point loading effects (VPLE) in the production cost. These 
additional constraints make the problem with high nonlinear 
functions. Thus, traditional optimization techniques, such as 
Newton methods [5], lambda iteration, and linear 
programming [6] cannot provide the best solution. In recent 
years, numerous intelligent optimization techniques, such as 
genetic algorithms (GA), particle swarm optimization (PSO), 
bacterial foraging, artificial bee colony (ABC), and simulated 
annealing have been used to solve this non-convex EED 
problem [7], [8]. 

In recent years, PSO algorithms have attracted much 
attention for solving EED problem [9], [10]. This heuristic 
technique was introduced by Kennedy and Eberhart [11]. It 
emulates the social behavior of organisms such as flocking of 
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birds and schooling of fish. However, conventional PSO was 
criticized for its premature convergence, while the problem 
has multiple minima and with nonconvex objective functions. 
Thus, several works have suggested modifications in the 
classic PSO algorithm. Reference [10] presents a review of 
PSO application in economic dispatch problems. 
Unfortunately, these modified PSO approaches have been 
tested only for single objective problems. Therefore, if it is a 
multi-objective optimization problem (MOP), all objectives 
are weighted as per the importance and added together to form 
a single objective function. Thus, there is a loss of diversity in 
Pareto optimal solutions. To overcome these problems, this 
study presents a PSO-based technique called non-dominated 
sorting PSO (NSPSO) algorithm for solving the nonconvex 
EED problem. This technique incorporates the non-dominated 
sorting mechanism used in the NSGAII approach [12], into the 
original PSO algorithm.  

A fuzzy set theory [2] is used to extract the best 
compromise solution, from the Pareto-optimal solutions, for 
the decision makers. The proposed approach was tested on the 
tree-unit and the ten-unit systems. Total production cost in $/h 
and total emission in ton/h have been minimized 
simultaneously subject to several operating conditions such as 
generation limits, VPLE and real power balance constraints. In 
addition, power losses calculated using the B-loss formula 
have been considered in the problem formulation.    

Simulation results show that this new algorithm proved a 
very competitive performance in finding much better spread of 
solutions and better convergence near the true Pareto-optimal 
solutions compared to the NSGAII method. 

II.  PROBLEM FORMULATION 

The EED problem is formulated as MOP. Two objective 
functions are considered in this study to simultaneously 
minimize the total fuel cost and total emission of the thermal 
units under several operating conditions. 

A. Objective Functions 

Considering a power system with N generators, its total fuel 
cost function CT in ($/h) with VPLE and emission in (ton/h) is 
respectively given by the following equations [13]. 
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where ai, bi, ci, di, and ei are the cost coefficients of the ith unit, 
while i , i , i , i and i are the emission coefficients of the ith 

unit.  Pi is the generation the ith unit. 

B. Problem Constraints 

Total cost and emission functions will be minimized subject 
to the following constraints.  
 Generation limits 
 

min max ,  1,...,i i iP P P i N                             (3) 
 

where min
iP  and max

iP  are the lower and upper power 

generation limits of the ith unit. 
 Power balance constraints 

For a given total demand power PD, the generation schedule 
should verify the following equality. 
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where PL is the total losses in MW. 

The total transmission losses can be calculated using the 
following equation [13]. 
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where ijB , oiB , ooB  are the loss parameters also called B 

coefficients. 

III. PROPOSED ALGORITHM 

PSO is firstly presented by Kennedy and Eberhart. It 
emulates the social behavior of organisms such as flocking of 
birds and schooling of fish.  

In a physical-dimensional search space with the dimension 
n, the ith particle at iteration k is presented by its position 

 
1
, ,

i i in

k k kX X X   and velocity  
1

, ,
i i in

k k kV V V  . The 

updated velocity and position of this particle at the next 

generation  1k   can be governed, respectively, by the 

following equations 
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where w is the inertia weight factor, c1 andc2 are the 

acceleration constants. The coefficients w, c1, and c2 can be 
determined according to [11]. r1 andr2 are two random 

numbers between 0 and 1. k
ipbest and kgbest are the best 

position of the ith particle achieved based on its own 
experience and the best position among all the particles in the 
swarm at the kth iteration, respectively. 

Several research works have been proposed to adopt the 
PSO algorithm for MOP, such as in [14]. 

In this study, a PSO-based MOP algorithm symbolized by 
NSPSO is presented for solving the EED problem. The 
proposed NSPSO algorithm is based on the non-dominated 
sorting concept presented by [12]. 

The non-dominated sorting concept, has been developed in 
this paper and used for solving the EED problem. At each 
iteration k, this elitist approach extends the basic form of PSO 
by combining the pbest of N particles Pk and the N particles 

offspring Qk. The combined population Uk k kR P Q  of size 

2N will be sorted into different non-domination levels Fj [13]. 
Therefore, we can write. 
 

rk
jj 1

R F


                                  (8) 

 
where r is the number of fronts. 

Once the non-dominated sorting is completed, a crowding 
distance, as given in [13], is assigned to each solution of the 

combined population 
kR  to provide an estimate of the density 

of solutions surrounding that solution in the same front jF
. 

Thus, every solution in 
kR  has two indices, non-domination 

level and crowding distance. Then, particles of the next 

population 
1kP 

 will be the first N individuals of the 
subsequent non-dominated fronts in the order of their levels, 

i.e. members of F1 have priority to will be in 
1kP 

, followed 
by members from F2, and so on until the number of these 
individuals is greater than or equal to N. Let us consider that 
Fj is the last non-dominated set. Then, individuals of Fj will be 

selected to fill 
1kP 

 according to their crowding distance in 
the descending order. The global best position is selected 
randomly from the 5% of the top crowded solutions of F1. 

IV. SIMULATION RESULTS 

Two test systems with different complexities have been 
used to demonstrate the effectiveness of the proposed NSPSO 
technique. The compromise solutions were extracted from the 
Pareto front using the fuzzy based membership function value 
assignment method [2]. 

A. Case 1: Three-Unit System 

In this case, the three-unit system is used to prove the 
feasibility of the proposed technique. The unit data taken from 
[15] are shown in Table I. The B-loss matrix is given below. 
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The Pareto set and the compromise solution obtained using 

the NSPSO algorithm for three load levels are given in Fig. 1. 
Optimum solutions are illustrated in Table II. It is clear that 
total cost and emission are monotonically increasing functions 
with respect to the total demand power 

 

 

(a) (b) 
 

 

(c) 

Fig. 1 Pareto front for the three-unit system: (a) for PD = 300 MW (b) for PD = 350 MW (c) for PD = 400 MW 
 

TABLE I  
GENERATOR DATA FOR THE THREE-UNIT SYSTEM 

Unit Pmin Pmax a B C 

1 50  250 328.13 8.663 0.00525 

2 5  150 136.91 10.04 0.00609 

3 15  100 59.16 9.76 0.00592 

B. Case 2: Ten-Unit System 

For this test system, the VPLE is considered for all units. The 
B-loss matrix is given below. The generator data taken from 
[16] are illustrated in Table III. 
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The Pareto solution set and the compromise solution 

obtained using the NSPSO for total demand power of 1500 
MW, are given in Fig. 2. 

To demonstrate the effectiveness of the proposed approach, 
a comparison with GA based method called NSGAII is 
investigated. Table IV shows that the NSPSO outperforms 
NSGAII in providing the best results for both minimum cost 
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and minimum emission. 
 

TABLE II  
OPTIMUM SOLUTIONS FOR CASE 1 

 
PD 

(MW) 
P1 (MW) P2 (MW) P3 (MW) 

Losses 
(MW) 

CT ($/h) 
ET 

(ton/h) 

Best cost 

300 207.6346 87.2951 15.0000 9.9297 3619.8606 291.0804 

350 235.8080 112.2470 15.0000 13.0549 4.2103545 371.2281 

400 249.9331 150.0000 16.7696 16.7028 4825.6814 436.0657 

Best 
emission 

300 96.3336 135.9757 100.0000 32.3092 3920.4545 147.5014 

350 136.7485 150.0000 100.0000 36.7484 4485.2530 201.1073 

400 191.4945 150.0000 100.0000 41.4945 5053.8599 293.9778 

Compromise 
solution 

300 142.6288 127.7517 44.3052 14.6857 3692.6519 183.4570 

350 178.4722 143.5784 46.8624 18.9131 4274.9795 253.9790 

400 218.4445 150.0000 57.6805 26.1250 4.8927865 345.6210 

 
TABLE III 

UNIT DATA FOR THE TEN-UNIT SYSTEM 

Unit Pmin Pmax a b c d e      

1 150 470 786.7988 38.5397 0.1524 450 0.041 103.3908 −2.4444 0.0312 0.5035 0.0207 

2 135 470 451.3251 46.1591 0.1058 600 0.036 103.3908 −2.4444 0.0312 0.5035 0.0207 

3 73 340 1049.9977 40.3965 0.0280 320 0.028 300.3910 −4.0695 0.0509 0.4968 0.0202 

4 60 300 1243.5311 38.3055 0.0354 260 0.052 300.3910 −4.0695 0.0509 0.4968 0.0202 

5 73 243 1658.5696 36.3278 0.0211 280 0.063 320.0006 −3.8132 0.0344 0.4972 0.0200 

6 57 160 1356.6592 38.2704 0.0179 310 0.048 320.0006 −3.8132 0.0344 0.4972 0.0200 

7 20 130 1450.7045 36.5104 0.0121 300 0.086 330.0056 −3.9023 0.0465 0.5163 0.0214 

8 47 120 1450.7045 36.5104 0.0121 340 0.082 330.0056 −3.9023 0.0465 0.5163 0.0214 

9 20 80 1455.6056 39.5804 0.1090 270 0.098 350.0056 −3.9524 0.0465 0.5475 0.0234 

10 10 55 1469.4026 40.5407 0.1295 380 0.094 360.0012 −3.9864 0.0470 0.5475 0.0234 

 
TABLE IV 

OPTIMUM SOLUTION FOR CASE 2 (PD = 1500 MW) 

 Best cost Best emission Best compromise 

 NSPSO NSGAII NSPSO NSGAII NSPSO NSGAII 

P1 151.0699 150.3148 222.1862 212.3576 158.4670 153.8185 

P2 135.0000 135.0000 218.8816 225.0995 216.5657 210.2501 

P3 256.2241 186.2797 160.4036 160.4766 195.4399 184.5587 

P4 240.2177 300.0000 165.2440 171.8264 184.9382 234.6255 

P5 225.3609 240.4124 231.0923 228.9496 241.8616 224.9765 

P6 160.0000 156.6727 160.0000 159.4759 160.0000 159.4020 

P7 129.3573 129.3020 129.3139 129.8012 130.0000 130.0000 

P8 119.1260 120.0000 119.8741 120.0000 119.5020 119.1583 

P9 78.6276 78.8148 80.0000 79.0047 79.5426 79.0766 

P10 45.4832 43.8151 55.0000 54.9215 54.8865 45.1678 

Cost ($/h) 85466.98 85486.91 91736.17 91530.43 88627.74 87893.51 

Emission (ton/h) 9425.09 9793.64 7959.50 7977.11 8224.15 8597.81 

Losses (MW) 40.4666 40.6115 41.9957 41.9131 41.2035 41.0339 

 

V. CONCLUSION 

In this study, a new PSO-based optimization technique 
symbolized by NSPSO is proposed for solving the non-convex 
economic-environmental dispatch (EED). The EED problem 
has been formulated as an MOP. Several operating constraints 
have been considered such as generation limits, valve point 
loading effects and real power balance constraints. The 
proposed NSPSO technique incorporates the non-dominated 
sorting mechanism to adopt the original PSO algorithm for 
MOP. The effectiveness of the proposed optimization 
technique is tested on the three-unit and ten-unit systems. 
Simulations results have demonstrated that NSPSO can 

provide acceptable optimum solutions for the EED problem 
with different complexities. 
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Fig. 2 Pareto front for the ten-unit system (1500 MW) 

ACKNOWLEDGMENT 

This research work was supported by University of Hail, 
Saudi Arabia. 

REFERENCES 
[1] K. S. Damodaran, and T. K. Sunil Kumar, “Optimal Environmental 

Economic Dispatch Using a Classical Technique,” International review 
of automatic control (IREACO), vol. 7, no. 3, pp. 300 – 306, 2014. 

[2] M. A. Abido, “Multiobjective evolutionary algorithms for electric power 
dispatch problem,” IEEE Transactions on Evolutionary Computation, 
vol. 10, no. 3, pp. 315 – 329, 2006. 

[3] S. Sivasubramani, and K. S. Swarup, “Environmental/economic dispatch 
using multi-objective harmony search algorithm, Electric Power 
Systems Research,” vol. 81, no. 9, pp. 1778 – 1785, 2011. 

[4] G. Irisarri, L. M. Kimball, K. A. Clements, A. Bagchi, and P. W. Davis, 
“Economic dispatch with network and ramping constraints via interior 
point methods,” IEEE Transactions on Power Systems, vol. 13, no. 1, 
pp. 236 – 242, 1998. 

[5] C. E. Lin, S. T. Chen, and C. L. Huang, “A Direct Newton-Raphson 
Economic Dispatch,” IEEE Transactions on Power Systems, vol. 7, no. 
3, pp. 1149-1154, 1992. 

[6] C. W. Gar, J. G. Aganagic, T. M. B. Jose, and S. Reeves, “Experience 
with mixed integer linear programming based approach on short term 
hydrothermal scheduling,” IEEE Transaction on Power Systems, vol. 16, 
no. 4, pp. 743-749, 2001. 

[7] Z. Yang, K. Li, Q. Niu, Y. Xue, and A. Foley, “A self-learning TLBO 
based dynamic economic/environmental dispatch considering multiple 
plug-in electric vehicle loads,” Journal of Modern Power Systems and 
Clean Energy, vol. 2, no. 4, pp. 298-307, 2014. 

[8] P. Jain, K. K. Swarnkar, S. Wadhwani, and A. K. Wadhwani, 
“Prohibited Operating Zones Constraint with Economic Load Dispatch 
using Genetic Algorithm,” International Journal of Engineering and 
Innovative Technology, vol. 1, no. 3, pp. 179-183, 2012. 

[9] B. Zhao, and Y. J. Cao, “Multiple objective particle swarm optimization 
technique for economic load dispatch,” Journal of Zhejiang University 
Science, vol. 6A, no. 5, pp. 420 – 427, 2005. 

[10] A. Mahor, V. Prasadb, and S. Rangnekar, “Economic dispatch using 
particle swarm optimization:A review,” Renewable and Sustainable 
Energy Reviews, vol. 13, pp. 2134 – 2141, 2009. 

[11] J. Kennedy, and R. Eberhart, “Particle swarm optimization,” Proc. IEEE 
Int Conference on Neural Networks, pp. 1942 – 1948, 1995. 

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist 
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on 
Evolutionary Computation, vol. 6 no.2, pp. 182 – 197, 2002.   

[13] M. Basu, “Dynamic economic emission dispatch using nondominated 
sorting genetic algorithm-II,” Electric Power and Energy Systems, vol. 
30, pp. 140 – 149, 2008. 

[14] M. Reyes-Sierra, and C. A. C. Coello, “Multiobjective particle swarm 
optimizers: a survey of the state-of-the-art,” International Journal of 
Computational intelligence Research, vol. 2, no. 3, pp. 287 – 308, 2006. 

[15] Y. A. Gherbi, H. Bouzeboudja, and F. Z. Gherbi, “The combined 
economic environmental dispatch using new hybrid metaheuristic,” 
Energy, vol. 115, pp. 468-477, 2016. 

[16] N. Pandit, A. Tripathi, S. Tapaswi, and M. Pandit, “An improved 
bacterial foraging algorithm for combined static/dynamic,” Applied Soft 

Computing, vol. 12, pp. 3500–3513, 2012. 

8.5 8.6 8.7 8.8 8.9 9 9.1 9.2

x 10
4

7500

8000

8500

9000

9500

Cost ($/h)

E
m

is
si

on
 (

to
n/

h)

 

 

Pareto front
Compromise solution


