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Abstract—The Traveling salesman problem (TSP) is NP-hard in 

combinatorial optimization. The research shows the algorithms for 
TSP on the sparse graphs have the shorter computation time than those 
for TSP according to the complete graphs. We present an improved 
iterative algorithm to compute the sparse graphs for TSP by frequency 
graphs computed with frequency quadrilaterals. The iterative 
algorithm is enhanced by adjusting two parameters of the algorithm. 
The computation time of the algorithm is O(CNmaxn

2) where C is the 
iterations, Nmax is the maximum number of frequency quadrilaterals 
containing each edge and n is the scale of TSP. The experimental 
results showed the computed sparse graphs generally have less than 5n 
edges for most of these Euclidean instances. Moreover, the maximum 
degree and minimum degree of the vertices in the sparse graphs do not 
have much difference. Thus, the computation time of the methods to 
resolve the TSP on these sparse graphs will be greatly reduced.  
 

Keywords—Frequency quadrilateral, iterative algorithm, sparse 
graph, traveling salesman problem.  

I. INTRODUCTION 

SP is extensively studied in combinatorial optimization. 
Given a set of n points 1,2,⋯ ,  and the distances 
, 0	between each pair of points , ∈ 1,2,⋯ ,  and 

, a salesman expects to find the permutation 
, , ⋯ ,  of the n points which makes the total distance 

, ∑ ,  as small as possible, where 
∈ 	 1,2,⋯ , . We call the cycle visiting each of the points 

exactly once the Hamiltonian cycle (HC) and the HC with the 
minimum distance the optimal Hamiltonian cycle (OHC). Karp 
[1] has shown that the TSP is NP-complete. It means that there 
is no exactly polynomial-time algorithms for TSP unless P=NP. 

Most researchers resolve the TSP according to a given 
complete graph Kn. The complete graph Kn contains n vertices 
and  edges. The primary idea is to choose n edges from the 

 edges to find the OHC under the given constraints. In 1962, 
Held and Karp [2], and independently Bellman [3] used the 
dynamic programming to resolve the TSP in O(n22n) time. This 
is taken as the best computation time for more than half century. 
In 2010, the computation time was updated to O(1.657n) by 
Björklund [4] through an improved Monte Carlo algorithm. In 
real-world applications, the Concorde package based on the 
branch-and-bound and cutting plane methods resolved the large 
VLSI problem of 85,900 vertices [5]. It is the largest Euclidean 
TSP that was resolved until now. The experimental results also 
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demonstrated that the computation time of the exact methods 
was hard to reduce for large scale of TSP.  

Besides the exact methods or algorithms for TSP, the 
approximation algorithms are also focused on by many 
researchers. If the TSP obeys the triangle inequality, we have 
the 1.5-approximation Christofide’s algorithm [6]. For the 
d-dimension Euclidean TSP, Arora [7] introduced the 
polynomial-time approximation schemes in 1998. For the 
Metric-TSP, Mömke and Svensson [8] gave the 1.461- 
approximation polynomial-time algorithm. According to the 
complete graph, whether the exact algorithms or the 
approximation algorithms are difficult to improve for the worst 
case of TSP. On the other hand, the computation time of the 
TSP on the sparse graphs has been reduced to some extent. 
Given the TSP on a bounded degree graph, it can be resolved in 

2  computation time owing to Björklund, Husfeldt, 
Kaski and Koivisto [9] where  depends on the maximum 
degree of a vertex. In a special case, Xiao and Nagamochi [10] 
proposed the algorithm which has the 1.2312  computation 
time for TSP on cubic graphs. Besides the improvement of the 
exact methods for TSP on sparse graphs, Correa, Larŕ and Soto 
[11] proved there existed the strictly 4/3-approximation 
algorithm for TSP on a 3-regular graph. Moreover, there are 
polynomial-time approximation schemes for TSP on bounded 
genus graphs, see the literatures [12], [13]. For general TSP on 
the complete graphs , we do not have such good exact or 
approximation algorithms.  

One sees the sparse graph is helpful to reduce the 
computation time of the algorithms for the NP-hard TSP. To 
reduce the computation time of the methods for TSP, one 
feasible method is to reduce the TSP on Kn to the TSP on the 
sparse graphs. In 2004, Hougardy and Schroeder [14] 
introduced a combinatorial algorithm based on the k-opt move 
to eliminate many edges excluding from the OHC. The 
experimental results showed the computation time of the 
Concorde package was much reduced to resolve the TSP on the 
sparse graphs they computed. In our previous research, we 
computed the sparse graphs for TSP through the frequency 
graphs computed with the specific optimal 4-vertex paths [15] 
or frequency quadrilaterals [16]. In these frequency graphs, the 
frequency of the OHC edges is generally much higher than 
those of most of the other edges. We have proven that when we 
choose N frequency quadrilaterals containing an edge e to 
compute its total frequency F(e), the F(e) of the OHC edges 
approach the maximum value 5N as n is big enough (see the 
appendix). Thus, we can eliminate the edges with the small 
frequency below a given frequency threshold F and preserve 
the subgraphs of Kn containing the OHC for TSP. Based on the 
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above work, we designed an iterative algorithm to compute the 
sparse graph from a given Kn for TSP. The performance of the 
algorithm mainly depends on the two parameters N and F in the 
computation process. In theory, the bigger the parameter F is, 
the sparser the residual graph will be computed. In addition, the 
smaller the N is, the sparser the residual graph will be. However, 
the experimental results showed the residual graphs lost many 
OHC edges if we used the small number N and big value F. In 
this paper, we shall explore the methods to change the N and F 
in the computation process to improve the performance of the 
iterative algorithm. Our goal is to compute the sparse graph 
which loses the number of the OHC edges as small as possible.  

The outline of the paper is given as follows. The improved 
iterative algorithm is introduced in Section II. The experiments 
and analysis of the improved iterative algorithm are executed in 
Section III. The conclusions are drawn in the last section as 
well as the possibilities of the future research.  

II. THE IMPROVED ITERATIVE ALGORITHM 

Given a quadrilateral ABCD in , it has the six 
corresponding frequency quadrilaterals ABCD according to the 
orders of the three sum distances A, B C, D , A, C
B,D  and A,D B, C . For an edge 
∈ AB,AC, AD, BC, BD, CD , it has the frequency 1, frequency 3 

and frequency 5 in each of the six frequency quadrilaterals. In 
addition, the frequency 1, frequency 3, frequency 5 of e appears 
twice in the six frequency quadrilaterals, respectively. Based on 
the six frequency quadrilaterals ABCD, the probability , 

and  that e has the frequency 1, frequency 3 and 
frequency 5 in a given frequency quadrilateral containing e is 

computed as . An edge ∈ AB, AC, AD, BC, BD, CD  in  is 

included in  quadrilaterals ABCD. There are 

corresponding  frequency quadrilaterals ABCD 
containing e. When we choose N frequency quadrilaterals 
containing e to compute its total frequency F(e), the average 
value of F(e) will be 3N. For an OHC edge e, Wang and 
Remmel [16] constructed the special quadrilaterals ABCD 
where its frequency is 5 or 3. They gave the probability model 
for the OHC edges as (1).  

 

  

	

	              (1) 

 
When we choose N frequency quadrilaterals containing the 
OHC edge e to compute its frequency F(e), the average value of 

F(e) will be 3  which is bigger than the average 

frequency 3N of a general edge. 
The authors pointed out that the probability model (1) is very 

conservative for the OHC edges. As a matter of fact, the 
probability , 	 	 → 1  and even → 1 
for the OHC edges as n is big enough. The appendix gives the 
proof of the probability , → 1 or → 1 that an OHC 

edge e has frequency 3 and frequency 5 or only 5 in a frequency 
quadrilateral containing e in Kn as n is big enough. When we 
choose N frequency quadrilaterals containing an OHC edge e to 
compute its total frequency F(e), the F(e) of the OHC edge will 
tend to 5N as n is big enough. Since the OHC edges have the big 
probability ,  and , most of the other edges will 
have the small probability ,  and  due to the 
restrictions of the frequency quadrilaterals. When we use a big 
frequency threshold F to eliminate the edges with low 
frequency F(e), most of the other edges will be discarded. 
Moreover, the bigger the frequency threshold is, the less the 
edges will be preserved. This fact has been verified by several 
families of TSP instances in TSPLIB [15], [16]. 

To compute the big F(e) for the OHC edges, the author gave 
an applicable method to choose the frequency quadrilaterals for 
edges. For an edge e with the distance d(e), they choose the N 
quadrilaterals ABCD containing the edges e and g where g is 
the opposite edge of e in ABCD and d(g)<d(e). This method 
guarantees the edge e will have the frequency 3 and frequency 5 
in most of the corresponding frequency quadrilaterals ABCD if 
e has the big probability ,  and  in the graphs. Thus, 
we can use a bigger frequency threshold F to eliminate more 
other edges with small frequency and still keep the OHC edges 
intact. Based on the selection of the frequency quadrilaterals, an 
iterative algorithm was designed to eliminate the edges 
excluding from the OHC step by step. Through the experiments, 
the iterative algorithm is mainly influenced by the two 
parameters N and F. The bigger the parameter F is, the sparser 
the residual graph will be computed. And the smaller the N is, 
the sparser the residual graph will be. On the other hand, the 
residual graph will lose the OHC edges if the value F is too big. 
Meanwhile, the value N should not be too small. Otherwise, the 
probability model (1) will lose its power. To compute the sparse 
graph that includes the OHC edges as most as possible, we 
increase the parameters F by the small values a step by step 
until F approaches 5N. The frequency threshold F is used to 
eliminate more and more edges with the smaller F(e) below F 
in the computation process. Meanwhile, the parameter N is 
increased by a small value b gradually to choose more and more 
number of frequency quadrilaterals where an edge e has the big 
frequency 3 and frequency 5 if e has the big probability ,  
and  in the preserved graphs. In addition, we maintain the 
first n edges with the smallest distances in the preserved graphs 
in the computation process. The improved iterative algorithm is 
given as Fig. 1.  

We have seven parameters N, F, t, d, r, a and b in the iterative 
algorithm. The performance of the iterative algorithm mostly 
depends on the four parameters N, F, a and b. N represents the 
number of frequency quadrilaterals containing an edge e. F is 
the frequency threshold to eliminate the edges with F(e) below 
F at each computation cycle. The F and N are changing 
according to the computation cycle C. 

a and b are the increments of F and N in the computation 
process, respectively. If F is too small for the edges e in the 
preserved graphs, few edges will be eliminated. In such cases, F 
is risen by adding the value a. Meanwhile, the N is added by the 
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number b. The parameters t, d and r correspond to three 
conditions. The iterative algorithm is controlled by the terminal 
conditions  and dmin < d. The  and  
are the average degrees of the input graph and output graph, 
respectively. The t is the parameter to evaluate the difference 
between  and . If  is very small, it means 
that few edges are eliminated at the computation cycles and the 
algorithm converges to the current sparse graph. Thus, the t is 
assigned a small value as one of the terminal conditions to 
prove the preserved graphs are nearly identical at the end of the 
computation process. The dmin is the minimum frequency of the 
vertices in the output graph. The parameter d is used to let the 
algorithm compute the residual graph whose dmin is less than d. 
The parameter r drives the algorithm to change the F and N. If 

, it means the current parameters F and N are 
feasible to eliminate many edges at these computation cycles. 
Thus, the F and N keep unchangeable. Once , 
the parameter F becomes small for the edges in the preserved 
graphs and few edges are eliminated according to the current F. 
It is the time to improve the F by adding the value a in the 
following computation cycles until the algorithm is able to 
eliminate many edges. Meanwhile, the parameter N is added by 
the number b. In the improved algorithm, the parameter a is 
assigned a small value, such as 0.001. The frequency threshold 
F rises gradually to eliminate the edges with the frequency F(e) 
below the F step by step.  

The  of the TSP instance is input and the parameters are 
initialized. The iterative algorithm contains three loops. The 
outer loop is controlled by the terminal conditions 

 and dmin < d. In the outer loop, the K edges in the input 
graph I are ordered according to their distances from small to 
big values to form an edge sequence , , ⋯ , . The 
average degree  of I is computed. The next is the condition 
to judge whether the F and N should be improved or they are 
kept unchangeable. In addition, we preserve the first n shortest 
edges in the edge sequence , ,⋯ , . This strategy is 
helpful to maintain the OHC edges in the computation process. 
The following procedures are the middle and inner loops. For 
an edge , N opposite edges g of  in N 
quadrilaterals ABCD are chosen at random from the 
subsequence , , ⋯ ,  where . The N quadrilaterals 
containing  and g are converted into the corresponding 
frequency quadrilaterals. If the has the frequency fik in the kth 
1  frequency quadrilateral ABCD, the total frequency 

∑ . At the end of the middle loop, we compare the 
 with the frequency threshold F. If  > F, the edge  

is preserved. Otherwise, it will be eliminated. After all the K 
edges in the input graph I are traversed, we will obtain the 
output graph O with a smaller number of edges. The average 
degree  of the output graph O is computed and the input 
graph I is replaced by the output graph O. The computation 
process is iterated until the output graph meets the terminal 
conditions. It mentions that the selection of the quadrilaterals 
ABCD containing  guarantees the edge ∈ , ,⋯ ,  
to have the frequency 3 and frequency 5 in most of the N 

corresponding frequency quadrilaterals ABCD if  has the big 
probability ,  or  in the preserved graphs. As we 
know, the OHC edges have the big probability ,  or  
in the graphs as n is big enough. It means the OHC edges will 
have the big probability ,  or  in some subgraphs in 
Kn. If the algorithm is feasible, it will preserve these subgraphs 
for the OHC edges in the computation process. Thus, we can 
use the bigger and bigger frequency threshold F to eliminate the 
other edges with the frequency F(e) below F and obtain the 
sparser and sparser graphs containing the OHC.  

 

The process to compute the sparse graph 
Input: The vertex set 1,2,⋯ ,  and distances ,  of edges 

,  in the complete graph .  
Give parameters N, F, r and terminal conditions d, t, 1, 

0.  
Repeat until  and dmin < d 

 Enumerate the number of edges K in the input graph I.  
 Compute the average degree  of the input graph I.  
 Order the K edges according to their distances from small to big 
values to form the edge sequence , , ⋯ , .  
 If ( ) N:=N, F:=F.  
 Else F:=F+a, N:=N+b.  
 End.  
 Preserve the first n edges in the s.  
 index i:=n+1.  
 Repeat until :   
  For , ≔ , index k := 0.  
  Repeat until k:=N 
    Choose an opposite edge g of ei at random from the 
edge subsequence , , ⋯ ,  where .  
    Edge ei and g compose the kth quadrilateral.  
   Compute the frequency fik of ei in the kth quadrilateral.  
   Add  fik to . 
   k++.  
  End.  
  If (  >  F) Preserve .  
  Else Eliminate  and K--.  
  End.  
  i++.  
 End.  
 Compute the minimum degree dmin of the vertex in the output 
graph O.  
 Compute the average degree  of the output graph O.  
 Assign the output graph to the input graph, i.e., I:=O.  
End.  
Output: The residual graph with K edges.  

Fig. 1 The improved iterative algorithm to compute the sparse graph  
  

One sees the total computation time of the algorithm relies 
on the sorting of the K edges and the computation of the K 
frequency s . Given the computation cycles of the 
algorithm is C and the maximum value of N is Nmax, the 
maximum computation time of the improved iterative 
algorithm is max{O(Cn2logn), O(CNmaxn

2)}. Since Nmax is 
generally bigger than logn in the experiments, the maximum 
computation time of the algorithm will be O(CNmaxn

2). In fact, 
the actual computation time will be less than the O(CNmaxn

2) 
because the number of edges decreases according to the 
computation cycle C. After the first several computation cycles, 
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the number of the edges in the preserved graphs will decrease to 
O(nlogn). Furthermore, the number N in the previous 
computation cycles is much less than Nmax.  

According to the appendix, the probability , 	  of an 

edge e is  in Kn. As we know, the probability , 	  of an 

OHC edge e is bigger than  in Kn. In addition, the 

, 	  of the OHC edge e increases according to n. Given the 

probability , 	  of the OHC edge e is , the  will 

approach  as n is big enough. If we use the  as the 

probability threshold to eliminate the edges with the probability 

, 	  below , the probability that an edge e will be 

eliminated is 	 ∑
	

. 

Since  tends to  for the OHC edge e as n is big enough, the 

probability 	  will approach 1. It means a lot 

of the other edges will be eliminated if use a big frequency 
threshold F (or big probability threshold). In the computation 
process, the edges e with the small probability ,  will have 
the small frequency F(e) and they will be eliminated. 
According to the computation cycle C, the preserved edges in 
the graphs will have the bigger and bigger , 	  and F(e). 
The probability 	 , 	  and 	  of edges will not 
conform to the probability model (1) in the preserved graphs. In 
this case, the number of frequency quadrilaterals where an edge 
e has frequency f=3 and f=5 in the preserved graphs will violate 

the binomial distribution  in the 

appendix. At the final stages of the computation, nearly all of 
the edges will have the big probability ,  and frequency 
F(e) so few edges are eliminated if the frequency threshold F is 
not improved.  

For the small and moderate scale of TSP instances, the 
probability , 	  of some OHC edges e will be much smaller 
than 1 in Kn. To preserve these OHC edges, the initial frequency 
threshold F should not be assigned too big. Otherwise, these 
OHC edges will be trimmed as well as many other edges. If we 
compute the F(e) of e with N random frequency quadrilaterals 

containing e, the initial frequency threshold F can be assigned 

as 3 . In the next computation cycles, we can use the 

bigger frequency threshold 3  to filter out the 

edges with the small frequency F(e). At the end stages of the 
computation process, we can use the bigger frequency 
threshold F to eliminate the other edges with the relatively 
smaller frequency F(e). On the other hand, some OHC edges 
will be eliminated if the frequency threshold F is too big at the 
end of the computation process. In this case, we will obtain the 
sparse graph which neglects a few OHC edges. If the residual 
graph is Hamiltonian, it will contain an approximation. The 
TSP solver will search the approximation according to the 
sparse graphs. The long edges excluding from the OHC usually 
have small frequency F(e) due to the restriction of the optimal 
4-vertex paths in the graphs. These long edges will be 
eliminated in the computation process. Since the long edges are 
deleted, the approximation will be composed of the short edges 
in the residual graph. Therefore, the approximation will tend to 
the OHC. In addition, if the residual graph is not Hamiltonian, 
we will find the segments of the OHC. The efficient algorithms, 
such as the k-opt move algorithm [17], can be applied to find 
the OHC or approximations based on these OHC segments. 

III. THE EXPERIMENTS AND ANALYSIS 

We will use the TSP instances in the TSPLIB [18] to testify 
the improved iterative algorithm. The values of the seven 
parameters are given in Table I. The initial N and F are 50 and 
4.80*50, respectively. If the 3, the F will 
be added by a at each of the following computation cycles. 
Meanwhile, the N will be increased by b at the corresponding 
computation cycles. To accelerate the computation process, we 
take a=0.005 and b=20 if ∈ 4.80 , 4.94 . Once F is 
bigger 4.94N, we use the values a=0.001 and b=100. The upper 
bound of F is 4.995N. At the end of the computation process, if 
the output graph conforms to the conditions 
0.006  and dmin<5 or 6, the iterative algorithm will be 
terminated and outputs the residual graph.  

 
TABLE I 

THE VALUES OF THE SEVEN PARAMETERS 

N F t d r a b 

[50, 6900] [4.8,4.995]N 0.006 5 or 6 3 0.005 or 0.001 20 or 100 

 
The initial F=4.8N and the upper bound of F is 5N. Most of 

the other edges will be eliminated according to the frequency 
threshold F approaching 5N. We have done experiments with 
the parameters a=0.01 and ∈ 4.80 , 4.93  to compute the 
sparse graphs for TSP. It found the algorithm converged to the 
solution quickly. Because the F increases so quickly that many 
edges are eliminated within a small number of computation 
cycles. The drawback is that quite a few OHC edges are lost at 
the end of the computation process. The smaller parameters 
a=0.001 and bigger F above 4.93N will be tried in this research. 
The parameter a=0.001 guarantees the F rises slowly in the 

computation process once 3. The edges with the 
frequency F(e)<F will be eliminated gradually. After many 
edges are trimmed, the maintained edges including the OHC 
edges will have the big probability ,  or  in the 
preserved graphs. Even though we use the big frequency 
threshold F, few OHC edges will be eliminated. According to 
the values b=20 and 100, the lower and upper bounds ∈
4.80 , 4.995  and a=0.005 and 0.001, the upper bound of N 

is computed as 6900. The N=6900 may be still small for a few 
OHC edges for some TSP instances if F is bigger than 4.99N. 
For such TSP instances, one can increase the number N to 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:3, 2018

202

 

 

choose more number of frequency quadrilaterals where the 
OHC edges have the frequency 5 to compute the bigger 
frequency F(e). In fact, the algorithm will jump out before the 
N tends to 6900 or F approaches 4.99N for most TSP instances. 
It mentions that if we increase the frequency threshold F, the 
number N should be improved simultaneously. At the initial 
computation cycles, there are a lot of edges in the preserved 
graphs whereas the N is small. At the end of the computation 
cycles, the N becomes big whereas we have a small number of 
edges in the preserved graphs. The change of the parameter N 
balances the computation time of the algorithm at the different 
computation cycles. The parameter d=5 or d=6 guarantees that 
the algorithm will compute the residual graph where the 
minimum degree of the vertices is less than 5 or 6.  

Before the execution of the improved iterative algorithm, the 
OHCs of the selected TSP instances are computed with the 
Concorde online [19]. In view of the OHC, we will see if the 
preserved graphs contain the OHC or how many OHC edges 
are lost in the computation process. The algorithm is coded with 
C++ language and run on two computers. One is a laptop with 
Intel(R) Core(TM) i7-4712MQ CPU 2.3 GHz, inner memory 
4.0GB and the other is a PC with Intel(R) Core(TM) i7-3770 
CPU 3.4 GHz and inner memory 8 GB. The experiments for the 
small TSP instances of scale below 1400 are done on the laptop 
and those for the other big scales of TSP instances are 
implemented on the PC. In the experiments, we added the 
random small distances ∈ 0,1  to the distances of edges 
before the computation of the frequency quadrilaterals ABCD. 
The random small distances are too small to change the OHC of 

these TSP instances. They make the three sum distances 
A, B C, D , A, C B, D  and A, D B, C  

in each quadrilateral ABCD as unequal as possible in Kn so that 
we can compute the frequency quadrilaterals ABCD. The 
random small distances are generated with the random function 
provided by C++ function library.  

The experimental results of the improved iterative algorithm 
are given in Table II. To show the robustness of the algorithm, 
we did three experiments for each TSP instance. The 
computation cycles C, the number K of edges and the number l 
of the lost OHC edges in the residual graphs are recorded in the 
three experiments. The maximum degree dmax, average degree 
davg and minimum degree dmin of the vertices in the best and 
worst residual graphs are presented. The residual graph with the 
least average degree davg is taken as the best residual graph. On 
the contrary, it is the worst residual graph. The maximum 
computation time of the three experiments are recorded.  

For each TSP instance, the maximum frequency threshold F 
is different to compute their sparse graphs. We adjust the 
maximum frequency threshold F for each TSP instance to 
compute their residual graphs. The residual graphs contain 
nearly all of the OHC edges and sometimes they lose 1, 2, or 3 
OHC edges. If the OHC must be contained in the residual 
graphs, we can reduce the maximum frequency threshold F by a 
small value whereas the residual graphs will include a mall 
number of more edges. In the experiments, we use the 
maximum frequency threshold F which guarantees that the 
residual graphs lose no more than 3 OHC edges. The number 
nlog2n is computed for comparisons.  

 
TABLE II 

THE EXPERIMENTAL RESULTS OF THE IMPROVED ITERATIVE ALGORITHM 

TSP n Type F/N C K\l nlog2n dmax davg dmin dmax davg dmin tmax/s 

d493 493 Euc. [4.80,4.980] 85 89 89 1464\2 1456\2 1458\0 4410 13 6 3 13 6 2 10 

u574 574 Euc. [4.80,4.980] 97 102 103 1829\3 1795\3 1801\3 5261 12 6 2 14 7 3 17 

rat575 575 Euc. [4.80,4.984] 117 98 110 1636\1 1727\0 1672\1 5271 11 6 3 10 6 2 21 

d657 657 Euc. [4.80,4.980] 94 100 118 2268\2 2229\3 2130\3 6149 14 7 3 13 7 3 22 

u724 724 Euc. [4.80,4.985] 115 111 99 2220\2 2247\2 2318\1 6878 11 6 2 13 6 3 32 

rat783 783 Euc. [4.80,4.985] 121 113 114 2493\1 2431\1 2487\0 7527 12 6 2 11 6 3 44 

pr1002 1002 Euc. [4.80,4.98] 113 129 122 4180\1 4071\1 4010\2 9989 16 8 4 17 8 4 74 

u1060 1060 Euc. [4.80,4.984] 106 124 113 4265\2 4416\2 4479\1 10653 19 8 3 20 8 3 98 

vm1084 1084 Euc. [4.80,4.975] 113 108 108 5623\2 5637\1 5658\1 10929 23 10 4 21 10 4 108 

pcb1173 1173 Euc. [4.80,4.980] 155 151 136 5362\2 3375\1 5488\1 11960 16 9 4 18 9 5 137 

d1291 1291 Euc. [4.80,4.980] 163 164 162 5291\2 5360\1 5351\2 13342 19 8 3 18 8 3 162 

u1432 1432 Euc. [4.80,4.987] 139 148 153 5671\1 5560\2 5673\0 15013 13 8 4 14 8 4 178 

fl1400 1400 Euc. [4.80,4.98] 132 130 151 6837\2 6886\2 6647\2 14632 55 10 6 51 10 6 207 

d1655 1655 Euc. [4.80,4.98] 168 202 186 8693\1 9089\1 9278\0 17696 20 11 5 18 10 5 325 

u1817 1817 Euc. [4.80,4.99] 185 169 170 7100\0 7208\1 7197\1 19673 17 8 4 16 8 4 510 

rl1889 1889 Euc. [4.80,4.98] 188 178 189 12559\2 12922\1 12644\2 20559 32 13 6 39 14 6 683 

d2103 2103 Euc. [4.80,4.985] 182 191 336 13582\3 13632\3 12571\2 23213 20 13 5 18 12 6 1033 

u2152 2152 Euc. [4.80,4.99] 182 207 188 9970\1 9658\2 9886\1 23826 16 9 4 15 9 4 819 

u2319 2319 Euc. [4.80,4.994] 175 179 163 8098\0 8036\1 8221\1 25925 9 7 3 10 7 3 889 

pr2392 2392 Euc. [4.80,4.99] 191 199 190 11178\0 11119\1 11246\1 26848 16 9 5 16 9 4 1152 

pcb3038 3038 Euc. [4.80,4.993] 238 216 225 13040\1 13403\1 13289\1 35146 20 9 4 21 9 4 2744 

fnl4461 4461 Euc. [4.80,4.994] 323 317 1500 18533\0 18685\1 18579\1 54081 19 8 3 17 8 4 13098 

 
One sees the maximum frequency threshold F increases 

according to n in Table II. It means that we can use the bigger 
frequency threshold F to compute the sparse graphs for the 

bigger scale of TSP instances. The experimental results comply 
with the theory in the appendix. Under the same terminal 
conditions, the algorithm computes the sparse graphs within a 
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limitative computation cycles. The number K of edges in the 
residual graphs is much smaller than nlog2n. The computation 
time is acceptable on the laptop and PC for these TSP instances. 
The minimum degree of the vertices in the residual graphs is 
less than 5 or 6. Moreover, the maximum degree of the vertices 
in the residual graphs is also restricted. It mentions that for the 
TSP instances Kn containing many equal-weight edges, it is 
difficult to compute the appropriate frequency quadrilaterals 
ABCD even if we add the random small distances. When these 
inappropriate frequency quadrilaterals are used to compute the 
frequency of edges, the frequency of some OHC edges will 
become smaller. To guarantee the residual graph to contain 
these OHC edges, we have to use the relatively small frequency 
threshold to eliminate the edges with the even smaller 
frequency. Thus, the residual graphs with more edges are 
computed and the maximum degree of the residual graphs will 
become bigger. For example, the fl1400 and rl1889 contain 
many equal-weight edges. The maximum degrees of their 
residual graphs are 55 and 32, respectively. For the other 
examples with a small number of equal-weight edges, the 
maximum degree of the residual graphs is much smaller. For 
the TSP instances without many equal-weight edges, the 
maximum and average degrees of vertices in the residual 
graphs do not increase according to n. This means the improved 
iterative algorithm is able to compute the sparse graphs with 
good properties. In theory, the probability that an OHC edge is 
lost tends to zero according to the frequency threshold less than 
5N as n is big enough (see the appendix). In real-world 
applications, the scale of TSP is limitative. A few OHC edges 
may have the frequency F(e) < 5N in the preserved graphs. 
These OHC edges may be lost if the maximum frequency 
threshold F is close to 5N. The random small distances also 
play a role to decrease the frequency of some OHC edges in the 
experiments, especially for the TSP with many equal-weight 
edges.  

 

 

Fig. 2 The change of the log2(davg) of the four TSP instances 
 
We give a picture to show the change of the log2(davg) 

according to the computation cycles for the four TSP instances 
u2319, pr2392, pcb3038 and fnl4461, see Fig. 2. One sees the 
log2(davg) decreases according to C in the computation process. 
For the nearly same scale of TSP, such as u2319 and pr2392, 
their log2(davg)s are almost equal at the same computation cycle 
under the same assignments of the set of parameters. It means 
the number of edges with the frequency above (or below) a 

special frequency threshold F is nearly equal for the same scale 
of TSP instances at the same computation cycle. Moreover, the 
bigger scale of TSP instances consumes more number of 
iterations and eliminates more edges to compute the final sparse 
graphs. One sees the log2(davg)s of the four instances drops 
sharply at the first several computation cycles. Furthermore, the 
log2(davg)s of the pcb3038 and fnl4461 decreases in a relatively 
flat manner. It means that the parameters in Table I are suitable 
for u2319 and pr2392 to compute their sparse graphs quickly. 
To accelerate the algorithm to compute the sparse graphs for 
the bigger scale of TSP instances, we should increase the 
parameters F, a and b in the computation process. At the end of 
the computation process, the log2(davg) does not change much 
and few edges are eliminated. In such case, the improved 
iterative algorithm converges to the minima. Once the 
preserved graph conforms to the terminal conditions, the 
algorithms will stop and output the residual graphs.  

In the next experiments, we slightly change the 
preconditions to compute the sparse graphs for the fnl4461. If F 
is below 4.95N, we use the assigned parameters in the Table I. 
As F is bigger 4.95N, the values a=0.001 and b=80 are used to 
compute the residual graphs. The six experimental results are 
given in Table III. Due to the random small distances, the 
experimental results are different in two or more experiments. 
One sees the computation cycles are lengthened when we 
change the preconditions. After we eliminate more edges with 
the frequency below the bigger frequency threshold 4.95N, less 
number of edges are eliminated at each of the following 
computation cycles as the frequency threshold increases slowly 
unless the frequency threshold becomes big. Since more 
number of computation cycles are consumed, the residual 
graphs contain less number of edges than those results in Table 
II. Moreover, the number of edges in the residual graphs 
decreases according to the computation cycles C. The bigger 
the computation cycle C is, the smaller the number of edges in 
the residual graph will be. Although the residual graphs contain 
different number of edges, the number of the lost OHC edges is 
nearly equal. It says most of the OHC edges have the big 
frequency in the preserved graphs in the whole computation 
process so they are preserved.  

 
TABLE III 

THE EXPERIMENTAL RESULTS FOR THE FNL4461 

No. C K l dmax davg dmin 

1 684 16778 1 18 7.5 2 

2 1448 15528 3 15 6.9 2 

3 678 16771 2 18 7.5 2 

4 889 16208 3 17 7.2 2 

5 1499 15492 3 17 6.9 3 

6 1209 15844 2 17 7.1 2 

 
The experiments illustrates that we can use the frequency 

threshold ∈ 4.80 , 4.995  to compute the sparse graphs 
for most of the TSP instances. In addition, keeping the shortest 
n edges at each cycle is useful to maintain the OHC edges in the 
residual graphs. The parameters in Table I may not suitable for 
the larger scale of TSP instances. To reduce the computation 
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time, one can improve the parameters F, a and b in the 
computation process.  

In the end, we compare the improved iterative algorithm with 
the combinatorial algorithm owing to Hougardy and Schroeder 
[14]. According to the 3-opt move, the combinatorial algorithm 
finds some useless edges that are impossibly included in the 
OHC. There are three stages in the combinatorial algorithm and 
the third stage is time-consuming. They run the combinatorial 
algorithm on the computer with a single core of a 2.9 GHz Intel 
Xeon. The comparisons of the experimental results for the same 
examples are shown in Table IV. It mentions that the worst 
residual graphs computed with the improved iterative algorithm 
are chosen from Table II for comparisons. The worst residual 
graph contains the largest number of edges. One sees the 
improved iterative algorithm compute the sparser graphs for 
these TSP instances except for vm1084. The improved iterative 
algorithm outperforms the combinatorial algorithm in 
computing the sparse graphs. For some examples, such as 
d1291, d1655, u1817 and rl1889, the number of edges 
computed with the improved iterative algorithm is much 
smaller than that computed by the combinatorial algorithm. The 
shortcoming of the improved iterative algorithm is that a few 
OHC edges may be eliminated if the frequency threshold F is 
too big. One also sees the improved iterative algorithm 
consumes less time to compute the sparse graphs. The 
computation time of our algorithm increases according to the 
scale of TSP instances. However, the combinatorial algorithm 
usually consumes more computation time for the smaller TSP 
instances than that for some bigger TSP instances.  
 

TABLE IV 
COMPARISON OF THE IMPROVED ITERATIVE ALGORITHM WITH THE 

COMBINATORIAL ALGORITHM [14] 

TSP n 
Improved iterative 

algorithm 
Combinatorial 

algorithm 
K l t(h:m:s) K t(h:m:s) 

pr1002 1002 4180 1 0:1:14 4521 2:30:21 

u1060 1060 4479 1 0:1:38 4619 3:33:13 

vm1084 1084 5658 1 0:1:48 4610 1:21:05 

pcb1173 1173 5488 1 0:2:17 6084 3:10:51 

d1291 1291 5360 1 0:2:42 11317 14:25:40 

u1432 1432 5673 0 0:2:58 6495 2:15:55 

d1655 1655 9278 0 0:5:25 12103 10:43:26 

u1817 1817 7208 1 0:8:30 11736 6:30:25 

rl1889 1889 12922 1 0:11:23 18673 28:34:41 

d2103 2103 13632 3 0:17:13 18105 18:19:34 

u2152 2152 9970 1 0:13:39 13170 7:19:08 

u2319 2319 8221 1 0:14:49 9473 1:42:22 

pr2392 2392 11246 1 0:19:12 12088 7:44:55 

pcb3038 3038 13403 1 0:45:44 14869 5:55:22 

fnl4461 4461 18685 1 3:40:18 19082 7:14:21 

IV. CONCLUSION 

This research presents the improved iterative algorithm for 
reducing the TSP on the complete graph Kn to the TSP on the 
sparse graphs. The computation time of the algorithm is 
O(CNmaxn

2) which is acceptable for big scale of TSP instances. 
The experimental results showed that the improved algorithm is 
robust to compute the sparse graphs with less than nlog2n edges 

containing nearly all of the OHC edges.  

APPENDIX 

A. The Probability , 	  of the OHC edges 

In , an edge e is contained in  quadrilaterals. Each 
quadrilateral corresponds to one of the six frequency 
quadrilaterals ABCD [16]. ,  and  represent the 
probability that an edge e has the frequency 1, frequency 3 and 
frequency 5 in a frequency quadrilateral containing e. 

 can be derived based on the six 

frequency quadrilaterals. When we choose N frequency 
quadrilaterals containing an edge e to compute its total 
frequency , the total frequency of e is 3N 
according to the probability  . This is 

the average frequency of all of edges. For the OHC edges e, 
Wang and Remmel constructed some special frequency 
quadrilaterals where the frequency of e is 5 or 3 rather than 1. 
They gave the probability model (2) for the OHC edges where 
they combined the  together as 

, 	 .  

 

, 	
         (2) 

 
When we use N frequency quadrilaterals containing an OHC 
edge e to compute its total frequency, the total frequency of e 
becomes 3  which is bigger than the average 

frequency 3N of all of edges. The experiments for the TSP 
instances showed that the probability model (2) was too 
conservative for the OHC edges. The minimum frequency  
of the OHC edge for most TSP instances is much bigger than 
3 . If we use 3  as the frequency threshold to 

trim the edges with frequency 3 , we generally 

compute a subgraph with less than  edges.  

According to the probability model (1), we assume , 	

	  for the OHC edges where 0. In the following, we 

give a theorem to predict the change of , 	 	or  for the 
OHC edges according to n.  
Theorem 1. If p , e	 	ϵ is the minimum probability that 

the OHC edge e has the frequency 3 or frequency 5 in a 

frequency quadrilateral in K , the p , e	 	ϵ tends to 1 

as n is big enough.  
Some notations are given first for proof: 

 : The complete graph containing n vertices.  
 : The complete graph containing n+1 vertices.  

 , 	 : The minimum probability that the OHC 

edge e has the frequency f=3 or f=5 in a frequency 
quadrilateral in  where → 0.  

 , 	 : The minimum probability that the OHC 

edge e has the frequency f=3 or f=5 in a frequency 
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quadrilateral in  where → 0.  
The minimum ,  and ,  exists in the graph sets  and 

 according to the axiom of choice owing to Ernst Zermelo.  
 , : The minimum number of the frequency 

quadrilaterals where e has the frequency f=3 or f=5 in .  
 , : The minimum number of the 

frequency quadrilaterals where e has the frequency f=3 or 
f=5 in .  

Since → 0  and → 0 , we have the inequality 
.	Thus, the inequality (3) is derived.  

 

,

,
1          (3) 

 

Given a big number M, we assume lim → 0 . If 

, , ,  and  hold. It means the 

minimum probability , 	 	  of the OHC edge e 

increases according to n until it reaches the maximum value 1. 

In this case, the  approaches . According to the similar proof 

process, we can prove the probability 	 → 1 for the OHC 
edges e as n is big enough under the assumption of 	

	  and 0. When we choose N frequency quadrilaterals 

containing e to compute the F(e), the  tends to 5N as n is 
sufficiently large. 

B. The Number of Edges in the Subgraphs 

We assume there are K edges e with the probability 

, 	  in a given frequency quadrilateral in . An 

edge e has the probability  in a 

given frequency quadrilateral containing e. The probability that 

e has the frequency f=3 or f=5 is ,  in a frequency 

quadrilateral. If we choose N frequency quadrilaterals 

containing e, the probability that there are 	  

frequency quadrilaterals where e has the frequency f=3 or f=5 is 

computed as 
	

	 	
. It is a value of the 

binomial distribution  where X is 

the random variable representing the number of frequency 
quadrilaterals where e has the frequency f=3 or f=5. The edges 

with the probability , 	  will be preserved as the 

candidate OHC edges. In this case, the number 	 . 

The accumulative probability that 	  is 

	  ∑
	

. Considering the  

edges, the number of the edges K in the subgraph will be (4) if 

we use 	  as the probability threshold.  

 

∑
	

              (4) 

 

The binomial distribution has the 

maximum probability at 1 1  or 1 . 

After that, it decreases exponentially from 1  or 

1 1 to N. Once , 	 1  

or 	 1 1 , the value 

	

	 	
deviates from the maximum 

probability and tens to zero quickly. Even though  takes the 

conservative value  as in (1), the number K will be very 

small when . In theory, we can compute the 
subgraphs with a small number of edges for TSP once the OHC 

edges have the big probability , 	  in Kn.  

The number K depends on the parameter . The bigger the 
value  is, the smaller the number of edges K in the subgraph 
will be. For the edges e with the small probability ,

	  (or 	 ), we usually have less than 

	  (or 	 ) frequency quadrilaterals where their 

frequency f=3 or f=5 (or only 5) among the N random frequency 
quadrilaterals containing each of them. These edges will be 
trimmed according to the probability threshold probability 

	 . For the other edges with the big probability ,

	  (or 	 ), they usually have more than 

	  (or 	 ) frequency quadrilaterals where 

their frequency f=3 or f=5 (or only 5). However, the number of 
these edges is very small according to (4). In theory, most edges 

will have less than  (or ) frequency quadrilaterals 

where their frequency f=3 or f=5 (or only 5) among the N 
random frequency quadrilaterals containing each of them. 
These edges will be neglected with a big probability. Thus, we 
will preserve a small number of edges with the big probability 

, 	  (or 	 ) in the subgraphs.  

For the OHC edges, their probability , 	  tends 

to 1 as n is big enough. We can use the big probability threshold 

	  to eliminate a lot of edges with the probability ,  

below 	  so a sparse graph is computed for TSP.  
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