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Abstract—As a method of expanding a higher-order tensor data to 

tensor products of vectors we have proposed the Third-order 
Orthogonal Tensor Product Expansion (3OTPE) that did similar 
expansion as Higher-Order Singular Value Decomposition (HOSVD).  
In this paper we provide a computation algorithm to improve our 
previous method, in which SVD is applied to the matrix that 
constituted by the contraction of original tensor data and one of the 
expansion vector obtained.  The residual of the improved method is 
smaller than the previous method, truncating the expanding tensor 
products to the same number of terms.  Moreover, the residual is 
smaller than HOSVD when applying to color image data.  It is able to 
be confirmed that the computing time of improved method is the same 
as the previous method and considerably better than HOSVD. 

 
Keywords—singular value decomposition (SVD), higher-order 

SVD (HOSVD), outer product expansion, power method 

I. INTRODUCTION 
 

UR Third-order Orthogonal Tensor Product Expansion 
(3OTPE) [1], [2] and Higher-Order Singular Value 

Decomposition (HOSVD) [3] are both proposed as the 
expansion technique for multidimensional data to the sum of 
low rank data, and are the method to do the same kind of 
expansion.  These methods express the multidimensional data 
as a tensor, and expand that data into the sum of tensor products 
of vectors, where expansion terms should satisfy the 
orthogonally each other.  The volume of the original 
multidimensional data can be reduced by truncating this 
expansion equation in a suitable number of terms.  It means a 
complicated data can be made of concise form. 

In addition, each expansion can be expressed in simple form 
to tensor product of one dimensional data.  These properties are 
the reasons why both expansion methods are effective in fields 
of the pattern recognition and the digital signal processing, etc 
[4], [5]. 
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There are our research results concerning the computation 
accuracy and the computing time for third-order tensors about 
these two expansion method [1].  According to these results, 
superiority or inferiority is not indiscriminately decided for the 
accuracy of calculation though our method is superior at the 
computing time.  Also in each expansion method, it agrees to 
the original tensor data by adding NML ⋅⋅  expansion terms 
finally when the size of the third order tensor is NML ×× . 

The expansion equation of 3OTPE is approximated by 
truncating after the expansion terms are permuted in 
descending order of norm in practical use.  Comparing the 
number of terms that the approximated equation converges to 
small enough value, 3OTPE is better than HOSVD.  However, 
3OTPE does not necessarily show a good tendency about the 
decreasing tendency of the residual before reaching the 
converging term. 

The power method well known as a numerical calculation 
method of eigenvectors of a matrix [6] is repeatedly used for 
the calculation of 3OTPE.  The 3OTPE algorithm is improved 
by using SVD [7] besides the power method together.  In 
addition, after calculating min (L, M, N) terms by the algorithm 
that uses the power method, the improved algorithm uses SVD 
in order to obtain good computation accuracy.  As a result, it is 
able to be confirmed that the computation accuracy of the 
proposed method is improved more than previous method.  On 
the other hand, the improvement concerning the computing 
time is not able to be expected.  Especially, we know that since 
the proposed method dose not require such an additional 
calculation that is necessary to calculate the remaining 
expansion vectors by using Gram-Schmidt orthgonalization 
algorithm [7] after the calculation of min(L, M, N) terms when 
the size of the tensor is not L=M=N, the method improves 
accuracy better than the previous method.  

II. THIRD-ORDER ORTHOGONAL TENSOR PRODUCT 
EXPANSION AND HIGHER-ORDER SVD  

A. Representation of Higher-Order Tensor 

In this paper, higher-order tensors are denoted by 
calligraphic letters such as A and B , and the ),,,( 21 Niii th 

elements of a nth-order tensor NIII ×××∈ 21RA  are denoted by 

niiia
21

 )1,,1( 11 Nn IiIi ≤≤≤≤ .  Figure 1 shows an image of 

a third-order tensor. 
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Fig. 1 Image of a third-order tensor 

 

B. Third-order Orthogonal Tensor Product Expansion by 
the Power Method (3OTPE)  

 
1) Representation of 3OTPE 

 
By applying the Third-order Orthogonal Tensor Product 

Expansion (3OTPE), a NML ××  third-order tensor A  can be 
expanded as  

,)(
,,

∑ ⊗⊗=
kji

kjiijk wvuσA                                    (1) 

( Li ,2,1= , Mj ,2,1= , Nk ,2,1= ), 

where, ⊗  denotes the outer product operation, the expansion 
vectors iu , jv , and kw  correspond to the singular vectors of 
the SVD for matrices [2].  Each of the expansion vectors is 
normalized so that its norm is 1 and has a following relation 
mutually. 
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wwvvuu

wv(uwvu
                      (2) 

The expansion coefficients ijkσ  correspond to the singular 
value, and they can be calculated for every combination of i, j 
and k as 

)( kjiijk wvu ⊗⊗= Aσ ,                (3) 
( Li ,2,1= , Mj ,2,1= , Nk ,2,1= ). 

 
2) Calculation Algorithm for 3OTPE 

 
When the size of a tensor A  is assumed to NML ×× , where 

m= ),,min( NML , the expansion vectors muu ,,1 , 

mvv ,,1 and mww ,,1 are obtained by the Algorithm I that 
is shown later.  Because the algorithm uses the Gram-Schmidt 
orthogonalization process these vectors have the orthogonally 
mutually. 

In case that L, M, and N are same, we can obtain a whole 
NML ⋅⋅ of orthonormal vectors for the NML ××  tensor.  

Since the numbers of vectors for one or two dimension are 
larger than m in another case that L, M, and N are different, we 
need to use Gram-Schmidt process again based on the 
previously obtained vectors from Algorithm I to calculate the 
remaining vectors. 

For example, in case of L>m, to calculate the remaining 
vectors Lmm uuu ,,, 21 ++ , n in equation (15) is increased from 
m+1 to L one by one and the Gram-Schmidt process described 
later is carried out, where the initial vector nu  is given 
arbitrarily.  Likewise, other remaining vectors 

Mmm vvv ,,, 21 ++  and Nmm www ,,, 21 ++  are calculated. 

Algorithm I: 3OTPE (by the power method) 
IN: tensor A ( NML ×× ), m = min(L, M, N) 
OUT: vectors muu ,,1 , mvv ,,1 , mww ,,1  
 
p=0, n=1. 
Step1.  Initial values: normalized vectors )( p

nu , )( p
nv , )( p

nw . 
 
Step2.  Residual Tensor nB  is obtained by 

).(
1

1
iii

n

i
i wvu ⊗⊗−= ∑

−

=
σABn                         (4) 

 
Step3.  Iterate the power method as follows. 

♦ Contraction of tensor: )( p
nwF nB=                            (5) 

F is ML × matrix and its ),( ji th element are 
denoted as 

)(),,(),( )( kkjiji p
n

k

wF ∑= nB .                       (6) 

Set ., )1()1()()1( +++ == p
n

Tp
n

p
n

p
n uFvFvu                   (7) 

Gram-Schmidt process: )1( +p
nu , )1( +p

nv  
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)1()1( ' ++ = p
n

p
n uu .   

♦ Contraction of tensor: )1( += p
nvG nB                             (9) 

( NM × matrix) 
Set ., )1()1()1()1( ++++ == p

n
Tp

n
p

n
p

n wGuGuw             (10) 

Gram-Schmidt process: )1( +p
nw , )1( +p

nu  

♦ Contraction of tensor:
 

)1( += p
nuH nB                           (11) 

( LN × matrix) 
Set ., )1()1()1()1( ++++ == p

n
Tp

n
p

n
p

n wHwHuv           (12) 

Gram-Schmidt process: )1( +p
nv , )1( +p

nw  
 

Convergence conditions:  
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where, ε is a small enough value.   
 

p=p+1, return to step3.   
 

Step4.  ( )1+= p
nn uu , ( )1+= p

nn vv , ( )1+= p
nn ww , which are called 

nth expansion vectors. 
 
Step5.  nth expansion coefficient nσ is obtained by performing 

an inner product operation as 
).( nnnn wvu ⊗⊗= nBσ                           (14) 

n=n+1, p=0, return to step1.   
 
Gram-Schmidt process: 

Along with the Gram-Schmidt orthgonalization algorithm, 
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calculate the vector '
nu  by subtracting the previously 

obtained terms from vector nu  as, 

.)(

)()(

11

2211
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−−=
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T
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n
T

nn

uuu

uuuuuuuu
                            (15) 

Set '
nn uu = . 

 

C. Higher-Order SVD(HOSVD) 

 
1) Unfolding Matrices of Nth-Order Tensor 

 
A higher-order tensor is represented by some matrices 

(second-order tensor) which are called unfolding matrices [3].  
By using this representation, an nth-order tensor 

nx III ×××∈ 2R  A  is unfolded to n matrices 
)(

)(
12121 −++×∈ nNnnn IIIIIII

n RA .  Hence a third-order tensor 
321 III ××∈ RA  has 3 unfolding matrices )(

)1(
321 III ×∈ RA , 

)(
)2(

132 III ×∈ RA , and )(
)3(

213 III ×∈ RA  as illustrated in Figure 2. 
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Fig. 2 Unfolding of the third-order tensor 321 III ××∈RA to matrices 

)(
)1(

321 III ×∈ RA , )(
)2(

132 III ×∈RA , and )(
)3(

213 III ×∈ RA . 
 

2) n-Mode Product  
 

Each unfolding matrix can be decomposed by SVD as 
follows 

Tnnn
n

)()()(
)( VΣUA = ,                        (16) 

where the vectors )(nU  and )(nV  are left and right singular 
vectors of matrix )(nA  respectively, and matrix )(nΣ  is a 
diagonal matrix whose diagonal elements are the singular 
values. 

The n-mode product of a tensor A  and a matrix nn IJ ×∈ RU  
is denoted by a symbol n×  as A n× U .  The elements of 
resultant matrix is represented as 

∑
=

+−+−
=×

n

n

nnNnnnNnnn

I
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ijiiiiiiiijiiin ua
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11211121

)( UA .   (17) 

By using this n-mode product representation, equation (16) can 
be rewritten as 

)(
2

)(
1

)(
)(

nnn
n VUΣA ××= .             (18) 

 
3) Calculation Algorithm for HOSVD 

 
An nth-order tensor A  can be denoted by n-mode product as 
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where the matrices )()2()1( ,,, NUUU   are orthogonal matrices 
obtained by applying SVD to the n-mode unfolding matrices, 

)()2()1( ,,,
21

N
iii n

UUU  are the column vectors )()2()1( ,,, NUUU  

respectively.  The tensor S in this equation is an Nth-order 
tensor called core tensor whose elements are denoted by 

,,1( 1121
Iis

niii ≤≤ )1 Nn Ii ≤≤ , and it is obtained by 
TN

N
TT )()2(

2
)1(

1 UUU ×××= AS .      (20) 
As described above, we can calculate HOSVD of any 

higher-order tensors by exploiting the SVD technique for 
matrices. 

The calculation algorithm for HOSVD is shown in Algorithm 
II [3]. 

 
Algorithm II: HOSVD 
IN: tensor nx III ×××∈ 2R  A  
OUT: vectors )()2()1( ,,, NUUU  
 
Step1.  Matrix unfolding 

)(
)(

12121 −++×∈ nNnnn IIIIIII
n RA                                      (21) 

 
Step2.  Matrix SVD: )(nA  

Tnnn
n

)()()(
)( VΣUA = ,                                        (22) 

where )(nU  and )(nV  are  left and right singular vectors 
obtained by applying SVD to unfolding matrix )(nA , and 

)(nΣ  is a diagonal matrix which has singular values as the 
diagonal elements.   
 

Step3.  Calculation of core tensor: S  
 

III. IMPROVED THIRD-ORDER ORTHOGONAL TENSOR PRODUCT 
EXPANSION (IMPROVED 3OTPE) 

A. The problem of our previous algorithm 

 
In the calculation algorithm for 3OTPE described subsection 

B, the nth expansion vectors nu , nv  and nw  can be calculated 
by applying the power method to the matrices that obtained 
from contraction operation between the tensor A  and iteration 

vectors )( p
nu , )( p

nv  and )( p
nw .  Since the calculation is repeated 

just m times, where m= ),,min( NML , additional calculation 
process namely Gram-Schmidt orthogonalization process is to 
be needed for the remaining vectors when even one of L, M, 
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and N is larger than m.  The Gram-Schmidt process is well 
known algorithm [7], which gives a set of orthogonal vectors 
on the vector space for the given set of linear independent 
vectors.  We use the algorithm to calculate the remaining 
expansion vectors from m orthonormal vector in the vector 
space of a dimension that is larger than m.  While the remaining 
vector is calculated uniquely when L-m=1, the vectors are not 
unique when L-m>1 because these vectors depends on the 
given initial vectors. 

For this reason, the problem is that the approximating 
expansion for the original tensor cannot give the smallest 
residual during the expanding process by our previous method. 
 

B. Calculation Algorithm for Improved 3OTPE 
 

We improve the previous calculation algorithm for 3OTPE 
as follows. 

First, the expansion vectors muuu ,,, 21 , mvvv ,,, 21  
and mwww ,,, 21  of a given NML ××  third-order tensor 
A  are calculated by Algorithm I that uses the power method as 
well as the previous method, where m= ),,min( NML .  So the 
set of vectors Nwww ,,, 21  can be obtained, assuming that 
N=m. 

Then, the ML ×  matrix F̂  are calculated by a contraction 
operation of the given tensor A  and the expansion vector 1w  
as 

.ˆ
1wF A=                                                (23) 

The matrix F̂  is decomposed by the SVD as  
.ˆˆˆ TVUF Σ=                                                (24) 

In this equation, each set of the column vectors of the matrix 
Û  and V̂ , namely Luuu ˆ,,ˆ,ˆ 21  and Mvvv ˆ,,ˆ,ˆ 21 , are the 
orthogonal set respectively.  Finally, we can obtain the 
expansion vectors of the improved 3OTPE method by 
renaming those vectors as Luuu ,,, 21  and Mvvv ,,, 21 .  
There are following relations for the expansion vectors 
between the improved method and the previous one, 

11 ûu = , miii ,,2,ˆ =≠ uu ,                                    (25) 

11 v̂v = , miii ,,2,ˆ =≠ vv . 
These relations show that though the vectors in the first term 

by the improved method are identical with those by the 
previous one, the vectors in other term are different.  We show 
the improved calculation algorithm for 3OTPE in Algorithm 
III. 

IV. COMPARISON AND EXPERIMENTS 

A. Example of Tensors 
 

To compare the improved method with previous one we treat 
NML ××  tensor classified in the shape depending on the size 

of tensor as Figure 3.  The tensor is classified to cubic type 
tensor (a) when the size of L and M are all equal to N, otherwise 
it is classified to non-cubic type tensor (b). 

 

 
(a) Cubic type    (b) Non-cubic type 

(L=M=N)     (not L=M=N) 
Fig. 3 Classification based on the shape of tensors. 

 
As an example, we consider the following magnitude 

specification ),,( kjid zyxh  of a 3-D digital filter design 
problem [8], [9]. 

,
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The (i,j,k)th elements ijka  of a third-order tensor A  is given 

by 
).,,( kjidijk zyxa h=                (30) 

Since the magnitude specification ),,( kjid zyxh  is zero when 
6.0≥r , the size of A  can be reduced to L×M×N, where 

,6.0×′= LL  ,6.0×′= MM  and .6.0×′= NN  

Algorithm III: Improved 3OTPE 
IN: tensor 321 III ××∈ RA , NIMILI === 321 ,, . 
OUT: vectors Luu ,,1 , Mvv ,,1 , Nww ,,1 . 
 
Step1.  3OTPE by Algorithm I: 
          IN: 

321 III ××∈ RA , m = min(L, M, N) 
OUT: m=L: Luuu ,,, 21 , 

m=M: Mvvv ,,, 21 , 
m=N: Nwww ,,, 21 . 

Step2.  Contraction of tensor : F̂  

1
ˆ wF A= ,                                                       (26) 

1w : first expansion vector obtained by step 1, if m=N. 

F̂ : ML × matrix, whose ),( ji th element are denoted as 

)(),,(),(ˆ
1 kkjiji

k

wF ∑= A .                           (27) 

Step3.  Matrix SVD:
 

TVUF ˆˆˆ Σ=                                           (28) 
New vectors : Luuu ˆ,,ˆ,ˆ 21 , Mvvv ˆ,,ˆ,ˆ 21  
Set ii uu ˆ= , Li ,,2,1= , 

ii vv ˆ= , Mi ,,2,1= . 
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B. Cubic Type Tensor 

 
The calculation results both improved method and previous 

one are shown about a cubic type tensor which the size in three 
directions are identical. 
 

1) Expansion Vectors 
 

Table I shows results of calculated expansion vectors iu , 

iv , and iw , where i=1, 2, 3, by the both methods, when the 
size of tensor is L=M=N=3.  Both of the value of expansion 
vectors iv  and iw  are equal to the value of iu  of previous 
method from the symmetry of the original 3-D data. 

The improved method uses the vector iw  obtained by the 
previous method as it is to perform a contraction operation to 
given tensor, the value of that vector is equal to iu  obtained by 
the previous method. 

 
TABLE I EXPANSION VECTORS  
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For the comparison of our two methods, we calculated the 

difference vectors between improved 3OTPE and HOSVD, 
previous 3OTPE and HOSVD respectively.  The relative norms 
defined by following equation of these difference vectors are 
shown in Table II. 

T
i

T
ii

id
)1(

)1(

)(
U

Uu
u

−
=                     (31) 

It is obviously that these values of the first term of the 
expansion equation by both methods are the same, and that the 
values by improved method are closer to those by HOSVD in 
the order of a digit than the previous one after the second term.  
The vectors iw  in both methods are equal for the reason 
mentioned above. 

The averaged difference between each set of whole 
expansion vectors in both our methods and the other set of 
those vectors in HOSVD is calculated by following equation 
respectively, and it is listed in the Table II. 
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i
i ddd

NML
wvu        (32) 

From the table, we see the difference between the improved 
method and HOSVD is about 50% smaller than the previous 
method. 
 

TABLE II THE DIFFERENCE OF EXPANSION VECTORS 
 BETWEEN OUR METHODS AND HOSVD (3,3,3) 

Vectors i 
Improved 
3OTPE 

Previous 
3OTPE 

1 1.236E-02 1.236E-02 
2 4.322E-02 2.282E-01 iu  

3 4.166E-02 2.279E-01 
1 1.236E-02 1.236E-02 
2 4.322E-02 2.282E-01 iv  

3 4.166E-02 2.279E-01 
1 1.236E-02 1.236E-02 
2 2.282E-01 2.282E-01 iw  

3 2.279E-01 2.279E-01 
Average 7.365E-02 1.561E-01 

 
 

2) Residuals  
 

After all the expansion coefficients are permuted in the 
descending order of absolute value of magnitude, and ith 
coefficient is expressed as iσ .  The tensor nA  obtained by 
using n coefficients is calculated as follows, 

,)(
1

∑
=

⊗⊗=
n

i
iiii wvuσnA                                     (33) 

.21 NMLi ⋅⋅≥≥≥≥≥ σσσσ  
 

The residuals of the expansion calculation in the previous 
method and the improved one by equation (34) are plotted in 
the Figure 4.  The results by HOSVD are also plotted for the 
comparison to our methods. 
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,,
321321
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iii
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Fig. 4 Residuals of tensor (3, 3, 3) 

 
In each method, the residuals become 0 when the whole of 

27 terms in expansion equation are added.  The difference 
appears from the 2nd term, and the residuals of the improved 
method are smaller as compared with previous method and the 
improved one.  The difference becomes gradually grows, then a 
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remarkable 3.0 × 10-2 or more difference is shown from 5th 
term to the 8th term, and it becomes small gradually again at the 
end. 

The comparison between HOSVD and the previous method 
has already been done [1].  The paper showed that HOSVD was 
good for first ten terms, and the resultant value by the previous 
method is smaller after that concerning to the residuals.  From 
above result it can be seen that the residuals approach with 
these by HOSVD before first some terms, and become smaller 
than HOSVD after 7th term by using improved method. 

To make the convergence characteristics of the residuals 
more comprehensible, these residual values are plotted by the 
logarithm in Figure 5.  We see that the residual is almost 0 in 
the improved method in 19th terms from this figure.  Though 
the residual by the previous method becomes almost 0 in 18th 
terms, the improved method shows smaller residual after that 
term.  We also see that the residual converge to 0 earlier in both 
our methods than HOSVD. 

 

 
Fig. 5 Residuals of tensor (3, 3, 3) in logarithm 

 
Figure 6 shows the differences of each pair of the best 

residual and other two residual among the three methods.  The 
above-mentioned results are confirmed from this figure.  The 
averages of differences are 1.85×10-3 for improved method, 
9.88× 10-3 for previous one, and 6.44× 10-3 for HOSVD, and 
the maximum values are 1.47 × 10-2, 4.57 × 10-2, and 
1.83×10-2, respectively.  The improved method has the best 
result in three methods about these values. 

 

 
Fig. 6 The comparison with the best residual of Fig. 4. 

C. Non-Cubic Type Tensor 

 
When the tensor data are not a cubic type pointed out as a 

problem of previous method, the expansion is calculated about 
the 3-D digital filter design specification matrix of equation 
(30) as well as the case of a cubic type tensor data, where the 
size of the tensor is assumed to be L=6, M=5, and N=3. 
 

1) Expansion Vectors  
 

Table III shows the results of comparison between the 
vectors obtained by the previous method and the improved one 
with that of HOSVD as well as Table II.  From the table, b oth 
methods give same values about all vectors of the first term of 
the expansion equation and about the vectors iw , i=1, 2, 3 as 
well as the case of the cubic type tensor data.  The improved 
method gives 1 digit smaller values than the previous one in the 
2nd term for the vectors iu  and iv , and these values are closer 
to those by HOSVD.  However it is impossible to say which 
method gives closer results to HOSVD indiscriminately as for 
the 3rd or more term, it can be said that the results by improved 
method nearer to those by HOSVD because of the terms with 
small number influences more greatly to the expansion 
equation.  Considering the averages of the difference vectors of 
each expansion vectors of our methods and those of SVD, the 
improved method shorted the distance of vectors about 8%. 
 

TABLE III THE DIFFERENCES OF EXPANSION VECTORS 
BETWEEN OUR METHODS AND HOSVD (6, 5, 3) 

Vectors i 
Improved 
3OTPE 

Previous 
3OTPE 

1 1.026E-02 1.026E-02 
2 5.024E-02 1.583E-01 
3 4.313E-01 3.661E-01 
4 4.384E-01 3.114E-01 
5 2.977E-01 5.325E-01 

iu  

6 2.030E-01 4.451E-01 
1 1.053E-02 1.053E-02 
2 2.817E-02 1.831E-01 
3 1.086E-01 2.792E-01 
4 7.697E-01 7.162E-01 

iv  

5 7.671E-01 6.952E-01 
1 1.000E+00 1.000E+00 
2 1.407E+00 1.407E+00 iw  

3 1.300E+00 1.300E+00 
Average 4.873E-01 5.297E-01 

 
2) Residuals 

 
Figure 7 shows the residuals between the calculation results 

of the expansion and the original tensor when the expansion 
equation is truncated as well as the case of the cubic type tensor 
data.  In this case it can be confirmed that the residuals become 
0 when the whole expansion terms are added in any method that 
are taken up here including HOSVD.  The decreasing tendency 
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of the residuals is smoother than the Figure 4, and the mutual 
differences of the tendency of three methods are not large.  The 
residuals are plotted even by the logarithm in Figure 8.  The 
differences of three methods begin to appear from about 60th 
term, and the improved method converges earliest, the previous 
method succeeds, and HOSVD converges lastly to residual 0 
without changing in the decreasing tendency of the Figure 4. 

 
Fig. 7 Residuals of tensor (6, 5, 3) 

 

 
Fig. 8 Residuals of tensor (6, 5, 3) in logarithm 

 
The differences of each pair of the best residual and other 

two residual among the three methods are plotted in Figure 9 as 
well as Figure 6.  The difference curve of improved method 
becomes small more than HOSVD from 31st terms, and it 
converges after that as the curve changing places into that of the 
previous one.  The average of the differences of the improved 
method, the previous method, and HOSVD are 1.09 × 10-3, 
4.09 × 10-3, and 1.30 × 10-3 respectively, so the improved 
method is the best.  Since the maximum value of the differences 
are 6.06× 10-3, 1.76×10-2, and 3.58× 10-3 respectively in the 
same order as those, we see that the improved method 
decreases to about 1/3 compared with the previous one though 
it is not better than HOSVD. 

The average and the maximum value of each method are 
smaller than the results for the cubic type tensor data in three 
methods, because the size of the tensor used here is more than 
that of the example of cubic type tensor.  That is to say, more 
numbers of sample points are given to the example of equation 
(30) in this case. 

 

 
Fig. 9 The comparison with the best residual of Fig. 7 

 

D. Computation Time  
 
Figure 10 shows the computing time required to carry out the 

expansion by improved method, previous method, and HOSVD 
changing L, M, and N between from 6 to 60 in case of the cubic 
type tensor data.  Because the algorithm of the improved 
method needs contraction operations and SVD calculation in 
addition to the algorithm of previous one, improved method 
takes the computing time more than the previous one.  
However, it can be understood that there is only little difference 
between these two methods, and the improved method can 
calculate at a higher speed compared with HOSVD.  Since the 
HOSVD is required to calculate SVD for matrices of which the 
size of a side becomes the order of the square, SVD takes large 
time to carry out the expansion [10].  It was available to 
calculate in near 0[sec] when the size of tensor L=M=N=12 in 
our both methods and the size is L=M=N=6 in HOSVD.  The 
similar results are yielded for the non-cubic type tensor as well 
as we described here.  In this paper, DELL POWEREDGE 840 
is used to carry out numerical calculation. 
 

 
Fig. 10 Computation time 

 

E. Application to Color Image Data 

 
  In order to compare the tendency of results with the case of 
cubic type tensor, the 3-D digital filter specification is used as 
the non-cubic type tensor data as mentioned above.  Here, the 
three methods are applied to the color image data which is often 
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used as an example of 3-D data processing.  Because a color 
image consists of RGB images, we treat it as a tensor data 
whose depth size is 3.  Famous standard test image “Lena” [11] 
which is shown in Figure 11 is used as the example image to be 
calculated, and the sizes of images are fixed to 1616 × , 

3232 × , and 6464 × . 
 

 
Fig. 11 Standard test image “Lena” 

 
Figure 12 shows the residuals between the original 

31616 ××  tensor and the reconstructed tensor by the three 
methods when the expansion equation is truncated in progress 
on the calculation.  The improved method is obviously 
excellent compared to the case of the digital filter of Figure 7, 
and the method gives the smallest residual from first to last over 
the whole of expansion.  Moreover, it can be confirmed that the 
improved method converges earliest from the Figure 13, where 
the residuals are shown by logarithm. 

The differences between the smallest residuals and that of 
each method are plotted in Figure 14.  Because the residuals of 
the improved method are the smallest in all the area, this figure 
shows the differences with the improved method.  In this case, 
the average of the differences of the previous method is 
4.09× 10-3, and that of HOSVD is 1.30× 10-3.  Similarly, the 
maximum difference of the previous method is 1.76× 10-2, and 
that of HOSVD is 3.58× 10-3.  So, we see that the residuals of 
other two methods are large compared with the improved 
method. 

We can see the improved method shows the better results for 
application to the color image than those for the digital filter 
design by following reason.  The size of the depth direction is 
fixed with 3 in the color image data, and that is from a few tenth 
to a few hundredth of the size of the length or that of the width, 
so that the number of terms calculated by using the 
Gram-Schmidt orthogonalization process increases in the 
improved method.  The influence of the problem pointed out by 
in the chapter III appears more greatly for these reasons. 

Table IV shows the number of terms where the residual of 
the three methods becomes 5% or less.  It is understood that the 
improved method becomes residual 5% by the least number of 
terms in case of any image size.  The tensor is constructed by 
truncating the expansion at this number of terms of improved 
method here.  After each element value of the tensors is made 
an integral value form 0 to 255, the color images are 
reconstructed and shown in Table V.  The signal to noise ratio 
(SNR) of each reconstructed images is indicated in the table.  
The SNR is defined as follows, 

 

Pn

Ps
SNR 10log20 ×= [dB],                         (35) 

,)),,(),,((

,),,(

1 1

3

1

2

1 1

3

1

2

∑∑ ∑

∑ ∑ ∑

= = =

= = =

−=

=

L

i

M

j k

L

i

M

j k

kjikjiPn

kjiPs

nAA

A
 

A : Original image, nA : Reconstructed image, 
 
where the third-order tensors A  and nA  represent the original 
image and the reconstructed image respectively. 

From the images shown in the Table V, the improved method 
has the highest SNR, and its SNR value is 50[dB] level about the 
image of all the sizes.  We can see that the improved method 
gives good reconstruction images than other two methods. 

 

 
Fig. 12 Residuals of tensor (16, 16, 3) 

 

 
Fig. 13 Residuals of tensor (16, 16, 3) in logarithm 

 

 
Fig. 14 The comparison with the best residual of Fig. 12 
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TABLE IV THE NUMBER OF TERMS THAT BECOMES RESIDUAL 5% OR LESS 
Size Improved  

3OTPE 
Previous 
3OTPE 

HOSVD 

1616 ×  56 239 113 
3232 ×  180 1108 326 
6464 ×  345 4698 832 

 
TABLE V RECONSTRUCTED IMAGES 

Size 
( 3×size ) 

Terms Improved  
3OTPE 

Previous 
3OTPE 

HOSVD 

1616 ×  
(768) 56  

52.36[dB] 
 

29.85[dB] 
 

45.66[dB] 

3232 ×  
(3072) 180  

52.33[dB] 
 

28.77[dB] 
 

46.85[dB] 

6464 ×  
(12288) 345 

 
52.29[dB] 

 
26.81[dB] 

 
45.08[dB] 

V. CONCLUSION 
Our calculation algorithm of 3OTPE has been improved to 

overcome the problem concerning the data of non-cubic type 
tensor mainly in the following ways comparing to previous 
method and HOSVD. 

 
(1)   In the evaluation of a residual, the first term in the 

evaluation of a residual has almost the same value in the 
three methods when the expansion equation is truncated or 
not.  Therefore, the expansion vectors 1u , 1v , and 1w  
have the almost the same element values.  It is different 
from HOSVD that improved method and previous one 
have almost equal vectors of 1w  for the non-cubic type 
tensor.  Especially, for the small number of terms which 
influence on the entire equation, the improved method 
calculates vectors near to those of HOSVD about the 
vector since second term. 

(2)   Considering the residuals, the HOSVD converges earlier 
than previous method and the number of terms necessary 
to 0 residual is more than previous method.  The improved 
method converges earlier than HOSVD and the number of 
terms necessary to 0 residual is less than previous method. 

(3)   It is confirmed that the above results are similarly in the 
case of a cubic type tensor and that of a non-cubic type. 

(4)   When the size of length and width are larger than the size 
of the depth in a color image, the improved method shows 
the best results in the three methods. 

(5)   The improved method almost takes same computing time 
as previous method, therefore that can could calculate the 
expansion higher-speed than HOSVD. 

 
Our new 3OTPE method has improved the expansion 

precision of previous one further and kept the original feature 
of previous one left.  From above results for cubic type tensors 

and non-cubic ones, we can say that the improved method is the 
most excellent and effective expansion method in the accuracy 
of calculation and the computing time for the application of 
treating 3-D data, that is, the color image processing etc. 

Golub-Reinsch algorithm [7], which has been commonly 
used in numerical calculation method of SVD, is used to 
compare the characteristics of our method and HOSVD in this 
paper.  It is known that the technique for the speed-up of the 
computing time of SVD calculation is variously researched 
[12]. 
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