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Abstract—A lot of Scientific and Engineering problems require 

the solution of large systems of linear equations of the form 

bAx  in an effective manner. LU-Decomposition offers good 

choices for solving this problem. Our approach is to find the lower 

bound of processing elements needed for this purpose. Here is used 

the so called “Omega calculus”, as a computational method for 

solving problems via their corresponding Diophantine relation. From 

the corresponding algorithm is formed a system of linear diophantine 

equalities using the domain of computation which is given by the set 

of lattice points inside the polyhedron. Then is run the Mathematica 

program DiophantineGF.m. This program calculates the generating 

function from which is possible to find the number of solutions to the 

system of Diophantine equalities, which in fact gives the lower 

bound for the number of processors needed for the corresponding 

algorithm. There is given a mathematical explanation of the problem 

as well. 

Keywords—generating function, lattice points in polyhedron, 

lower bound of processor elements, system of Diophantine equations

and calculus. 

I. INTRODUCTION

HERE are a lot of studies concerning the processor-time-

minimal schedules and optimizing  of different arrays [1-

11]. It is known that for the algorithms of matrix product, 

Gaussian elimination and Transitive closure the number of 

processors is 4/,4/3 22 nn and 3/2n  respectively. 

Transformation of the problem from geometrical into 

combinatorial analysis can be seen at [11, 12]. Mathematical 

guide for the analysis can be seen at [12-20]. An application 

for nested loop algorithms of the formulae for the number of 

solutions of Diophantine system of equalities is given in [22]. 

A general and uniform technique for deriving lower bounds of 

processing elements (as a piecewise polynomial function) is 

presented at [11]. At the same article is shown that the nodes 

of the dag can be viewed as lattice points in convex 

polyhedron. Adding to this the linear constraint of the 

schedule, there will be form a system of Diophantine 

equations where the number of solutions is a lower bound. In 

this article, using the steps mentioned above, we have 

obtained the optimal lower bound for the number of 

processors required by the systolic algorithm for DFT and for 

the algorithm of LU-Decomposition. At the beginning we give 

some definitions and lemas which are used for mathematical 

explanation followed by an example. We have used the same 

example for applying the mathematica program 

DiophantineGF.m. We show that the corresponding 

generating function is not changed. So for the problems 

mentioned above we can use this program.  

II. SOME DEFINITIONS AND PROPERTIES

Definition 1: Let
nRa and Rb . Then a hyperplane 

consists of the set bxaRx Tn \  and a halfspace 

consists of the set bxaRx Tn \ . If A  is an mxn

matrix and 
mRb  then a polyhedron P  consists of the set 

bAxRxP n \ , in other words, a polyhedron is the 

intersection of finitely many halfspaces.  

Definition 2: For a multiple Laurent series, 
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Two of  many identities presented in [17] are given below: 
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Lema 1: For any integer 0s ,
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MacMahon leaves the verification of many of his identities to 

the reader. Below is given  prove for first lema. 

From geometric series expansion there will be: 
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If 12 asa , then  will have a negative power. To prevent 

this from happening, let bsaa 21 , forcing the restriction 

0b  and making appropriate substitution into the crude 

generating function there will be: 
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Now with the substitution for 1 , the desired identity will 

be fulfilled. (Using the mentioned conditions above, actually 

is used the defined  operator). 

III. MATHEMATICAL EXPLANATION OF THE ALGORITHM

If there is a polyhedron bAxRxP n \ , then for 

each defining halfspace 0ii tbxa embeding ii tbxa

into a crude generating function is a general idea of this 

process. Because of considering only the positive constraints 

0t , embedding 
ty  into the crude generating function, 

then the form of obtained function is: 
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For example let 0t  and 

1212

2

21 1,2,22/, xxxxRxxP  be a 

given polyhedron. Then the number of integer points 

contained in Pt  is equivalent to the number of integer 

solutions of the system: 
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In fact this is the polyhedron with bAxRxP /2

where:
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The corresponding crude generating function to this system 

will be: 
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With an additional transformations there will be: 
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This corresponds to the following crude rational generating 

function: 
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To find the corresponding rational generating function, 

there are used the two lemas given above ( )(  means that 

the given identity is used for parameter ).

An implications of using lema 1 for 1s , lema 1 for s=2 and 

lema 2 respectively are: 
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So, the conclusion is: 
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This is the same rational generating function which can be 

obtained via Mathematica program DiophantineGF.m.

Transformation of the set of inequalities (1) to a set of 

Diophantine equations is done using an integral slack 

variables 0,, 321 sss  and the corresponding system is: 

ts
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                           (2)

Because the program DiophantineGF.m essentially requires 

three arguments cbA ,,  of the Diophantine system 

cbtAx , the main computation is performed by the call 

DiophantineGF[A,b,c]. The result is the rational generating 

function. The form of cbA ,,  is found from (2) and given 

below: 
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The original result from the program DiophantineGF.m is 

given below as well: 

In[1]:=<<DiophantineGF.m 

In[2]:=a={{2,1,-1,0,0,0}, 

                {0,-1,0,-1,0,0}, 

                {-1,0,0,0,-1,0}, 

                {0,0,0,0,0,-1}}; 

In[3]:=b={2,-2,-1,-1};c={0,0,0,0}; 

In[4]:=DiophantineGF[a,b,c] 

Out[1]=-
3

1

1

t
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With substitution yt  the result is same like in previous 

mathematical explanation. 
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IV. LOWER BOUND OF PROCESSOR ELEMENTS (PES) OF THE 

SYSTOLIC ARRAY FOR DISCRETE FOURIER TRANSFORM (DFT)

BASED ON MATRIX MULTIPLICATION

The algorithm for the writing the 2 dimensional DFT which 

is used for designing the corresponding systolic array is given 

below (taken from [1]): 

Algorithm 1 

Internal computations 

for 01j  to 11n   do 

for 02j  to 12n   do 

for 03j  to 11n   do 

;,,1,1,

1,,,,

32311

321321

jjxjj

jjjzjjjz
                 (3)

for 01j  to 11n   do 

 for 02j  to 12n   do 

for 13 nj  to 121 nn   do

;,,11,,

,1,,,

1322121

321321

njjnjjz

jjjyjjjy
    (4)

Output computations 

;,1,
2121

31 321 nn
jnjy

nn
y

xxjj

From above the conclusion is that the computational structure 

is characterized by an index space: 

3

321int ,,
T

jjjP  where: 
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,10 11 nj ,10 22 nj 10 213 nnj .

The data dependence vectors for variables from (3) and (4) are 

TTT
jj 0,0,1,0,1,0,1,0,0 12  and

TTT
njnj ,0,1,1,0,0,0,1,0 113 , respectively.

In this case 321 ,, jjj  are lattice points inside 3-

dimensional convex polyhedron whose faces are defined by 

the inequalities which are the consequence of the algorithm 1.

The obtained inequalities by the converting the geometrical 

into a combinatorial interpretation are given below: 

1,1,1 2132211 nnjnjnj

The next step is transforming this into the system of 

equalities putting the slack variables 0,, 321 sss  and 

augmenting this by the condition of linear schedule for the 

corresponding dag which is given with 

24321 njjj  (taking the case 

nnnn 321 ). This ranges from 1 to 24n , and in 

this case is taken the halfway point which is:  

12
2

24
321 n

n
jjj

The corresponding system of Diophantine equalities is: 
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               (5) 

cbA ,,  form is found from the system (5): 
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001001

000111

cbA

The next step is to run the program DiophantineGF.m: 

In[1]:=<<DiophantineGF.m 

In[2]:=a={{1,1,1,0,0,0}, 

               {1,0,0,1,0,0}, 

               {0,1,0,0,1,0} 

               {0,0,1,0,0,1}}; 

In[3]:=b={2,1,1,2};c={-1,-1,-1,-1}; 

In[4]:=DiophantineGF[a,b,c] 

Formula 

Out[1]:=
3

1

1

t

tt

Binomial Formula :  C[n,2]+C[1+n,2] 

Power Formula    :  
2n

This means that the lower bound for the number of PEs of 

systolic array for 2 dimensional DFT is
2n . In [1] is given a 

table of number of processors elements of systolic arrays, 

where can be seen that the array obtained along the projection 

direction
T

1,0,0 , i.e. along 3j  axis, is optimal in terms of 

number of PEs. This number is 21nn  which is the same with 

our result for nnn 21 .

V. LOWER BOUND OF PROCESSOR ELEMENTS FOR LU

FACTORIZATION

The algorithm for factoring the nn  matrix )( ijaA

into the product of the lower triangular matrix )( ijlL  and 

the upper triangular matrix )( ijuU ; that is, LUA ,

where the main diagonal of either L  or U consists of all ones 

is presented below (taken from [21]): 

Algorithm 2 

INPUT dimension n; the entries njiaij ,1,  of A ; the 

diagonal 1...11 nnll  of L  or the diagonal 

1...11 nnuu  of U .

Step 1: Select 11l  and 11u  satisfying 111111 aul .

            If 01111ul  then OUTPUT          (,Factorization

impossible’); 

             STOP. 

Step 2: For nj ,...,2  set 1111 / lau jj ; (First row of 

.)U 1111 / ual jj . (first column of L ).

Step 3: For 1,...,2 ni  do Steps 4 and 5. 

Step 4:  Select iil  and iiu  satisfying   

1

1

i

k

kiikiiiiii ulaul . If 0iiiiul  then OUTPUT 

(‘Factorization impossible’); 

                            STOP. 
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Step 5: For nij ,...,1  set 

1

1

1 i

k

kjikij

ii

ij ula
l

u ;(ith row of U .)

1

1

1 i

k

kijkij

ii

ji ula
u

l . (ith column of L .)

Step 6: Select nnl  and nnu  satisfying 

1

1

n

k

knnknnnnnn ulaul .

Step 7:  OUTPUT ( niijlij 1,1, );

             OUTPUT ( ninjiuij 1,, );

             STOP. 

The computational structure is characterized by the index 

space:

11,11,10/,,int nkinjinikjiP

There is used a translation of the loop taking  

10 ni  as opposed to ni1 , because it is implicit. 

The same is done with the other index points. 

The array computation for the algorithm above ( nnn

mesh) is given by APGn ,int , where: 

},,1,,1

,,1

,,,,,/,,,,,{ intint

jjiikkorkkiijj

orkkjjiiand

PkjiPkjikjikjiA

In this case kji ,,  are lattice points inside 3-dimensional 

convex polyhedron whose faces are defined by the inequalities 

which are the consequence of the algorithm 2.

Converting the geometrical interpretation of the problem 

explained above, into a combinatorial interpretation, exactly 

into finding of solutions to the system of Diophantine 

equations the following four inequalities are got: 

1,1,1,1 nkiknjij  (there is no 

specification of the case kji ,,0  and 1ni ). The 

result of the transforming this into the system of equalities 

putting the slack variables 0,,, 4321 ssss   is: 

1
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nsk

sik

nsj

sij

Augmenting this by the condition of linear schedule for the 

corresponding dag which is given with 13nkji

(this ranges from 1 to 13n ) and taking the halfway point in 

this schedule, which means 
2

13n
kji , then the 

result is the corresponding system of Diophantine equalities 

where the number of solutions is a lower bound for the 

number of processors: 

1
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1

13222
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                     (6) 

From system (6) the values of cbA ,, are found: 

1

1
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1

0
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3

,

1000100
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0000222
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Running the program DiophantineGF.m is found the lower 

bound of PEs for this algorithm: 

In[1]:=<<DiophantineGF.m 

In[2]:=a={{2,2,2,0,0,0,0}, 

                 {1,-1,0,1,0,0,0}, 

                 {0,1,0,0,1,0,0}, 

                 {1,0,-1,0,0,1,0}, 

                 {0,0,1,0,0,0,1}}; 

In[3]:=b={3,0,1,0,1};c={-1,-1,-1,-1,-1}; 

In[4]:=DiophantineGF[a,b,c] 

Formula 

Out[1]:=
233

23

111

31

ttt

tt

Binomial Formula :  1/32 (-21 C[2+1/2 (10+n),2]+6 C[2+1/2 

(-9+n),2]+59 C[2+1/2 (8+n),2]-22 C[2+1/2 (-7+n),2]-47 

C[2+1/2 (6+n),2]+34 C[2+1/2 (-5+n),2]-23 C[2+1/2 

(4+n),2]+14 C[2+1/2 (-3+n),2]-12 C[1/4 (7+n),0]+8 C[1/4 (-

5+n),0]+21 C[-5+n,2]-57 C[4+n,2]+4 C[1/4 (-3+n),0]+49 C[-

3+n,2]-19 C[2+n,2]+14 C[-1+n,2]) 
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Simplifying the binomial coefficients above is found the lower 

bound of PEs, which is 
4

2 nn
 .
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