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Decomposition
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Abstract—A lot of Scientific and Engineering problems require
the solution of large systems of linear equations of the form
Ax =b in an effective manner. LU-Decomposition offers good
choices for solving this problem. Our approach is to find the lower
bound of processing elements needed for this purpose. Here is used
the so called “Omega calculus”, as a computational method for
solving problems via their corresponding Diophantine relation. From
the corresponding algorithm is formed a system of linear diophantine
equalities using the domain of computation which is given by the set
of lattice points inside the polyhedron. Then is run the Mathematica
program DiophantineGF.m. This program calculates the generating
function from which is possible to find the number of solutions to the
system of Diophantine equalities, which in fact gives the lower
bound for the number of processors needed for the corresponding
algorithm. There is given a mathematical explanation of the problem
as well.

Keywords—generating function, lattice points in polyhedron,
lower bound of processor elements, system of Diophantine equations

and Q calculus.

[. INTRODUCTION

HERE are a lot of studies concerning the processor-time-
minimal schedules and optimizing of different arrays [1-
11]. It is known that for the algorithms of matrix product,
Gaussian elimination and Transitive closure the number of

processors is 3n° /4, n*/4 and n’/3 respectively.

Transformation of the problem from geometrical into
combinatorial analysis can be seen at [11, 12]. Mathematical
guide for the analysis can be seen at [12-20]. An application
for nested loop algorithms of the formulae for the number of
solutions of Diophantine system of equalities is given in [22].
A general and uniform technique for deriving lower bounds of
processing elements (as a piecewise polynomial function) is
presented at [11]. At the same article is shown that the nodes
of the dag can be viewed as lattice points in convex

polyhedron. Adding to this the linear constraint of the
schedule, there will be form a system of Diophantine
equations where the number of solutions is a lower bound. In
this article, using the steps mentioned above, we have
obtained the optimal lower bound for the number of
processors required by the systolic algorithm for DFT and for
the algorithm of LU-Decomposition. At the beginning we give
some definitions and lemas which are used for mathematical
explanation followed by an example. We have used the same
example for applying the mathematica program
DiophantineGF.m. We show that the corresponding
generating function is not changed. So for the problems
mentioned above we can use this program.

II. SOME DEFINITIONS AND PROPERTIES

Definition 1: Let a € R"andb € R. Then a hyperplane
consists of the set {xER" \aTx=b} and a halfspace
consists of the set {x eR"\a" x> b}. If A is an mxn

matrix and b € R™ then a polyhedron P consists of the set
P= {x eR"\Ax < b}, in other words, a polyhedron is the

intersection of finitely many halfspaces.

Definition 2: For a multiple Laurent series,

Z:AVIMVA At Ak, the operator . is defined by:
Vi yens Vi ==

o0
Vi Vi _—
Q DA, AAE= DA, .
Vi =0

Two of many identities presented in [17] are given below:
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Lema 1: For any integer.s > 0,

) 1 1

a1 2] )

Lema2: Q) ! = 1+xy

i) )

MacMahon leaves the verification of many of his identities to
the reader. Below is given prove for first lema.

From geometric series expansion there will be:

1
(1—&)(1—; = 420

If a,s > a,, then A will have a negative power. To prevent
this from happening, let @, —a,s = b, forcing the restriction

b > 0 and making appropriate substitution into the crude
generating function there will be:

zl”ﬁ“zfxa,yuz — Zibxazyrbyaz —

a;20 a,,b>0

a 1
= 20 x ) =
azzb;jo( %) (x y) (l—ﬂx)l—xxy

Now with the substitution for 4 =1, the desired identity will
be fulfilled. (Using the mentioned conditions above, actually

is used the defined €2, operator).

III. MATHEMATICAL EXPLANATION OF THE ALGORITHM

If there is a polyhedron P = {x eR"\Ax > b}, then for
each defining halfspace a,x —tb, > 0 embeding Ala=b)

into a crude generating function is a general idea of this
process. Because of considering only the positive constraints

t >0, embedding yt into the crude generating function,
then the form of obtained function is:

F (ﬁ,, y) = Z ﬁgalx_tb]) ﬂ(;zx_th),,_ ﬂ(a”’x_tb’”)yt

‘m
X;,t20

For example let t>0 and
P:{(xl,xz)eRz/szerlZ2,22x2,12x,} be a

given polyhedron. Then the number of integer points

contained in 7- P is equivalent to the number of integer
solutions of the system:

X, +2x,-2t=>20
2t—x, 20
t—x,20

120

(M

In fact this is the polyhedron with P = {x e R/ Ax < b}
where:

-2 -1 -2
A=| 0 1] andb=| 2
1 0 1

The corresponding crude generating function to this system
will be:

z A;c2+2x1—2t /ﬁt—xz ﬂ;_xl yt

x;,t20
With an additional transformations there will be:

Xy 42X =2t 2t-xy At=x; _t __
Zﬂ‘l Ay PAT Y =

x;,t20
_ Z /112 : /11 " /1213
X;,t20 1'3 /12 112 y

This corresponds to the following crude rational generating
function:

1

ikl
N QS G

To find the corresponding rational generating function,

there are used the two lemas given above (€2, (1) means that

the given identity is used for parameter A ).

An implications of using lema 1 for s =1, lema 1 for s=2 and
lema 2 respectively are:
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1
Q. (1) =
. (%) Y AV 7L
- 1=--=2y
A 2 2
B 1
(2 2
-2 1-2y|1-2
( @I ﬁﬁ(zﬁ
Qz(/‘il) 2 ;'2 = 1 1
- 1-"2y -2 -2y 1-—|(1-
o G Nl U i
Qz(ﬂz\ 1 _ 1 1+y1

/(l—ﬂgy{l—;j(l_y) (l_y).(l—y)(l—y'lz)

2
So, the conclusion is:

1 1+y

Q. -
AY A AA ) (=)
2’3 /12 /112

This is the same rational generating function which can be
obtained via Mathematica program DiophantineGF.m.
Transformation of the set of inequalities (1) to a set of
Diophantine equations is done using an integral slack

variables §,,5,,5; = 0 and the corresponding system is:

2x, + x, — 5, =2t
-Xx, -5, = -2t 2

- X, — 8§y, =t

-5, =t

Because the program DiophantineGF.m essentially requires
three arguments (A, b, C) of the Diophantine system
Ax = bt + ¢, the main computation is performed by the call
DiophantineGF[A,b,c]. The result is the rational generating
function. The form of (A,b,c) is found from (2) and given

below:
2 1 -1 0 0 0 2 0
0 -1 0 -1 0 0 -2 0
A= S b= N c=
-1 0 0 0 -1 0 -1 0
0 0 0 0 0 -1 -1 0

The original result from the program DiophantineGF.m is
given below as well:

In[1]:=<<DiophantineGF.m

In[2]:=a={{2,1,-1,0,0,0},
{0,-1,0,-1,0,0},
{-1,0,0,0,-1,0},
{0,0,0,0,0,-1}};

In[3]:=b={2,-2,-1,-1},;c={0,0,0,0};

In[4]:=DiophantineGF[a,b,c]

1+¢

Out[l1]=-——
vl (—1+¢)

With substitution # = ) the result is same like in previous
mathematical explanation.

I+t 1+t 14y

(Cred) (=0 (1-y)

IV. LOWER BOUND OF PROCESSOR ELEMENTS (PES) OF THE
SYSTOLIC ARRAY FOR DISCRETE FOURIER TRANSFORM (DFT)
BASED ON MATRIX MULTIPLICATION

The algorithm for the writing the 2 dimensional DFT which
is used for designing the corresponding systolic array is given
below (taken from [1]):

Algorithm 1
Internal computations

for j, =0ton —1 do
for j, =0 ton,—1 do
for j; =0 to n, =1 do
2o o> 3) = 20hs o Js =1)

. . .o 3)
+wl(]p_lah)Xx(_l,fzah);
for j, =0ton —1 do
for j, =0 ton, =1 do
for j; =n, to n,+n, -1 do
y(j1’j2>j3)=y(jlaj2_lajz) @

+Z(j1,j2,n1 _I)sz(_lajz,j3 +n1);

Output computations

|_yjlj3J :[Y(jlanz _15j3)]n1xn2;

n-*n,

From above the conclusion is that the computational structure
is characterized by an index space:

Pint = {(j17j27j3)r}€ Z3 where:
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0<j,<m-1,0<j,<n-1, 0<j,<m+n,-1.
The data dependence vectors for variables from (3) and (4) are
(0,0,1)",(0, 7, +1,0)",(j, +1,0,0)" and

(0,1,0)",(0,0, j; =, +1)",(j, +1,0,—1)" , respectively.

In this case (jl,jz,j3) are lattice points inside 3-

dimensional convex polyhedron whose faces are defined by
the inequalities which are the consequence of the algorithm 1.
The obtained inequalities by the converting the geometrical
into a combinatorial interpretation are given below:

hsm=1j,<n,-Lj,<nm+n,-1

The next step is transforming this into the system of
equalities putting the slack variabless,,s,,5; 20 and
augmenting this by the condition of linear schedule for the
corresponding dag which is given with
JitJj,tj,=4n-2 (taking the case
n, =n, = ny; =n). This ranges from 1 to4n—2, and in
this case is taken the halfway point which is:

4n—-2

hti,ti= > =2n-1

The corresponding system of Diophantine equalities is:

htja+ s =2n-1
jl +Sl =n—1 (5)

Ja +s, =n-1

Js +s5, =2n-1

(A, b, C) form is found from the system (5):

1 110 0 0 2 -1
1 0 01 0 O 1 -1
A= S b= S c=
01 0 0 1 O 1 -1
0O 0 1 0 0 1 2 -1

The next step is to run the program DiophantineGF.m:

In[1]:=<<DiophantineGF.m

In[2]:=a={{1,1,1,0,0,0},
{1,0,0,1,0,0},
{0,1,0,0,1,0}

{0,0,1,0,0,1}};
In[3]:=b={2,1,1,2};c={-1,-1,-1,-1};
In[4]:=DiophantineGF[a,b,c]
Formula

t(1+1)
(~1+¢)
Binomial Formula : C[n,2]+C[1+n,2]

2
Power Formula : n

Out[1]:=—

This means that the lower bound for the number of PEs of

systolic array for 2 dimensional DFT isn®. In [1] is given a
table of number of processors elements of systolic arrays,
where can be seen that the array obtained along the projection

direction (0,0,1) , i.e. along j, axis, is optimal in terms of
number of PEs. This number is 7,7, which is the same with

our result for n, =n, =n.

V. LOWER BOUND OF PROCESSOR ELEMENTS FOR LU
FACTORIZATION

The algorithm for factoring the #x 7 matrix 4 = (al.j)
into the product of the lower triangular matrix L = (/) and
the upper triangular matrixU' = (u;); that is,4 = LU,
where the main diagonal of either L or U consists of all ones
is presented below (taken from [21]):

Algorithm 2

INPUT dimension n; the entries a,,1 <i, j <n of A ;the

i/' b
diagonal /;;, =...=1[ =1 of L or the diagonal

, =..=u, =1lofU.

Step I: Select [, and u,, satisfying /,,u,, = a,, .
If /,,u,; =0 then OUTPUT

impossible’);
STOP.

(,Factorization

Step 2: For j=2,..,n set u,; =a,; /1, ; (First row of
U) 1, =a; /u, . (first column of L).
Step 3: For i = 2,...,n—1 do Steps 4 and 5.

Step 4: Select [, and u,, satisfying

i

i—1
L, =a; =Y L, If Lu,; =0 then OUTPUT
k=1

(‘Factorization impossible”’);
STOP.
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Step 5:For j=i+1,...,n set

il
u; = li|:aij - Zlikukj:| ;(ith row of U )
=1

ii

1 i1
ljl. = —{aij — lekuki} . (ith column of L .)
u; k=1

1

Step 6: Select l,m and u,, satisfying

n-1
lnnunn = ann - Zlnkukn .
k=1

Step 7: OUTPUT (/;;, 1 < j<i,1<i<n),
OUTPUT (u,;, i < j<n,1<i<n);
STOP.

The computational structure is characterized by the index
space:

B, ={i,j,k)/0<i<n-li+1<j<n—li+1<k<n-1}

int

There is wused a translation of the loop taking
0<i<n—1 asopposed tol <i < n, because it is implicit.

The same is done with the other index points.

The array computation for the algorithm above (nXnXxn
mesh) is given by G, = (Pim , A), where:

A=, k)77 K) G, jok) € P (01, 'K € Py
andi'=i+1,j'=j,k'=k or

J'=jLi' =ik =k or K =k+1i'=i, ' = j}

In this case (i, j,k) are lattice points inside 3-dimensional

convex polyhedron whose faces are defined by the inequalities
which are the consequence of the algorithm 2.

Converting the geometrical interpretation of the problem
explained above, into a combinatorial interpretation, exactly
into finding of solutions to the system of Diophantine
equations the following four inequalities are got:
j2i+lL,j<n—-1Lk>2i+1L,k<n—1 (there is no
specification of the case0<i,j,k and i<nm—1). The
result of the transforming this into the system of equalities
putting the slack variables s,,5,,5;,5, = 0 is:

Jj=it+l+s,
j+s,=n-1
k=i+1+s,
k+s,=n-1

Augmenting this by the condition of linear schedule for the
corresponding dag which is given withi+ j+k =3n—1
(this ranges from 1 to 37 — 1) and taking the halfway point in

this schedule, which means i+ j+k = , then the

result is the corresponding system of Diophantine equalities
where the number of solutions is a lower bound for the
number of processors:

2i+2j+2k =3n-1
i- j+ s = -1

J b, = ©
i— k + 5, = -1
k +s, =n-1

From system (6) the values of (A, b, c) are found:

2 220 0 00 3 -1
1 -1 1 0 00 0 -1
A= 0 1 0 0 1 0 ol b={1]|, c=|-1
1 0 -1 0 0 1 0 0 -1
0 0 1 0 0 01 1 -1

Running the program DiophantineGF.m is found the lower
bound of PEs for this algorithm:

In[1]:=<<DiophantineGF.m
In[2]:=a={{2,2,2,0,0,0,0},
{1,-1,0,1,0,0,0},
{0,1,0,0,1,0,0},
{1,0,-1,0,0,1,0},
{0,0,1,0,0,0,1} };
In[3]:=b={3,0,1,0,1};c={-1,-1,-1,-1,-1};
In[4]:=DiophantineGF[a,b,c]

Formula
£(1+30)
(1+2) (1 +2) (1+2)

Binomial Formula : 1/32 (-21 C[2+1/2 (10+n),2]+6 C[2+1/2
(-9+n),2]+59 C[2+1/2 (8+n),2]-22 C[2+1/2 (-7+n),2]-47
C[2+1/2 (6+n),2]+34 C[2+1/2 (-5+n),2]-23 C[2+1/2
(4+n),2]+14 C[2+1/2 (-3+n),2]-12 C[1/4 (7+n),0]+8 C[1/4 (-
5+n),0]+21 C[-5+n,2]-57 C[4+n,2]+4 C[1/4 (-3+n),0]+49 C[-
3+n,2]-19 C[2+n,2]+14 C[-1+n,2])

Out[1]:=—
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Simplifying the binomial coefficients above is found the lower
7’12 —n
bound of PEs, which is T .
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