
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1879

Abstract—The approaches to make an agent generate intelligent

actions in the AI field might be roughly categorized into two
ways—the classical planning and situated action system. It is well
known that each system have its own strength and weakness.
However, each system also has its own application field. In
particular, most of situated action systems do not directly deal with
the logical problem. This paper first briefly mentions the novel action
generator to situatedly extract a set of actions, which is likely to help
to achieve the goal at the current situation in the relaxed logical
space. After performing the action set, the agent should recognize the
situation for deciding the next likely action set. However, since the
extracted action is an approximation of the action which helps to
achieve the goal, the agent could be caught into the deadlock of the
problem. This paper proposes the newly developed hybrid
architecture to solve the problem, which combines the novel situated
action generator with the conventional planner. The empirical result
in some planning domains shows that the quality of the resultant path
to the goal is mostly acceptable as well as deriving the fast response
time, and suggests the correlation between the structure of problems
and the organization of each system which generates the action.

Keywords—Situated reasoning, situated action, planning, hybrid
architecture

I. INTRODUCTION
HE approaches to make an agent generate intelligent
actions in the AI field might be very roughly categorized

into two ways—the classical planning and situated action
system. The former which comes from logical traditions is to
extract the path to the given goal by reasoning about the
agent's own action and situation. In particular, the planners
based on (heuristic) search such as Graphplan, HSP, FF,
LPG, and YAHSP have been outperformed in most of
classical planning benchmarks [1]-[5].

However, the latter study on how agents use their
circumstances to achieve intelligent actions, rather than
reasoning actions away from its circumstances, actively arose
in the 1980s as a reaction against the above classical view [7],
[9]. Numerous scientific applications for adapting this notion

Serin Lee is with the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,

Tokyo, Japan. (phone: +81-42-759-8311; e-mail: srlee@nnl.isas.jaxa.jp).
Takashi Kubota is with Japan Aerospace Exploration Agency-Institute of

Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara-shi,
Kanagawa, Japan. (e-mail: kubota@nnl.isas.jaxa.jp).

Ichiro Nakatani is with the Department of Electronic Engineering, the
University of Tokyo, and Japan Aerospace Exploration Agency-Institute of
Space and Astronautical Science. (e-mail: nakatani@nnl.isas.jaxa.jp).

have been followed, and usually showed the faster response
time in deriving actions for the goal. As a result, this fast
runtime makes the situated system be well situated compared
with the classical planning in the dynamic and (partially)
unknown environment [6], [8]. However, most of its practical
applications have been concentrated in the navigation field of
mobile robots, and not directly handled the logical problem
which has been dealt by the classical plan.

To solve problems of each approach, the hybrid architecture
which simply combines two methods has been proposed.
However, most of them still have inherent problems of
situated action approaches, and do not provide the fine
granularity [6], [12].

The objective of this paper is to develop the algorithm and
architecture which can situatedly solve the logical problem,
which might be necessary for the agent to accomplish the
complicated task in the dynamic and hazardous environment.

And thus, the situated action generator not to provide the
full path to the goal, but to situatedly(immediately) derive
only the proper action, which is necessary to achieve the goal
of the given logical problem, could be first considered.
However, the conventional planning is required to exactly
extract only the action that needs to achieve goal from
executable actions at the current situation. Therefore, we
mention the novel situated action generator which situatedely
derives the approximation of the above action from the relaxed
logical space, which is similar to the relaxed plan space used
in most of heuristic planners [2]-[5]. Because the relaxed
logical space for deriving only the action set could be
relatively small, and the extraction of the action would be also
very fast, the response time of the agent to the environment is
consequently fast. It is believed that this can make the agent
be well situated.

However, since the above derived action is just an
approximation of the action which requires to achieve the goal,
if the problem includes the deadlock, then the agent only with
the situated action generator could be caught in the deadlock.
To avoid this situation, the conventional planning system is
required.

This paper solves this problem through the newly developed
hybrid architecture, which combines the novel situated action
generator with the conventional planner. In this architecture,
the classical planner is called on to guide the agent to the goal
only when the agent might meet the deadlock.

It might be critical to decide when the conventional planner
produces the proper action instead of the situated action

An Experimental Consideration
of the Hybrid Architecture

Based on the Situated Action Generator
Serin Lee, Takashi Kubota, and Ichiro Nakatani

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1880

generator. This paper roughly regards the case in which no
action is extracted by the situated action generator as the
necessary criterion which the conventional planner should
provide the action to the agent.

By the situated action generator or conventional planner, the
action, which is necessary to achieve the goal, is exactly or
approximately extracted from the executable actions at every
situation. After performing the extracted action (set), the agent
should recognize the situation for deciding the next likely
action set. Through repeating this strategy, the agent is
expected to arrive at the goal state. The consequent path to the
goal could be considered as Suchman’s post-hoc represented
plan [7].

This paper is organized as follows. After defining notations
used in this paper, we briefly present how the situated action
can be generated. And then, this paper explains the novel
hybrid strategy based on the situated action generator to avoid
the deadlock. This paper finally provides an empirical result
before conclusion.

II. DEFINITIONS
A state S is a finite set of logical atoms (facts). A planning

task { , , }P O I G= is a triple where O is the set of actions,
and I (the initial state), and G (the goals) are set of atoms.
An action o is STRIPS action. { (), (), ()}pre o add o del o
denotes the precondition, addition effect, and deletion effect of
o . The result of applying o to a state S becomes the state
Result(,) (()) \ ()S o S add o del o< > = U if ()pre o S⊆ .
Otherwise, it is undefined.

A relaxed logical space ℜ is built by the following
assumptions.

(1) The deletion effect of actions is ignored. That is, the fact
is not deleted by the action.

(2) The fact which can be achieved at some time is regarded
to be achieved at the time. That is, the case in which the time
to achieve the fact is delayed is not considered.

The set gF is a set of currently achievable facts which is
necessary to accomplish G . However, the conventional
planner is required to exactly derive the gF . Therefore, the

approximation of gF is derived from ℜ , and the set agF

denotes it. The set agA is a set of currently executable actions

that is required to achieve each fact of agF . However, because

all actions included in agA are not always applicable at the

same time, a set agL A⊆ which has a precedence over other

subsets of agA should be derived. That is, the agent is
actually expected to arrive at the goal through applying L at
every situation.

III. CONVENTIONAL PLANNING - GRAPHPLAN
Since 1960’s, various algorithms have been proposed to

make an agent build the plan for itself. In particular, the

search-based planner has been one of the most interesting
approaches. The well-known graphplan is also one of those
state space search-based planners, and has been dealt from
various aspects [1].

The planning space of the graphplan is a directed graph, and
includes two types of nodes, proposition nodes and action
nodes, arranged into levels. Nodes in odd numbered levels
correspond to action instances; there is one such node for each
action instance whose preconditions(facts) are present, and are
mutually consistent at the previous even numbered level [13].
All of the facts are transferred to the next level by the maintain
action (noop). Since the specific level denotes a relative time,
mutex (mutually exclusion relation) represents the exclusive
relation in the same level.

After the planning graph is built until the last fact level
includes all of goal facts that do not include mutex, the
graphplan performs a backward-chaining search on the space
to look for the plan.

In this paper, iA and iF denotes the i-th action and fact
level, respectively. For example, 0A denotes the set of action
that is currently executable.

Figure 1 shows an example of the planning graph for the
rocket problem described in PDDL.

TABLE I

ROCKET DOMAIN AND ITS PROBLEM DESCRIBED IN PDDL

Recently, the planners based on heuristic search such as

HSP, FF, LPG, and YAHSP have been outperformed in
most of classical planning benchmarks [2]-[5].

(define (domain rocket)
(:requirements :strips)
(:types rocket place cargo)
(:predicates (at_r ?r - rocket ?p - place) (fuel ?r - rocket)
 (in ?c - cargo ?r - rocket) (at ?c - cargo ?p - place))
(:action move
 :parameters (?r - rocket ?from - place ?to - place)
 :precondition (and (at_r ?r ?from) (fuel ?r))
 :effect (and (at_r ?r ?to) (not (at_r ?r ?from)) (not (fuel ?r))))
(:action unload
 :parameters (?r - rocket ?p - place ?c - cargo)
 :precondition (and (at_r ?r ?p) (in ?c ?r))
 :effect (and (not (in ?c ?r)) (at ?c ?p)))
(:action load
 :parameters (?r - rocket ?p - place ?c - cargo)
 :precondition (and (at_r ?r ?p) (at ?c ?p))
 :effect (and (not (at ?c ?p)) (in ?c ?r))))

(define (problem rckt_1r2p2c)
(:domain rocket)
(:objects A – cargo

B – cargo
L – place

 P – place
 R - rocket)
(:init (at A L) (at B L) (at r R L) (fuel R))

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1881

Fig. 1 Example of the planning graph

IV. SITUATED ACTION GENERATOR
In this paper, the planning space such as described in Figure

1 is approximately built to immediately derive not the entire
course to the goal, but the situated action on every situation.

A. Relaxed Logical Space
The relaxed logical space ℜ is similar to the relaxed

planning graph space used in some heuristic planners such as
FF [3]. As we defined in the previous section, since it is
assumed in ℜ that the fact is not deleted by the action, the
deletion effects of actions are ignored. Also, since the case in
which the time to achieve the fact is delayed is also ignored in
building ℜ , if the action o is included in the ilevel of the
planning graph space, then o is not appeared in the jlevel

()i j< .
As a result, ℜ can be considered as the graphplan space

built by

• ' (', ,)P O S G= ,

where ' { (), (), | ((), (), ()) }O pre o add o pre o add o del o O= ∅ ⊂ ,
and S denotes the current state.

• If io level∈ , then o is not appeared in the

jlevel ()i j< .
• The last fact level includes all of goal facts.

An example on the relaxed logical space for the rocket

problem is shown in Figure. 2.

B. Extraction of agA and L

After building the relaxed logical space ℜ , the simple
backward chaining is performed from each goal fact to the
action level 0. Since this space does not include the deletion
(negation) fact, there is no exclusive relation (mutex) between
two actions or facts.

Note that ℜ does not contain the fact which the time to
achieve it is delayed. Therefore, during this backward
chaining, if there is a noop for achieving a fact, then the noop
is first selected [3]. Otherwise, a non-noop is randomly

selected because the actual shortest path to the goal over the
entire level cannot be immediately derived from ℜ .

In this paper, we regard the element extracted from 1F and

0A by the above backtracking strategy through noop first
heuristic with randomly selected non-noops as agF and agA ,

respectively. This agA has some similarities with heuristic
actions proposed in various planners such as the helpful action
of FF [3].

After deriving agA from the relaxed logical space ℜ , L

which has a precedence over other subsets of agA is directly

extracted from agA by the following algorithm.

(1) The candidate set of L , candL is initialized to agA .

(2) If some action in candL deletes one of the
precondition of other actions, then the action is removed
from candL . For example, if i jo op , then jo cannot
become the element of L .

(3) If some action in candL deletes the element of agF

which is added by the action o in candL , o is removed from

candL .
(4) The noop in candL is removed.
(5) The candidate set candL becomes L .

In Figure 2, 0 {(load A L), (load B L), (move L P)}agA A= = ,

and {(load A L), (load B L)}L = .

Fig. 2 Example of the relaxed logical space ℜ

 The entire description of the situated action generator is

described in Figure 3.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1882

����� � �� �� �� � ��

�������� 	
� ���	 ���� �� � ��	
 �� �� �
��������

��� ��� � �
	�
 ����� � �� � � �� � ��

�	 ����� � � ����

��� � �
����	

����

��� � ���
��� ��� � �
	�
��� � 	 ��� ��

��� �������� � �
	�
��� � 	 ���	���� ��

�	 � 	 ������
 � � ���	 ����

��� ���� � �

��� � ��� � 	
����
����	

�	 � 	 ������
 � � ��� ���	
 ��� � � ����
�������� � �������� � �

����	

���	�

�	 ��� � � ����
��� ����� �������� �����	�� � ���� ��������

��� � ��� � 	
����
����	

���	�

���	�

��� � � �� ����� � ���

	�
��� ��� �
 	 ����� ��

�	 �� �
 ����

����� � ����� � �

����	

�	 �� 	 ������� � �� � � 	 ���
 � 	 �����
� ����
����� � ����� � ��

����	

���	�

� � �� �����

��
� �

Fig. 3 Situated Action Generator

In building ℜ , the case in which the time to achieve the

fact of agF is delayed is not considered. However, there is

some case which some facts of agF must be delayed.
If the decision on which facts should be delayed is not made,
then the agent with the situated action generator could be
caught in the deadlock or circular routine.

To escape the circular routine in the case of deadlock free,
the randomness should be added to the situated action
generator. Therefore, the way in which one action is randomly
selected from agA with the probability ζ or from 0 agA A−
with 1 ζ− when L = ∅ can be one of the proper solutions.

V. HYBRID ARCHITECTURE
In the case of deadlock free problems, the randomness is

added to deal with the case in which the time to achieve the
fact of agF should be delayed. However, in the case of the
problem including deadlocks, if the above case is not more
carefully dealt, then the agent could catch into the deadlock.

Therefore, we should first modify the algorithm deriving
L to remove all of the potentially risky actions from the

selection of L . This modification can be realized by adding
the routine to exclude the action which deletes the
precondition of other actions in 0A , and this is a necessary
criterion to be caught in the deadlock by performing the action.
In the remaining part of this paper, L is assumed to be
extracted by this method.

As we have mentioned in the previous section, the
conventional planner could help the situated action generator
avoid falling into the deadlock. Therefore, the hybrid
architecture which combines two approaches could be
considered to realize it. However, it might be critical to decide
when the conventional planner produces the proper action
instead of the situated action generator. This paper deals with
this problem through the following novel three-layered hybrid
architecture.

Fig. 4 Proposed Hybrid Architecture

If no element is finally included in L from the situated

action generator, then the second or third layer provides the
proper action to the agent.

At this time, the second layer is selected to build the plan
' (, ', ')P O I G= with the probability 1 λ− , where S is the

current state, ro is a randomly selected action from the set

agA , ' (,) (()) \ ()r r rI S o S add o del o= < > = U is the initial

state, 0Pr { () | }pre o o A= ∈ is the set of the precondition of
currently executable actions, and ' (Pr ()) ()r rG pre o del o= − U .

That is, the second layer is to randomly select the safe
action that does not permanently prohibit the execution of
currently executable other actions.

Of course, although the problem does not include
deadlocks, there could not exist 'P . However, the existence
of 'P for some action ro means that the agent is not caught
into the deadlock by executing ro . Therefore, if the above
plan of 'P exists, then the ro can be selected to be
executed by the agent. Otherwise, the above plan is rebuilt for
other actions. This paper assumes that this re-plan for other
actions is performed with n times.

In our experience, although the action randomly derived
from 'P is very rough to achieve the goal, it can be obtained
fast since most of 'P is much smaller than original planning
task P . Therefore, 'P could derive better situatedness than
the case in which only P is considered.

If 'P cannot be discovered even after n trials, then the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1883

 0.01

 0.1

 1

 10

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Problems (Logistics)

hyb-arch(0.8, 3)
hyb-arch(0.5, 3)
hyb-arch(0.2, 3)
hyb-arch(0.5, 9)

re-FF

third layer, conventional planner provides the action to the
agent. Although the conventional planner builds the entire
course to the goal, this paper assumes that only the first action
of the course is selected for the agent.1

VI. EXPERIMENTAL RESULTS
We compared the proposed hybrid architecture with various

parameters (λ and n), and a well-known classical STRIPS
planner, FF v2.3. The original FF planner was embedded in
the hybrid architecture as a conventional planner, and also
modified for re-planning experimentations. They are all
implemented in C, and no other particular library is used.

In this paper, we first compared the average of response
times of the hybrid architecture and modified FF planner for
re-planning, which takes to derive the action set (or an action)
at every situation until achieving the goal. And then, the
qualities, that is, lengths of the post-hoc represented plan were
compared.

We used two domains in our experimentations: the
Logistics domain, and the Freecell domain. The Logistics
domain does not include the deadlock, but the Freecell domain
includes it.

The maximum amount of time which is allowed for each
problem was fixed to 1600 seconds. We set (n, λ) to (3, 0.8),
(3, 0.5), (3, 0.2), and (9, 0.5).

The experimentation was carried on a Pentium IV 1.7GHz
machine with 768M of RAM running Linux 2.6. The results
are described in the following figures.
 As we briefly stated in the previous section, the
experimental result shows that the modified FF re-planner can
be caught in the circular routine. All cases on the below results
in which the FF re-planner could not solve the problem were
caused by being caught in the circular routine.

Fig. 5 Time on Logistics problems

1 Some of heuristic planners such as FF can be caught in the circular

routine if they are used in re-planning by this method.

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8

P
la

n
le

ng
th

Problems (Logistics)

hyb-arch(0.8, 3)
hyb-arch(0.5, 3)
hyb-arch(0.2, 3)
hyb-arch(0.5, 9)

re-FF

Fig. 6 Plan length on Logistics problems

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

ds
)

Problem (Freecell)

hyb-arch(0.8, 3)
hyb-arch(0.5, 3)
hyb-arch(0.2, 3)
hyb-arch(0.5, 9)

re-FF

Fig. 7 Time on Freecell problems

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 2 3 4 5 6 7 8 9 10

P
la

n
le

ng
th

Problem (Freecell)

hyb-arch(0.8, 3)
hyb-arch(0.5, 3)
hyb-arch(0.2, 3)
hyb-arch(0.5, 9)

re-FF

Fig. 8 Plan length on Freecell problems

As it can be easily guessed, the more the conventional

planner takes charge of providing the action, the better
planning quality can be obtained. But, it would also require
much time, and thus could not provide the better situatedness.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1884

This tendency is more apparent in the case of changing λ ,
than n.

VII. CONCLUSION
We first briefly presented the novel action generator to

situatedly extract a set of actions, which is likely to help to
achieve the goal at the current situation. To derive it, we made
two assumptions : the fact is not deleted by the action, and the
fact which can be achieved at some time is regarded to be
achieved at the time. Under these assumptions, the
approximation of the set of currently achievable facts which is
necessary to accomplish the goal is derived, and then the
action to properly achieve the fact set is extracted.

However, without the help of the conventional planner, the
situated action generator could be caught in the deadlock.
Therefore, the hybrid architecture which combines two
approaches presented to realize it.

The empirical result showed that the quality of the post-hoc
reconstructed plans is relatively acceptable as well as deriving
the fast response to the situation. In particular, the
performance on the deadlock free domain was much better
than that of the domain including the deadlock.

It might be desired that the rate with which the conventional
planner is selected in extracting the action is changed with the
domain. However, it is well known that the decision of the
deadlock free is PSPACE [3], [14]. Therefore, this paper
regarded the case in which the approximation of the currently
executable action required to achieve the goal can be
discovered by the situated action generator as the necessary
criterion of the deadlock free. To enhance the response time,
more elaborate necessary condition should be discovered.

REFERENCES
[1] Avrim L. Blum and Merrick L. Furst “Fast Planning Through Planning

Graph Analysis” , Artificial Intelligence, vol. 90, 1997
[2] B. Bonet and H. Geffner, “Planning as Heuristic Search” Artificial

Intelligence, vol. 129, 2001
[3] Jörg Hoffman and Bernard Nebel, “ The FF Planning Systems: Fast Plan

Generation Through Heuristic Search”, Journal of Artificial Intelligence
Research, vol.14, 2001

[4] Vincent Vidal, “A Lookahead Strategy for Heuristic Search Planning”,
Proc. AAAI-04, 2004

[5] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina, “Planning through
Stochastic Local Search and Temporal Action Graphs in LPG”, Journal
of Artificial Intelligence Research, vol. 20, 2003

[6] Ronald C. Arkin, Behavior-Based Robotics, The MIT Press, 1998
[7] Lucy Suchman, Plans and Situated Actions - The Problem of

Human-Machine Communication, Cambridge University Press, 1987
[8] Rodney A. Brooks, “A robust layered control system for a mobile

robot”, IEEE Journal of Robotics and Automation, vol. 2, 1986
[9] Robert A. Wilson and Frank C. Keil, The MIT Encyclopedia of the

Cognitive Sciences, The MIT Press, 1999
[10] John McCarthy, “Artificial Intelligence, Logic and Formalizing

Common Sense”, Philosophical Logic and Artificial Intelligence, ed. R.
Thomason, Kluwer Academic, 1989

[11] Jana Koehler and Jörg Hoffman, “On Reasonable and Forced Goal
Orderings and their Use in an Agenda-Driven Planning Algorithm”,
Journal of Artificial Intelligence Research, vol. 12, 2000

[12] R. James Firby, “An investigation into reactive planning in complex
domains”, Proc. the 6th National Conference on AI, 1987

[13] Daniel S. Weld, Recent Advances in AI Planning, AI Magazine, 1999

[14] T. Bylander, “The computational complexity of propositional STRIPS
planning”, Artificial Intelligence, vol. 69, 1994

