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Abstract—The approaches to make an agent generate intelligent 

actions in the AI field might be roughly categorized into two 
ways—the classical planning and situated action system. It is well 
known that each system have its own strength and weakness. 
However, each system also has its own application field. In 
particular, most of situated action systems do not directly deal with 
the logical problem. This paper first briefly mentions the novel action 
generator to situatedly extract a set of actions, which is likely to help 
to achieve the goal at the current situation in the relaxed logical 
space. After performing the action set, the agent should recognize the 
situation for deciding the next likely action set. However, since the 
extracted action is an approximation of the action which helps to 
achieve the goal, the agent could be caught into the deadlock of the 
problem. This paper proposes the newly developed hybrid 
architecture to solve the problem, which combines the novel situated 
action generator with the conventional planner. The empirical result 
in some planning domains shows that the quality of the resultant path 
to the goal is mostly acceptable as well as deriving the fast response 
time, and suggests the correlation between the structure of problems 
and the organization of each system which generates the action. 
 

Keywords—Situated reasoning, situated action, planning, hybrid 
architecture 

I. INTRODUCTION 
HE approaches to make an agent generate intelligent 
actions in the AI field might be very roughly categorized 

into two ways—the classical planning and situated action 
system. The former which comes from logical traditions is to 
extract the path to the given goal by reasoning about the 
agent's own action and situation. In particular, the planners 
based on (heuristic) search such as Graphplan, HSP,  FF,  
LPG, and YAHSP have been outperformed in most of 
classical planning benchmarks [1]-[5]. 

However, the latter study on how agents use their 
circumstances to achieve intelligent actions, rather than 
reasoning actions away from its circumstances, actively arose 
in the 1980s as a reaction against the above classical view [7], 
[9]. Numerous scientific applications for adapting this notion  
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have been followed, and usually showed the faster response 
time in deriving actions for the goal. As a result, this fast 
runtime makes the situated system be well situated compared 
with the classical planning in the dynamic and (partially) 
unknown environment [6], [8]. However, most of its practical 
applications have been concentrated in the navigation field of 
mobile robots, and not directly handled the logical problem 
which has been dealt by the classical plan. 

To solve problems of each approach, the hybrid architecture 
which simply combines two methods has been proposed. 
However, most of them still have inherent problems of 
situated action approaches, and do not provide the fine 
granularity [6], [12].  

The objective of this paper is to develop the algorithm and 
architecture which can situatedly solve the logical problem, 
which might be necessary for the agent to accomplish the 
complicated task in the dynamic and hazardous environment.  

And thus, the situated action generator not to provide the 
full path to the goal, but to situatedly(immediately) derive 
only the proper action, which is necessary to achieve the goal 
of the given logical problem, could be first considered. 
However, the conventional planning is required to exactly 
extract only the action that needs to achieve goal from 
executable actions at the current situation. Therefore, we 
mention the novel situated action generator which situatedely 
derives the approximation of the above action from the relaxed 
logical space, which is similar to the relaxed plan space used 
in most of heuristic planners [2]-[5]. Because the relaxed 
logical space for deriving only the action set could be 
relatively small, and the extraction of the action would be also 
very fast, the response time of the agent to the environment is 
consequently fast. It is believed that this can make the agent 
be well situated. 

However, since the above derived action is just an 
approximation of the action which requires to achieve the goal, 
if the problem includes the deadlock, then the agent only with 
the situated action generator could be caught in the deadlock. 
To avoid this situation, the conventional planning system is 
required.  

This paper solves this problem through the newly developed 
hybrid architecture, which combines the novel situated action 
generator with the conventional planner. In this architecture, 
the classical planner is called on to guide the agent to the goal 
only when the agent might meet the deadlock.  

It might be critical to decide when the conventional planner 
produces the proper action instead of the situated action 
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generator. This paper roughly regards the case in which no 
action is extracted by the situated action generator as the 
necessary criterion which the conventional planner should 
provide the action to the agent. 

By the situated action generator or conventional planner, the 
action, which is necessary to achieve the goal, is exactly or 
approximately extracted from the executable actions at every 
situation. After performing the extracted action (set), the agent 
should recognize the situation for deciding the next likely 
action set. Through repeating this strategy, the agent is 
expected to arrive at the goal state. The consequent path to the 
goal could be considered as Suchman’s post-hoc represented 
plan [7]. 

This paper is organized as follows. After defining notations 
used in this paper, we briefly present how the situated action 
can be generated. And then, this paper explains the novel 
hybrid strategy based on the situated action generator to avoid 
the deadlock. This paper finally provides an empirical result 
before conclusion. 

II. DEFINITIONS 
A state S  is a finite set of logical atoms (facts). A planning 

task { , , }P O I G=  is a triple where O  is the set of actions, 
and I (the initial state), and G (the goals) are set of atoms. 
An action o  is STRIPS action. { ( ), ( ), ( )}pre o add o del o  
denotes the precondition, addition effect, and deletion effect of 
o . The result of applying o  to a state S  becomes the state 
Result( , ) ( ( )) \ ( )S o S add o del o< > = U  if ( )pre o S⊆ .  
Otherwise, it is undefined.  

A relaxed logical space ℜ  is built by the following 
assumptions. 

(1) The deletion effect of actions is ignored. That is, the fact 
is not deleted by the action. 

(2) The fact which can be achieved at some time is regarded 
to be achieved at the time. That is, the case in which the time 
to achieve the fact is delayed is not considered. 

The set gF  is a set of currently achievable facts which is 
necessary to accomplish G . However, the conventional 
planner is required to exactly derive the gF . Therefore, the 

approximation of gF  is derived from ℜ , and the set agF  

denotes it. The set agA  is a set of currently executable actions 

that is required to achieve each fact of agF . However, because 

all actions included in agA  are not always applicable at the 

same time, a set agL A⊆  which has a precedence over other 

subsets of agA  should be derived. That is, the agent is 
actually expected to arrive at the goal through applying L  at 
every situation. 

 

III. CONVENTIONAL PLANNING - GRAPHPLAN 
Since 1960’s, various algorithms have been proposed to 

make an agent build the plan for itself. In particular, the 

search-based planner has been one of the most interesting 
approaches. The well-known graphplan is also one of those 
state space search-based planners, and has been dealt from 
various aspects [1]. 

The planning space of the graphplan is a directed graph, and 
includes two types of nodes, proposition nodes and action 
nodes, arranged into levels. Nodes in odd numbered levels 
correspond to action instances; there is one such node for each 
action instance whose preconditions(facts) are present, and are 
mutually consistent at the previous even numbered level [13]. 
All of the facts are transferred to the next level by the maintain 
action (noop). Since the specific level denotes a relative time, 
mutex (mutually exclusion relation) represents the exclusive 
relation in the same level.  

After the planning graph is built until the last fact level 
includes all of goal facts that do not include mutex, the 
graphplan performs a backward-chaining search on the space 
to look for the plan.  

In this paper, iA  and iF  denotes the i-th action and fact 
level, respectively. For example, 0A  denotes the set of action 
that is currently executable. 

Figure 1 shows an example of the planning graph for the 
rocket problem described in PDDL. 

 
TABLE I 

ROCKET DOMAIN AND ITS PROBLEM DESCRIBED IN PDDL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Recently, the planners based on heuristic search such as 

HSP,  FF,  LPG, and YAHSP have been outperformed in 
most of classical planning benchmarks [2]-[5]. 

 
 
 
 
 
 

(define (domain rocket) 
(:requirements :strips) 
(:types rocket place cargo) 
(:predicates (at_r ?r - rocket ?p - place) (fuel ?r - rocket)  
   (in ?c - cargo ?r - rocket) (at ?c - cargo ?p - place)) 
(:action move 
   :parameters (?r - rocket ?from - place ?to - place) 
   :precondition (and (at_r ?r ?from) (fuel ?r)) 
   :effect (and (at_r ?r ?to) (not (at_r ?r ?from)) (not (fuel ?r)))) 
(:action unload 
   :parameters (?r - rocket ?p - place ?c - cargo) 
   :precondition (and (at_r ?r ?p) (in ?c ?r)) 
   :effect (and (not (in ?c ?r)) (at ?c ?p))) 
(:action load 
   :parameters (?r - rocket ?p - place ?c - cargo) 
   :precondition (and (at_r ?r ?p) (at ?c ?p)) 
   :effect (and (not (at ?c ?p)) (in ?c ?r)))) 
       
(define (problem rckt_1r2p2c) 
(:domain rocket) 
(:objects  A – cargo  

B – cargo  
L – place 

   P – place 
   R - rocket) 
(:init (at A L) (at B L) (at r R L) (fuel R)) 
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Fig. 1 Example of the planning graph 

IV. SITUATED ACTION GENERATOR 
In this paper, the planning space such as described in Figure 

1 is approximately built to immediately derive not the entire 
course to the goal, but the situated action on every situation.  

A. Relaxed Logical Space  
The relaxed logical space ℜ is similar to the relaxed 

planning graph space used in some heuristic planners such as 
FF [3]. As we defined in the previous section, since it is 
assumed in ℜ that the fact is not deleted by the action, the 
deletion effects of actions are ignored. Also, since the case in  
which the time to achieve the fact is delayed is also ignored in 
building ℜ , if the action o  is included in the ilevel  of the 
planning graph space, then o  is not appeared in the jlevel  

( )i j< . 
As a result, ℜ can be considered as the graphplan space 

built by  
 
•  ' ( ', , )P O S G=  , 

where ' { ( ), ( ), | ( ( ), ( ), ( )) }O pre o add o pre o add o del o O= ∅ ⊂ ,  
and S  denotes the current state. 

•  If io level∈ , then o is not appeared in the 

jlevel ( )i j< . 
•   The last fact level includes all of goal facts. 
 
An example on the relaxed logical space for the rocket 

problem is shown in Figure. 2.  

B. Extraction of agA  and L  

After building the relaxed logical space ℜ , the simple 
backward chaining is performed from each goal fact to the 
action level 0. Since this space does not include the deletion 
(negation) fact, there is no exclusive relation (mutex) between 
two actions or facts.  

Note that ℜ does not contain the fact which the time to 
achieve it is delayed. Therefore, during this backward 
chaining, if there is a noop for achieving a fact, then the noop 
is first selected [3]. Otherwise, a non-noop is randomly 

selected because the actual shortest path to the goal over the 
entire level cannot be immediately derived from ℜ . 

In this paper, we regard the element extracted from 1F  and 

0A  by the above backtracking strategy through noop first 
heuristic with randomly selected non-noops as agF  and agA , 

respectively. This agA  has some similarities with heuristic 
actions proposed in various planners such as the helpful action 
of FF [3]. 

After deriving agA  from the relaxed logical space ℜ , L  

which has a precedence over other subsets of agA  is directly 

extracted from agA  by the following algorithm. 

(1)   The candidate set of L , candL  is initialized to agA . 

(2)  If some action in candL  deletes one of the 
precondition of other actions, then the action is removed 
from candL . For example, if i jo op , then jo  cannot 
become the element of L . 

(3)   If some action in candL  deletes the element of agF  

which is added by the action o in candL , o is removed from 

candL . 
(4)   The noop in candL  is removed. 
(5)   The candidate set candL  becomes L . 
 
In Figure 2, 0 {(load A L), (load B L), (move L P)}agA A= = , 

and {(load A L), (load B L)}L = . 

 
Fig. 2 Example of the relaxed logical space ℜ  

 
 The entire description of the situated action generator is 

described in Figure 3. 
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Fig. 3 Situated Action Generator 

 
In building ℜ , the case in which the time to achieve the 

fact of agF  is delayed is not considered. However, there is 

some case which some facts of agF  must be delayed.  
If the decision on which facts should be delayed is not made, 
then the agent with the situated action generator could be 
caught in the deadlock or circular routine. 

To escape the circular routine in the case of deadlock free, 
the randomness should be added to the situated action 
generator. Therefore, the way in which one action is randomly 
selected from agA  with the probability ζ  or from 0 agA A−  
with 1 ζ−  when L = ∅  can be one of the proper solutions.  
 

V. HYBRID ARCHITECTURE 
In the case of deadlock free problems, the randomness is 

added to deal with the case in which the time to achieve the 
fact of agF  should be delayed. However, in the case of the 
problem including deadlocks, if the above case is not more 
carefully dealt, then the agent could catch into the deadlock.  

Therefore, we should first modify the algorithm deriving 
L  to remove all of the potentially risky actions from the 

selection of L . This modification can be realized by adding 
the routine to exclude the action which deletes the 
precondition of other actions in 0A , and this is a necessary 
criterion to be caught in the deadlock by performing the action. 
In the remaining part of this paper, L  is assumed to be 
extracted by this method. 

As we have mentioned in the previous section, the 
conventional planner could help the situated action generator 
avoid falling into the deadlock. Therefore, the hybrid 
architecture which combines two approaches could be 
considered to realize it. However, it might be critical to decide 
when the conventional planner produces the proper action 
instead of the situated action generator. This paper deals with 
this problem through the following novel three-layered hybrid 
architecture. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Proposed Hybrid Architecture 
 
If no element is finally included in L  from the situated 

action generator, then the second or third layer provides the 
proper action to the agent.  

At this time, the second layer is selected to build the plan 
' ( , ', ')P O I G=  with the probability 1 λ− , where S  is the 

current state, ro  is a randomly selected action from the set 

agA , ' ( , ) ( ( )) \ ( )r r rI S o S add o del o= < > = U  is the initial 

state, 0Pr { ( ) | }pre o o A= ∈ is the set of the precondition of 
currently executable actions, and ' (Pr ( )) ( )r rG pre o del o= − U . 

That is, the second layer is to randomly select the safe 
action that does not permanently prohibit the execution of 
currently executable other actions.  

Of course, although the problem does not include 
deadlocks, there could not exist 'P . However, the existence 
of 'P  for some action ro  means that the agent is not caught 
into the deadlock by executing ro . Therefore, if the above 
plan of 'P  exists, then the ro  can be selected to be 
executed by the agent. Otherwise, the above plan is rebuilt for 
other actions. This paper assumes that this re-plan for other 
actions is performed with n times.  

In our experience, although the action randomly derived 
from 'P  is very rough to achieve the goal, it can be obtained 
fast since most of 'P  is much smaller than original planning 
task P . Therefore, 'P  could derive better situatedness than 
the case in which only P  is considered. 

If 'P  cannot be discovered even after n trials, then the 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1883

 

 

 0.01

 0.1

 1

 10

 1  2  3  4  5  6  7  8

T
im

e 
(s

ec
on

ds
)

Problems (Logistics)

hyb-arch(0.8, 3)
hyb-arch(0.5, 3)
hyb-arch(0.2, 3)
hyb-arch(0.5, 9)

re-FF

third layer, conventional planner provides the action to the 
agent. Although the conventional planner builds the entire 
course to the goal, this paper assumes that only the first action 
of the course is selected for the agent.1 

 

VI. EXPERIMENTAL RESULTS 
We compared the proposed hybrid architecture with various 

parameters ( λ  and n ), and a well-known classical STRIPS 
planner, FF v2.3. The original FF planner was embedded in 
the hybrid architecture as a conventional planner, and also 
modified for re-planning experimentations. They are all 
implemented in C, and no other particular library is used.  

In this paper, we first compared the average of response 
times of the hybrid architecture and modified FF planner for 
re-planning, which takes to derive the action set (or an action) 
at every situation until achieving the goal. And then, the 
qualities, that is, lengths of the post-hoc represented plan were 
compared. 

We used two domains in our experimentations: the 
Logistics domain, and the Freecell domain. The Logistics 
domain does not include the deadlock, but the Freecell domain 
includes it.  

The maximum amount of time which is allowed for each 
problem was fixed to 1600 seconds. We set (n, λ ) to (3, 0.8), 
(3, 0.5), (3, 0.2), and (9, 0.5). 

The experimentation was carried on a Pentium IV 1.7GHz 
machine with 768M of RAM running Linux 2.6. The results 
are described in the following figures. 
  As we briefly stated in the previous section, the 
experimental result shows that the modified FF re-planner can 
be caught in the circular routine. All cases on the below results 
in which the FF re-planner could not solve the problem were 
caused by being caught in the circular routine.  

 
 
 
 

 
 

 
 
 
 
 

 
 

 

Fig. 5 Time on Logistics problems 
 

                                                   
1 Some of heuristic planners such as FF can be caught in the circular 

routine if they are used in re-planning by this method.  
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Fig. 6 Plan length on Logistics problems 
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Fig. 7 Time on Freecell problems 
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Fig. 8 Plan length on Freecell problems 
 
As it can be easily guessed, the more the conventional 

planner takes charge of providing the action, the better 
planning quality can be obtained. But, it would also require 
much time, and thus could not provide the better situatedness.  
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This tendency is more apparent in the case of changing λ , 
than n. 

 

VII. CONCLUSION 
We first briefly presented the novel action generator to 

situatedly extract a set of actions, which is likely to help to 
achieve the goal at the current situation. To derive it, we made 
two assumptions : the fact is not deleted by the action, and the 
fact which can be achieved at some time is regarded to be 
achieved at the time. Under these assumptions, the 
approximation of the set of currently achievable facts which is 
necessary to accomplish the goal is derived, and then the 
action to properly achieve the fact set is extracted.  

However, without the help of the conventional planner, the 
situated action generator could be caught in the deadlock. 
Therefore, the hybrid architecture which combines two 
approaches presented to realize it. 

The empirical result showed that the quality of the post-hoc 
reconstructed plans is relatively acceptable as well as deriving 
the fast response to the situation. In particular, the 
performance on the deadlock free domain was much better 
than that of the domain including the deadlock.  

It might be desired that the rate with which the conventional 
planner is selected in extracting the action is changed with the 
domain. However, it is well known that the decision of the 
deadlock free is PSPACE [3], [14]. Therefore, this paper 
regarded the case in which the approximation of the currently 
executable action required to achieve the goal can be 
discovered by the situated action generator as the necessary 
criterion of the deadlock free. To enhance the response time, 
more elaborate necessary condition should be discovered. 
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