
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

261

Abstract—In this paper, we propose an architecture for easily

constructing a robot controller. The architecture is a multi-agent
system which has eight agents: the Man-machine interface, Task
planner, Task teaching editor, Motion planner, Arm controller,
Vehicle controller, Vision system and CG display. The controller has
three databases: the Task knowledge database, the Robot database and
the Environment database. Based on this controller architecture, we
are constructing an experimental power distribution line maintenance
robot system and are doing the experiment for the maintenance tasks,
for example, “Bolt insertion task”.

Keywords—Robot controller, Software library, Maintenance
robot, Robot language, Agent system.

I. INTRODUCTION
E propose a robot controller architecture for easily
constructing robot systems in this paper. The

architecture is composed of modularized functional agents and
databases. We will show some samples of computer program
functions for the agents and databases.

The features of the controller architecture are as follows:
1) It is easy to build a robot controller which is composed of the

modularized components (software agents and databases).
2) Robot motions are written in a robot language. Task

instruction (for example “Insert bolt”) is written in the robot
language.

3) System designers can define any robot language by written
the corresponding program functions in C language. For
example, “Find/Bolt” is defined and the instruction is
executed by the function ExecuteFind() that is written in C
language.
The architecture has the following two advantages compared

with the other robot system architectures, for example, the RT
middleware [1]. One is that the soft ware is easy to read,
because all the source programs are written in C language and
the databases are the text files. It is easy to understand and
modify. The other is that we will open the source program
library after we completed it. Using the library, the robot

Manuscript received March 31, 2008. This work was supported in part by

the Japan. Chubu Electric Power Co., Inc.
Yingxin He is with Meijo University, Nagoya, Japan (e-mail:

m0641504@ccmailg.meijo-u.ac.jp).
Kyouichi Tatsuno is with Meijo University, Nagoya, Japan (e-mail:

tatsuno@ccmfs.meijo-u.ac.jp).

system designer can construct the system in short time and can
add new functions.

Fig. 1 Experimental power distribution line maintenance robot system

Man-machine
interface

OS: (Linux)
Task planner
OS: (Linux)

Motion planner
OS: (Linux)

Vision system
OS: (Linux)

CG display
OS: (Linux)

Arm controller
OS: (RT-Linux)

Vehicle controller
OS: (RT-Linux)

Camera×3Arm Vehicle

Ethernet

Man-machine
interface

OS: (Linux)
Task planner
OS: (Linux)
Task planner
OS: (Linux)

Motion planner
OS: (Linux)
Motion planner
OS: (Linux)

Vision system
OS: (Linux)
Vision system
OS: (Linux)

CG display
OS: (Linux)
CG display
OS: (Linux)

Arm controller
OS: (RT-Linux)
Arm controller
OS: (RT-Linux)

Vehicle controller
OS: (RT-Linux)
Vehicle controller
OS: (RT-Linux)

Camera×3Camera×3ArmArm VehicleVehicle

Ethernet

Fig. 2 Hard ware architecture of an experimental power distribution
line maintenance robot system

We are writing computer program functions for an
experimental power distribution line maintenance robot system
(Fig. 1). In this paper, we will introduce the proposed
architecture which is computer software architecture. We will
introduce the computer programs in the case of “Insert bolt”.

An Example of Open Robot Controller
Architecture - For Power Distribution Line

Maintenance Robot System -

Yingxin He, and Kyouichi Tatsuno

W

3 eye camera

Work arm

Bolt

Hole

Simulated
Electric pole

Mobile vehicle

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

262

II. OUTLINE OF THE PROPOSED ROBOT SYSTEM ARCHITECTURE

A. System Architecture
1) Hardware Architecture
Fig. 2 shows the hardware architecture of the experimental

power distribution line maintenance robot system. In the figure,
each block represents a PC (Personal Computer) and all the PC
are connected by Ethernet. The software agents such as
Man-machine interface, Task planner, Motion planner, and so
on, are installed on the PCs.

2) Software Architecture
Fig. 3 shows the software architecture. This system is a

multi-agent system composed of eight agents and three
databases. The eight agents are Man-machine interface, Task
planner, Motion planner, Arm controller, Vehicle controller,
CG display, Vision system and Task teaching editor. The three
databases are Task knowledge database, Robot database and
Environment database. In this system, the instructions and
requests among agents are sent as messages in the character
code. By exchanging the messages among agents, the robot
system executes their tasks.

B. System Operations
1. Preparation for Task Execution
The robot system has the Task knowledge database,

Environment database and robot database. Before executing the
robot work, we need to make these databases.

Task knowledge data bases is a set of instruction sheets of

the task procedure (text file) written in the robot language. The
robot language is to direct motion sequences of the robot arms
and vehicle for executing the task. Task teaching editor edits
this database. Task planner reads the motion sequences and
executes the robot languages.

Environment database is a set of objects that describe the
shape and three-dimensional position of work objects which
are composed of work environments. Robot database is a
database that represents the shape, link parameter and three
dimensional position of the robot. Before we direct a task, we
prepare 3D models of the work environments and the work
objects, then, the vision system constructs the 3D models of the
work environment by
superimposing the 3D frame
model of the work objects onto
photographs that is taken by
the cameras from two different
positions. Fig. 4 shows the
superimposing of the 3D frame
model on the photograph. The
Environment database and
Robot database are referred
when visual feedback, obstacle
avoidance and CG display.

Fig. 4 The 3D frame is
overlap with the mock
electrical pole of the

photograph

Fig. 3 Software architecture of the experimental Power distribution line maintenance robot system

Man-machine interface

Motion planner

Task instruction message

Move command message
(Robot language movement instruction)

The value of potion/speed

Task procedure
Move command

OpenCV

Input task instruction
•GUI
•Voice command
•Joystick

Task planner
•Search task knowledge database
•Generate command table
•Execute the function by Command
•Generate the movement target of arm

•Generate motion table

Arm controller
•Inverse kinematics
•Control the angle
of arm joint

Vehicle controller
•Inverse kinematics
•Control wheel motor

Robot database
•3D module of robot
• Link parameter

Environment
database

•3D module of
work object

3 dimension
shape
position

Task knowledge
database

•Task procedure
•Robot language

Task teaching editor

Vision system
•Input 3D work
environment

•Visual feedback

CG display

OpenGL

Man-machine interface

Motion planner

Task instruction message

Move command message
(Robot language movement instruction)

The value of potion/speed

Task procedure
Move command
Task procedure
Move command

OpenCV

Input task instruction
•GUI
•Voice command
•Joystick

Task planner
•Search task knowledge database
•Generate command table
•Execute the function by Command
•Generate the movement target of arm

•Generate motion table

Arm controller
•Inverse kinematics
•Control the angle
of arm joint

Arm controller
•Inverse kinematics
•Control the angle
of arm joint

Vehicle controller
•Inverse kinematics
•Control wheel motor

Vehicle controller
•Inverse kinematics
•Control wheel motor

Robot database
•3D module of robot
• Link parameter

Robot database
•3D module of robot
• Link parameter

Environment
database

•3D module of
work object

Environment
database

•3D module of
work object

3 dimension
shape
position

Task knowledge
database

•Task procedure
•Robot language

Task knowledge
database

•Task procedure
•Robot language

Task teaching editorTask teaching editor

Vision system
•Input 3D work
environment

•Visual feedback

Vision system
•Input 3D work
environment

•Visual feedback

CG display

OpenGL

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

263

2. Task Execution
The procedure of execution is as follows:
The robot operator directs a task through a GUI (Graphical

User interface) or voice input in the Man-machine interface.
The GUI lists the executable task commands. For example, the
operator selects the command “Insert bolt”, by a mouse click or
voice. The Man-machine interface recognizes the request, and
sends the message of the corresponding task command to the
Task planner. The message is written in character code.

Task planner receives the task command from Man-machine
interface. It reads the task instruction sheet from the Task
knowledge database. Then, the Task planner generates the
command tables of motion instructions that are written in the
robot language. Finally, it sends the each command to Monition
planner, Vision and so on.

Monition planner generates an S shape trajectory of
position/velocity from the current position to the target position
of the arm tip. The generated trajectory (position table) is sent
to the Arm controller.

Arm controller transforms the positions and attitudes of the
arm tip into joint angles by the inverse kinematics. The arm
controller controls the joint angles of the robot arm. It also
updates the present position and attitude to the Robot database.

CG display reads Robot database and Environment database
and draws the shapes of the arm links, the work objects in the
environments. The OpenGL (Open graphics library) [2] is used
to draw the 3D models of the robot and the objects in the
environments.

From the next chapter, we will introduce the computer
programs for the databases and agents.

III. DATABASE STRUCTURE
A. Structure of Task Knowledge Database
Task knowledge data base is a set of text files which describe

the task procedures in robot language such as a human
language, for examples, “Find” (Find the object using vision
system), “MoveP” (Move under position control), “MoveVF”
(Move under visual feedback), “MoveFC” (Move under force
control).

Fig. 5 shows the content of the task instruction in the task
knowledge database (text file). In this text file, a statement of
one command is written within a line, and one line is composed
of a command name and some parameter (The parameter is
different by each task). Moreover, command name and
parameter data are divided by the character /.

B. Structure of Environment Database and Robot Database
Environment database is a set of objects that shows the shape

and three-dimensional position of work objects which are
composed of work environments.

The robot database is a database that represents the shape,
link parameter and three-dimensional position of the robot.

These databases are the text files that transferred from 3ds
Studio max file or other CAD file. The contents of these
databases are sets of structures that describe the shape, position
coordinates, and the color of the object. Fig. 6 shows the
structure format of the objects.

Fig. 5 The task knowledge database of bolt insertion task

Command name ParameterCommand name Parameter

Fig. 6 The structure format of the object in the Environment
database

Reception interrupt
by message

Waiting message of socket communication

Initialize

Start the function by the command of message

Fig. 7 Main processing flow of agent program

Finish?

Finish

No

Yes
Kick off the
command
execution
program

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

264

IV. AGENT PROGRAMS
A. The Features of Agent Programs
Each agent program starts by receiving the message and

executes the corresponding programs to the commands. Fig. 7
shows the flow of a common main process.

B. Processing of Agent Program
1. Man-Machine Interface
Operating input the task instruction by Man-machine

interface. For example, the user using mouse select the task
command “InsertBolt” in the GUI. Then, the Man-machine
interface recognizes the command and generate a message that
is ”Man-machineInterface/TaskInstruction/InsertBolt”. It make
and send this massage using function “SocketSendMessage ()”.

2. Task Planner
The main program of Task planner is a little different from

the other agents. Fig. 8 shows the main flow of Task planner.
After Task planner receive the message, it generates a
command table first, and then it read these command in order,
and start the corresponding function program to the command.

1) Receive the Message: TpReceiveMessage()

2) Generate the command table: TpMakeCommandTable()

Function: TpMakeCommandTable(char *MessageData,
int MaxCommandNo, char *CommandTable
[100][300])

Argument: MessageData: Received message data,
MaxCommandNo: Amount of generated
command,
CommandTable: Data of generated command
table.

Processing:
1. IF the command is a task instruction (For example:

“TaskInstructuion/InsetBolt”):
• Searching the task knowledge database.

TpSearchTaskKnowledgeDataBase()
- Read the text file “TaskOlder_InsertBolt.txt”.

• Save the command sequences in the file to the
Command table (Refer to Table I).

2. IF the command is not a task instruction (For example:
“MoveP/Parameter”).
• Save the command to Command table.

Function: void* TpReceiveMessage(char
*MessageData, LPREQUEST lpReq)

Argument: MessageData: message data,
lpReq: The information of socket communication.

Processing:
1. Get the message from the reception cue

Get_Que(&(lpReq->RecieveQue))
If have a message

2. The received data is saved to the “MassageData”.
If do not have message

3. Clear the reception cue:
Clear_Que(&(lpReq->RecieveQue)).

Function: int SocketSendMessage(int SessionID, char
*MyAgentName, char * CommandName, char
*Contents)

Argument: SessionID: a number of sessions. The session
has the information of destination agent,
MyAgentName: Man-machineInterface ,
CommandName: TaskInstruction,
Contents: InsertBolt.

Processing:
1. Generate a message data. It is to put the character / into

the middle of MyAgentName, CommandName and
Contents.

2. Send message data to Task planner.
SocketSend(Socket, MessageData)

Waiting message of socket communication
(While(1))

Initialize

Execute the command table (TpExecuteCommandTable())
Start the functions by the commands

(Example: TpExecuteMoveP())

Fig. 8 Main processing flow of Task planner

Receive the message
(TpRecieveMessage())

Generate the command table
(TpMakeCommandTable())

Reception interrupt by message
(Example:“Man-machineInterface/TaskIn

struction/InsertBolt”)

Finish?

Finish

No

Yes

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

265

Table I shows the generated command table, the commands
and the parameters are the character strings (With in 300
characters) in the array. Moreover, each data of the parameter is
divided by the character /. Since the concrete parameter in
MoveP has too much data, it is omitted. The concrete parameter
will show in Table II.

3) Execute the command table: TpExecuteCommandTable()

4) The sample function: TpExecuteMoveP()
Here, we explain the processing of function “TpExecuteM

oveP”. First, Let us see the details of the MoveP command and
the parameter. It is as follows:

The explanation of the parameter is showing in Table II. And
the explanation of Table II is as follows:
ⅰ) Command name
ⅱ) Arm name to be moved
ⅲ) A coordinate system for expressing an object position
ⅳ) Average velocity of moving arm
ⅴ) Average angular velocity of moving arm joint
ⅵ) Sampling time for expressing an arm trajectory
ⅶ) Control method (Position control, Force control and ets.)
ⅷ) Target position/attitude of an arm (that is a 4*4 matrix)
ⅸ) It is a selection which obstacle avoidance path is generated
or not.

3. Motion Planner
When the Motion planner receive the message

“TrajectoryMoveP/Parameter”, the function
“MpTrajectoryMoveP()” will be started.

3. Motion Planner
When the Motion planner receive the message

“TrajectoryMoveP/Parameter”, the function
“MpTrajectoryMoveP()” will be started.

4. Arm Controller
When the Arm controller receive the message

“ControlMoveP/Parameter”, the function
“AcControlMoveP()” is started.

Function: TpExecuteCommandTable(int
MaxCommandNo, char
*CommandTable[100][300])

Argument:
MaxCommandNo: Amount of generated command,
CommandTable: Data of generated command table.

Processing:
1. Take the command name and the parameter from the

first line of “CommandTable”.
2. Judged the command name, and start the function that

is corresponding to the command. The function
corresponding to the command is as follows.
Find/Hole → TpExecuteFind(char *parameter)
MoveP → TpExecuteMoveP(char *parameter)
MoveCF → TpExecuteMoveVF(char *parameter)
MoveFC → TpExecuteMoveFC(char *parameter)

3. Execute the command by turn until the number same
as the “MaxCommandNo”.

MoveP/RobotArm/Hole_RoadSide_CrossArm/5/10/100/Posit
ion/0.000000/-0.000001/0.999999/41.198987/0.000003/-1
.000000/-0.000001/-0.001019/1.000000/0.000003/0.0000
00/63.992144/0/0/0/1/FALSH

Function: TpExecuteMoveP(char *Parameter [300])
Argument: Parameter: the parameter of MoveP.
Processing:
1. Data taransformation from character to number such

as “int”, “double” and so on.
2. Get the position and attitude of an arm and object from

Robot database and Environment database.
3. Coordination transformation of an arm position and

attitude from the object coordinate system (Refer in
Parameter data ⅲ) to the arm base coordinate system.

4. Make the message “TrajectoryMoveP/Parameter”.
5. Send the message to Motion planner.

TABLE I
COMMAND TABLE

Leading address of table Table contents

CommandTable[0][300] Find/Hole/Hole_RoadSide_CrossAr
m/Manual

CommandTable[1][300] MoveP/Parameter
CommandTable[2][300] MoveVF/Parameter
CommandTable[3][300] MoveFC/Parameter

TABLE II
PARAMETER OF MOVEP COMMAND

Command name Arm name Instruction coordinate Velocity
[cm/s]

Angle velocity
[deg/s]

Delta time
[msec]

Control type Target value Obstacle avoidance

MoveP Robot
Arm

Hole_RoadSide_Cros
sArm

5 10 100 Position 4*4Matrix FALSH

i ii iii ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ

Function: AcExecuteControlMoveP(char* Parameter)
Argument: Parameter: the parameter of ControlMoveP
Processing:
1. Data transform from character to number.
2. Invert kinematics (Transform from the target position

of arm tip to the arm joint angles).
3. Servo controls the arm joint angles.
4. Send the message “UpdateRobotDB/Parameter” to the

Task planner.

Function: MpExecuteTrajectoryMoveP(char* Parameter)
Argument: Parameter: the parameter of TrajectoryMoveP
Processing:
1. Data transform from character to number.
2. Trajectory of position is generated.
3. Trajectory of attitude is generated.
4. Send the message “ControlMoveP/Parameter” to Arm

controller.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

266

5. Vision System
The program of Vision system is made using OpenCV(Open

source computer vision library) [3].
The Task knowledge database has a command “Find/Hole”.

We will explain the execution of this command in the Vision
system. First, Task planner read this command and sent the
message “Find/Hole” to the Vision system. The Vision system
execute the function “VsExecuteFind()”.

V. BOLT INSERTION EXPERIMENT
Please review the task instruction for “Bolt insert” in Fig. 5.

The explanation of the task procedure is as follow:
Motion1: Find/Hole, The three dimensional position of hole is

measurement by Vision system. (Fig. 9 (a))
Motion2: MoveP, Move the bolt to a place which is 2cm above

the hole. (Fig. 9 (b))
Motion3: MoveVF, Align the bolt tip to the hole under visual

feedback. (Fig. 9 (c))
Motion4: MoveFC, Insert the bolt into the hole using force

control (Fig. 9 (d))

VI. CONCLUSION
We proposed a robot controller architecture to construct the

robot system easily. We are building up the software library

and database. We introduced the part of the software library in
this paper.

The features of the controller are as the follows:
1) It is easy to build a robot controller which is composed of the

modularized components (software agents and databases).
2) Robot motions are written in a robot language. Task

instruction for example “Insert bolt”, is written in the robot
language.

3) System designers can define any robot language by written
the corresponding program functions in C language. For
example, “Find/Bolt” is defined and the instruction is
executed by the function ExecuteFind() that is written in C
language.

REFERENCES
[1] http://www.is.aist.go.jp/rt/
[2] OpenGL architecture review board, Mason Woo, Jackie Neider,

TomDavis, “OpenGL Program Guide”, vol.2, 2003, pp91~128,
pp535~542.

[3] http://opencv.jp/

(a) Find hole (b) MoveP

(c) MoveVF (tracking the bolt) (d) MoveFC (inserting the bolt)

Fig. 9 The result of bolt insertion experiment

Function: void VsExecuteFind(char *Parameter)
Argument: Parameter: the parameter of Find.
Processing:
1. Data transform from character to number.
2. Input the target position: Click the hole position on the

picture by mouse (Manual mode).
3. Measure the hole position by the triangulation method.
4. Send the message “UpdateEnvironmentDB/Parameter”

to the Task planner.

