
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:9, 2010

804

 

 

  
Abstract—This study presents an exact general solution for 

steady-state conductive heat transfer in cylindrical composite 
laminates. Appropriate Fourier transformation has been obtained 
using Sturm-Liouville theorem. Series coefficients are achieved by 
solving a set of equations that related to thermal boundary conditions 
at inner and outer of the cylinder, also related to temperature 
continuity and heat flux continuity between each layer. The solution 
of this set of equations are obtained using Thomas algorithm. In this 
paper, the effect of fibers’ angle on temperature distribution of 
composite laminate is investigated under general boundary 
conditions. Here, we show that the temperature distribution for any 
composite laminates is between temperature distribution for 
laminates with 0θ =  and 90θ = . 

 
Keywords—exact solution, composite laminate, heat conduction, 

cylinder, Fourier transformation.  

I. INTRODUCTION 

ODAY, usage of composite materials in aeronautic 
industries, submarines, automotive engineering, sport 
equipments and etc has been noticeably progressed. This 

remarkable usage of these kinds of materials is because of its 
high strength and having high module with low density. 
Therefore, in many applications, use of these materials is 
commodious compare to isotropic materials and these 
materials are preferable. So far, a lot of researches have been 
carried out about mechanical and thermo mechanical behavior 
of composite laminates while very few works are available 
about heat transfer of these materials [1]-[3]. Primary research 
in this field has been carried out on anisotropic crystals 
[4],[5]. Ma and Chang [6] studied analytical heat conduction 
in anisotropic multilayer media. They changed anisotropic 
problem to a simple isotropic problem by using a linear 
coordinate transformation. There are some accomplished 
researches about heat transfer in composite materials that are 
reviewed briefly. Kulkarani and Brady [7] presented a thermal 
mathematical model for heat transfer in laminated carbon-
carbon composites. This model was based on volumetric 
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percentage of matrix and fibers and using of this model also 
heat transfer coefficient indirection of fibers and 
perpendicular to fibers has been estimated. Johansson and 
Lesnic [8] showed applications of MFS methods for transient 
heat conduction in layered materials and developed this 
method for numerical estimation of heat flux in these 
materials. Sun and Wichman [9] presented a theoretical 
solution for transient heat transfer in a one-dimensional three-
layer composite slab and compared obtained resultants with 
finite element solution.  Karageorghis and Lesnic [10] 
introduced a solution for heat conduction in laminated 
composite material that its conduction coefficient was 
dependence to temperature and boundary condition consisted 
of convection and radiation. Haji-sheikh et al. [11] obtained a 
mathematical formulation for steady-state heat conduction and 
temperature distribution in multi-layer bodies. They affirmed 
that if layers are homogenous, eigenvalues will be real 
numbers but for orthotropic state these values can be 
imaginary numbers. Guo et al. [12] studied temperature 
distribution in thick polymeric matrix laminates and compared 
it with results of numerical solution. They solved transient 
heat transfer in polymeric matrix composite laminates using 
finite element method. They considered the internal energy 
generation due to chemical reactions in the heat transfer 
equation. Singh et al.  [13] obtained an analytical solution for 
conductive heat transfer in multilayer polar coordinate system 
in radial direction. Bahadur and Bar-Cohen [14] presented 
analytical solution for temperature distribution and heat flux 
in a cylindrical fin with orthotropic conductive coefficient and 
compared its results with obtained results from finite element 
solution. Onyejekwe [15] obtained an exact analytical solution 
for conductive heat transfer in composite media using 
boundary integral theory.   

Tarn and Wang [16],[17] studied conductive heat transfer 
in cylinders that are made of functional graded material 
(FGM) and composite laminates. Furthermore, many studies 
about conductive heat transfer have been carried out in nano-
composites [18],[19]. One of the applications of composite 
materials is in manufacturing super conductive materials. Cha 
et al. [20] investigated inverse temperature distribution and 
heat generation in super conductor composite materials. 

 Kayhani et al. [21] studied analytically the conductive heat 
transfer of cylindrical composite laminates in radial and 
angular directions ( ),r ϕ . This solution is only valid for 
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composite pipes and vessels with large ratio of longitudinal to 
radial dimension which is related to special case of very long 
pipes and vessels. 

In this paper, an exact solution for conductive heat transfer 
in cylindrical composite laminates is presented. This analytical 
solution can be used to analyze the conductive heat transfer, 
thermal stresses and strains in composite pipes and vessels. 
Fig. 1 shows the geometry of the composite laminate in 
current research. According to the figure, the fibers are 
wounded around the cylinder and the direction of fibers in 
each lamina can be differed from another layers. Unlike the 
work of Kayhani et al. [21], we focus on axi-symmetric heat 
transfer in cylindrical composite laminates by considering the 
heat conduction in longitudinal and radial dimensions ( ),r z . 
This analytical solution is also obtained for general linear 
thermal boundary condition which covers combined effect of 
the heat conduction, convection and radiation at boundaries. 
Finding the most generalized analytical solution based on the 
complicated boundary conditions is one of the main 
innovation of current work. For this purpose, an appropriate 
Fourier transformation has been derived using the Sturm-
Liouville theorem. We used this Fourier transformation to 
change the partial differential equation of heat transfer in 
cylindrical composite laminates to an ordinary equation. Due 
to the difference of the fibers direction in each layer, a set of 
equations of Fourier series coefficients is obtained based on 
the boundary conditions at inner and outer of the cylindrical 
laminate and temperature and heat flux continuity at 
boundaries located between the layers. The solution of these 
equations is obtained using the recessive Thomas algorithm. 

 
Fig.1 Direction of fibers in a cylindrical laminate 

 

II. MODELING AND GOVERNING EQUATIONS  

In this research, the fibers in each layer have been winded 
in specific directions around the cylinder and steady 
conductive heat transfer in a cylindrical composite laminate 
has been studied. Fig. 1 shows a cylindrical laminate 
according to describes condition. In this figure, r ,ϕ  and z  
are elements of off-axis coordinate system (reference 
coordinate system). If L  is tangent line on cylinder in 
direction of fibers and  t  is tangent line on cylinder in 

direction of ϕ  , hence; angle of fibers
 ( )θ   is angle between 

L  and t  .            
The Fourier relation in cylindrical coordinate system for 

orthotropic material is as follows[21]: 
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 By using the balance of energy for a cylindrical element, 

conductive heat transfer equation is obtained as follows 
relation: 
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Where conductive heat coefficient ( k ) are defined as 
below [21]. 
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With substituting (14) in  (13), the heat transfer equation in 

cylindrical composite laminate is obtained: 
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In this research, steady conductive heat transfer in direction 

of r  and z  is studied, so; relation (15) can be simplified as 
below: 
 

( )
2

2 2
22 11 22 2

1 0.l l
T Tk r n k m k

r r r z
∂ ∂ ∂⎛ ⎞ + + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (16) 

  
Fig.2 shows layers in a cylindrical laminate. In this figure, 

if ir r=   is boundary between two layers i  and 1i + ,then 
regarding to temperature continuity and heat flux continuity 
two below relations are obtained: 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:9, 2010

806

 

 

( ) ( 1) .i iT T +=  (17a) 
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Fig.2 Arrangement of layers in a cylindrical laminate 

 

III. ANALYTICAL SOLUTION OF HEAT CONDUCTION FOR 
GENERAL BOUNDARY CONDITIONS 

In this section, analytical solution for (16) is obtained using 
Fourier transformation. Relation (16) can be rewritten as 
follows: 

 
2 2

2 2 2
1 1 0.T T T
r rr zμ

∂ ∂ ∂
+ + =

∂∂ ∂
 (18) 

 
 (18)

 
The general thermal boundary conditions are: 
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Where 1( )9f r , 2( )f r , 1( )g z , 2( )g z  are arbitrary functions.  
In these relations, μ  is given by below relation: 
 

22
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Regarding to general boundary conditions, it is necessary to 
use Sturm-Liouville theorem to find suitable Fourier 
transformation of arbitrary function ( )f z : [27]  
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Where ( )s z  is weighting function and ( )n zϕ  is 

eigenfunction that achieved from homogenous boundary 
conditions for z  direction. Inverse Fourier transformation 
defines as below: 
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Using the separation of variables method for solving (18) 
and by considering homogenous boundary conditions, 
following equation for z direction has been achieved:  
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By solving  (23) respect to boundary conditions (24), the 
eigenfunction for this problem is achieved: 
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where nλ  is derived as follow: 
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Regarding to the Sturm-Liouville theorem and (23), the 
weighting function is constant. By substituting these relations 
to Sturm-Liouville relation (21), suitable Fourier 
transformation for this problem is obtained ( F ): 
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According to definition of Fourier transformation second 
order derivations compare to z  is : 
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 If this Fourier transformation applies on (18) and boundary 
conditions in r  direction (19c, 19d), then below relations will 
be obtained: 
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In these above relations: 
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( )1 1( ) ( ) .G n F g z=   (32b) 
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If the right hand side of  (30) is equal to ( , )h r n , general 
solution of this equation in each composite laminate is as 
follow: 
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In relation (33), ( , )w r n  is non-homogenous answer for  
(30) and in general form is as below: 
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In these relations, 0I  and 0K  are modified Bessel function 

of the first kind and the second of order zero respectively. 
Finally, by acting inner and outer boundary conditions on 
direction of r  and regarding to temperature continuity and 
heat flux continuity in boundary between layers, coefficients 
of na  and nb   are obtained. So, according to relation (31a): 
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Similarly, for boundary conditions of (31b): 
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Here, boundary conditions of relations (17a) and (17b) act 
on common part of two adjacent layers, according to relation 
(17a) for temperature continuity; below relation is obtained: 
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Regarding to relation (17b), for heat flux continuity below 

relation is obtained: 
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where 1I  and 1K  are modified Bessel function of the first 
kind and the second of  order  one respectively. Here, a set of 
equations consisting of  (35a),(35b),(35c) and (35d) is solved 
to determine coefficients of 

( )i
na  and 

( )i
nb . Fortunately This 

set of equations is  five diagonal and can be solved by using  
Thomas algorithm method. Finally the temperature 
distribution in each layer is determined by applying the 
inverse transformation (22) to the (33); 
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  (36) 

IV. RESULTS AND DISCUSSION 

In this section, with an example that consists of all obtained 
coefficients; two- dimensional analytical conductive heat 
transfer in a cylindrical composite material is studied.  The 
effect of derivation of fiber’s angle on temperature 
distribution in one-layer and multi-layer laminates with 
various arrangements of layers has been studied. To show 
effects of variation of specifications in direction of fibers and 
perpendicular direction of fibers, graphite-epoxy has been 
used as composite laminate material. Conductive coefficient 
of graphite-epoxy in direction of fibers is 12.76 times larger 
than perpendicular direction of fibers ,because Graphite  is a 
conductive material and epoxy is heat insulator. Table I shows 
physical and thermal properties of  fibers and matrix. Table  II 
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shows properties of composite laminate that was made of 
epoxy and graphite: 

 
TABLE I 

PROPERTIES OF GRAPHITE FIBERS AND EPOXY MATRIX, [28] 
Matrix material Epoxy 
Fibers material Graphite 
Conductive coefficient of matrix (W/m k) 0.19 
Conductive coefficient of fibers (W/m k) 14.74 
Heat capacity of matrix (J/kg k) 1613 
Heat  capacity of fibers (J/kg k) 709 

 
 

TABLE II 
PROPERTIES OF GRAPHITE/EPOXY COMPOSITE MATERIAL ,[28] 

k in parallel direction of fibers (W/m k) 11.1 

K in perpendicular direction of fibers 
(W/m k) 0.87 

Volumetric percentage of fibers 75 
Melting point (k) 450 
Heat capacity (J/kg k) 935 
Density (kg/

3

m )                                            1400 

 
 

TABLE III 
GEOMETRY AND BOUNDARY CONDITIONS  

Inner diameters of cylinder (m) 0.5  

Outer diameter of cylinder (m) 1 
Length (m) 1 
Inner heat flux (W/ 2m )                                      400 

Linear heat convective coefficient (W/ 2m k) 150 
Lateral  heat convective coefficient (W/ 

2m k) 
100 

Inner heat convective coefficient (W/ 2m k) 50 
Ambient temperature (k) 300 
Inner temperature of cylinder (k) 320 
Angle of fibers (Degree) 90 

 
To study effect of angle variation on temperature 

distribution, a one-layer composite laminate (or multi-layer 
laminate that its fibers’ angle is equal) has been used. Table 
III presents geometry and boundary conditions of this 
laminate. 

Fig.3 shows maximum temperature variations for numbers 
of Fourier series term in (34) (for a lamina with 90  fiber's 
angle) . According to this figure, when the numbers of 
sentences of series are less than 200; this series will be 
converged speedily and variations are less than 0.01 that is a 
good approximation for engineering calculations. 
Consequently we calculating until 200th terms of Fourier 
series. 

 

 
Fig.3 Maximum Temperature variations in terms of different Fourier 

series terms in a single layer laminate ( 90θ = ) 

 
Fig.4 shows the amount of  temperature distribution  in 

different z cross section of a one-layer laminate when fibers’ 
angle is 0  and 90 , this figures present for two different 
amount of heat fluxes ( Q ). According to symmetry of 
boundary conditions in direction of z , temperature 
distribution is symmetric respect to midpoint of length in 
z direction. When the angle of fibers' is 0  the fibers are 
situated in φ  direction and consequently heat transfer is 
comparable with a isotropic cylinder with conductive 
coefficient 22k , in other words 22rr zzk k k= = . As it seems 
from fig.4, for this specific boundary conditions that are 
considered, maximum temperature occurs in the inner wall of 
cylinder and  when fibers' angle is 90, temperature distribution 
is higher than the condition that fibers’ angle is equal to zero. 
Also it is obvious that  when fibers' angle is 90  , the pattern 
of temperature distribution  is more  monotonous than the  
state that fibers' angle is 0 , although the maximum and 
minimum of temperature in the first state is higher. 
So related to your design factor you mast selected the fibers' 
angle. For example if you want to decrease the maximum 
temperature of  composite cylinder  you must situated the 
fibers in φ  direction that  fibers' angle is 0 . In  Fig.5,  
variation of μ  compare to fibers’ angle  is shown. The 
coefficient μ  defined as  (20).the figure is symmetric toward 
angle 90, its value is maximum in this angle. it also has a  

 
(a)  
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(c)  

 
(d) 

 
Fig.4  Temperature distribution in a single layer laminate under different 
heat fluxes and in different Fibers' angle, (a) 0θ =  & 2800( / )Q w m=  
,(b) 90θ = & 2800( / )Q w m=  , (c) 0θ =  & 21200( / )Q w m= , (d) 

90θ = & 21200( / )Q w m=  

 
 

Fig.5 Diagram of coefficient μ  in terms of fibers' angle (θ ) 

 

period equal to 180 . Considering (18) we can find that 
increasing in amount of  μ  causes decreasing effect of 
temperature gradient in z direction.  In current research, to 
investigate effect of angle variations on temperature 
distribution; dimensionless temperature parameter is defined 
as below:

  ( ) ( ), , ,/in out inT T T T∞ ∞ ∞⎡ ⎤− −⎣ ⎦ , that ,inT∞ , ,outT∞  are  

inside  and outside ambient temperature,  respectively. 
 
Fig.6 presents variations of maximum of dimensionless 

temperature in terms of fibers’ angle. Since Inner temperature 
of cylinder is higher than ambient temperature

 
, ,( 0)in outT T∞ ∞− < , so; dimensionless temperature is negative. 

increasing fibers’ angle from zero to 90 causes that conductive 
heat transfer coefficient in r  direction decrease, but in the 
other hand regarding to Fig. 5 when fiber's angle is neared to 
90 the  amount of μ  is increased that it caused less effect of 
temperature gradient in z direction (18); consequently as it 
shown in Fig.6 by growing fibers' angle from zero to 90 
absolute amount of maximum of dimensionless temperature 
will be raised. For heat fluxes 400, 800 and 1200 raising 
fibers' angle from zero to 90 causes that the maximum 
temperature in laminates  growth  1.7891, 2.3002 and 2.8114 
respectively. 

 

 
 

Fig.6 Maximum of relative temperature distribution in terms of fibers' 
angle (θ ) under different inner heat fluxes 

 
For other state of fibers’ angle in a composite laminate, 

temperature distribution is between temperature distribution in 
a single layer laminate that fibers' angle is zero and single 
layer laminate that fibers' angle is zero 90. Fig.7  represents 
temperature distribution in a five-layers composite cylindrical 
laminate that  is quasi-isotropic under various amount of heat 
fluxes. The boundary conditions and the material of composite 
are similar to single layer laminate. In this case  thickness of 
each layer is 0.1 m. In quasi-isotropic laminates the 
arrangement of fibers in each lamina is [ ]0,45,90,135,180 . 
By comparison between Fig.4 and Fig.10 it is clear that 
temperature distribution is in a state between zero and 90 of 
fibers angle. 
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(a)  
 

 
(b)  

 
Fig.7 Temperature distribution in quasi-isotropic laminate in different 

heat fluxes, (a) 2800( / )Q w m= , (b) 21200( / )Q w m=  
 
 
Fig.8 and Fig.9 present amounts of coefficients of 

temperature distribution series for a quasi-isotropic laminate; 
these  coefficients are achieved with Thomas algorithm 
method . Because of the odd terms of this series na and nb are 
zero, so its diagram has been shown in terms of / 2n . 

According to this figure (8), na  are very small numbers that 
will be decreased sharply by increasing the amount of n . 

Since, regard to (34); na  is coefficient of 0
n

i
i

I r
λ
μ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 and the 

amount of 0
n

i
i

I r
λ
μ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 will be raised remarkably by increasing 

of n  ; Therefore, to converge of the series; the amounts of  
na  must be very small. also there is a same deduction for nb ; 

nb  is coefficient of 0
n

i
i

k r
λ
μ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 and the amount of 0
n

i
i

k r
λ
μ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

decrease rapidly respect to increasing of n, so the amount of  

nb  must be very big to keep convergence of series. 
 
 

 
Fig.8 Fourier series terms ( na ) distribution in terms of n/2 in a quasi-

isotropic laminate 
 

 
Fig.9 Fourier series terms ( nb ) distribution in terms of n/2 in a quasi-

isotropic laminate 
 
 

V. CONCLUSION 

In the present investigation, an exact analytical solution for 
two-dimensional steady-state temperature distribution ( ),r z  
for the case of the general boundary condition is presented. 
The main results of this research are summarized as follows: 

• Due to considering the general boundary 
condition, the present analytical solution can be 
generalized to the vast cases of thermal conditions 
for circular pipes, reservoirs and fins. 

• For composite laminates with larger 
conductivity in fibers direction in comparison of 
perpendicular direction (such as graphite/epoxy), 
when the fibers' angle is 90  temperature distribution  
is more monotonous than the  other direction but 
when the fibers' angle is 0  maximum and minimum 
of temperature in laminate is less than other 
directions.  

• For other arrangement of fibers, the 
temperature distribution is in a state between two 
cases of 0θ =  and 90θ = . 
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