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Abstract—Due to the dynamic nature of the Cloud, continuous 

monitoring of QoS requirements is necessary to manage the Cloud 
computing environment.  The process of QoS monitoring and SLA 
violation detection consists of:  collecting low and high level 
information pertinent to the service, analyzing the collected 
information, and taking corrective actions when SLA violations are 
detected. In this paper, we detail the architecture and the 
implementation of the first step of this process. More specifically, we 
propose an event-based approach to obtain run time information of 
services developed as BPEL processes.  By catching particular events 
(i.e., the low level information), our approach recognizes the run-time 
execution path of a monitored service and uses the BPEL execution 
patterns to compute QoS of the composite service (i.e., the high level 
information). 

 
Keywords—Monitoring of Web service composition, Cloud 

environment, Run-time extraction of execution path of BPEL. 

I. INTRODUCTION 
LOUD computing is increasingly being promoted as the 
next-generation of paradigms for hosting and delivering 

services over the Internet [1]. In this paradigm, services can be 
provided at different layers: Software (Software as a service: 
SaaS), Platform (Platform as a Service: PaaS) and 
Infrastructure (Infrastructure as a Service: IaaS).  In fact, 
Cloud computing provides users with services to access 
software, data and/or hardware without the need to understand 
any underlying complexity. In particular, in recent years, SaaS 
implementations have become an increasingly popular a way 
to let both users manage typical day-to-day tasks and 
enterprises make money by arranging an ongoing software 
licensing agreement with different businesses. 

Despite these advantages, given the complexity of the 
Cloud environment, service failures are quite likely and are 
the norm rather than the exception. Consequently, Quality of 
Service (QoS) degradations may frequently occur at all layers. 
When dealing with SaaS applications, QoS monitoring is 
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essential for two reasons: on the one hand, to provide Cloud 
usage that is “acceptable” to the various clients, and on the 
other hand, to spare Cloud providers penalties for not offering 
services at a certain level of QoS. 

To monitor the QoS of services, most works in the literature 
require modification of either the server or the client 
implementation code [2, 4, 7].  However, to provide for 
independence of any Cloud provider/environment, monitoring 
should be performed in a non-intrusive way, i.e., without 
modifying the implementation of the deployed Cloud services. 
Furthermore, to the best of our knowledge, there is a lack of 
approaches dealing with monitoring service composition in a 
SaaS Cloud environment, the focus of this paper.  

In our previous work, we proposed a framework for QoS 
Monitoring and Detection of SLA Violations (QMoDeSV) [1].  
This framework provides for the monitoring of composite 
services deployed on the Cloud. It is designed to handle the 
complete Web service composition management lifecycle in 
the Cloud environment (i.e., composite Web service 
deployment, resource allocation, monitoring of QoS and SLA 
violation detection). In addition, QMoDeSV proposes a non-
intrusive, modular approach for monitoring QoS attributes: 
QoS pertinent information is collected by “watching” locally 
each service component. Then, based on the composition 
pattern of the composite service, the overall QoS information 
is computed. This information is used by a separate module in 
the QMoDeSV framework to look for potential violations of 
SLA pre-agreed upon QoS attributes. The findings of this 
module can be very helpful for service providers, who can 
then take corrective actions to improve their services. 

In this paper, we will put the focus on the RTP Extractor 
module which extracts the run time execution path of the 
BPEL process. The execution path is then used to calculate the 
QoS of a composite service in the Cloud according to its 
patterns. These QoS calculated can be compared to agreed-
upon SLA requirements to detect SLA violations.  

The remainder of this paper is organized as follows: Section 
II overviews works related to monitoring Web services. 
Section III briefly reviews the architecture of our QMoDeSV 
framework and details the architecture and the implementation 
of the RTP Extractor Module. Section IV illustrates the 
functionality of the RTP Extractor through an example of a 
banking business process. Section V summarizes the presented 
work and highlights its future directions. 
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II.   RELATED WORK 
Most works in the literature are centered on the Web service 

monitoring [2, 3, 4, 5]; less effort has been invested in Cloud 
monitoring [6, 7, 8, 9, 10]. 

A.  Web Service Monitoring 
Thio et al. [2] propose a QoS monitoring framework for 

Web service based applications. It extends the SOAP 
implementation API, both for the client and the server, to 
measure and log QoS parameter values. This enables the user 
to perform automated performance measurements. An 
experiment is described running more than 200 services 
requests per day during 6 days and measuring the response 
time. The approach depends on the used SOAP 
implementation, and the required QoS monitoring extensions 
have to be deployed into the SOAP implementation used by 
the provider. This solution modifies the SOAP 
implementation. 

Ben-Halima et al. [3] propose a QoS-Oriented Self-Healing 
middleware (QOSH) for Web service monitoring. QOSH 
monitors response time parameters of Web services. It is 
based on the interception of SOAP headers. Since this 
approach enriches SOAP messages with QoS information. 
QOSH modifies both the client and the server implementation 
to allow QoS parameter evaluation.  

Haiteng et al. [4] propose a solution to the problem of 
monitoring Web services described as BPEL processes. The 
solution introduces Monitor Broker into traditional Web 
services architecture to access Web service runtime state 
information and calculate the QoS values. Monitor Broker 
architecture use Aspect Oriented Programming (AOP) that 
allows for a clear separation of the service business logic from 
the monitoring functionality. The initial implementation and 
experiment with a travel reservation service example shows 
that this approach is feasible and the monitoring cost is 
affordable.  

Sun et al. [5] propose a monitoring approach based on AOP. 
Their goal is to check business process conformance with the 
requirements that are expressed using WS-Policy. The 
properties (e.g., temporal or reliability) of a Web service are 
described as Extended Message Sequence Graph (EMSG) and 
Message Event Transferring Graph (METG). A runtime 
monitoring framework is then used to monitor the 
corresponding properties that are then analyzed and checked 
against the METG graphs. This work is also based on AOP 
approach. 

B. Cloud Service Monitoring 
Shao et al. [6] propose a Runtime Model for Cloud 

Monitoring (RMCM). RMCM uses interceptors (as filters in 
Apache Tomcat and handlers in Axis) for service monitoring. 
It collects all Cloud layer performance parameters. In the SaaS 
layer, RMCM monitors applications while taking into account 
their required constraints and design models. To do so, it 
converts the constraints to a corresponding instrumented code 
and deploys the resulting code at the appropriate location of 
the monitored applications. Thus, it modifies the source code 

of the applications. 
Cao et al. [7] propose a monitoring architecture for Cloud 

computing. It describes a QoS model that collects QoS 
parameter values such as response time, cost, availability, 
reliability and reputation. Their architecture is interesting, but 
has not been implemented yet. 

Clayman et al. [8] present Lattice framework for Cloud 
service monitoring in the RESERVOIR EU project. It is 
capable of monitoring physical resources, virtual machines 
and customized applications embedded with probes. 
Compared to our approach, the Lattice framework doesn’t 
consider the detection of SLA violations to avoid SLA 
penalties.  

Rak et al. [9] propose Cloud application monitoring using 
the mOSAIC approach. In a first step, the authors describe the 
development of customized applications using mOSAIC API 
to be deployed on Cloud environments. For these applications, 
they propose in a second step some monitoring techniques. 
Their interest is only to gather information that can be used to 
perform manual or automatic load-balancing, 
increase/decrease the number of virtual machines or calculate 
the total cost of application execution. Their approach does 
not consider the detection of SLA violations to avoid SLA 
penalty cost and moreover, it is not generic since it monitors 
only applications developed using the mOSAIC API. 

Mdhaffar et al. [10] propose an approach called AOP4CSM 
(Aspect-Oriented Programming For Cloud Service 
Monitoring) which is based on aspect-oriented programming 
and monitors quality-of service parameters of the Software-as-
a-Service layer. The use of AOP4CSM is exemplified in the 
context of fault tolerance. Its installation does not need any 
access to the source code of the service and the client. It has 
been implemented within Axis (both Axis1 and Axis2). 

In summary, we note that several monitoring works used 
the AOP approach. These works treated either the Web service 
monitoring or the Cloud monitoring. In our research, we chose 
the event-based approach since it provides more efficient 
results. In fact, the AOP approach is based on the concept of 
proxy. The class of BPEL engine that will make an 
appropriate treatment according to the BPEL process instance 
will be enclosed by a proxy object that can perform processing 
before or after the invocation of the method in the BPEL 
engine class. As shown in Fig. 1, when a method (modeled by 
the orange bubble) is called, the proxy object notifies that the 
method was called and may indicate the invocation time 
(which is slightly greater than the real invocation time). 
However, in the event-based approach, the class of the BPEL 
engine is responsible for launching event (with information 
about the type of processing performed by the BPEL engine in 
real time as well as the execution time). Hence, the event 
based approach is slightly better in point of view precision and 
performance than the AOP approach. 
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Fig. 3  Conceptual architecture of the RTP-Extractor Module 

 
The role of the RTP-Extractor Module is to detect the 

services invoked in run time as well as the patterns used by 
these services.  In addition, it extracts the execution path of the 
BPEL process and the execution time of each elementary 
service. As shown in Fig. 3, this module contains a sub-
module called Smart Listener. This latter has three 
components namely the Catch component, the Filter 
component and the Storage component. We will explain later 
the role of these components. 

Once the BPEL process starts its execution, the BPEL 
engine will look for the listener connected to it (Fig. 3, step 1). 
In our case we use Apache ODE (Orchestration Director 
Engine). Apache ODE is an open source and it executes 
business processes written following the WS-BPEL standard 
[11]. 

When starting the execution of BPEL process, the BPEL 
engine will generate progressively events with the execution 
of BPEL process. The BPEL engine having our Smart listener 
that has registered its events on startup it will launch the 
generated events. 

Fig. 4 shows the list of the listeners registered for events in 
the Apache ODE. In our case, we have only one listener 
(Smart Listener) who is registered from the start of Apache 
ODE.  Fig. 5 illustrates an example of starting the Smart 
Listener. 

 
Fig. 4 The list of listeners registered in the Apache ODE 

 

 
Fig. 5 The start of Smart Listener 

 
This listener is an intelligent listener because it can cover 

and catch all the information generated by the BPEL process 
(Fig. 3, step2, the Catch component). In addition, it can 
retrieve events and filter them according to the needs and 
accurate information mentioned by the developer (Fig. 3, 
step3, the Filter component). When the listener detects an 
event that is part of the needs, it stores it in form of objects in 
memory; if the event is not needed, than it neglects it (Fig. 3, 
step 4, the Storage component). The display of the 
desired/needed events is in the form of a log file (Fig. 3, step 
5).  Table I shows a list of desired events. Multiple events are 
generated by the BPEL engine and the Filter allows to 
distinguish the events described below: 

 
TABLE I 

EXAMPLE OF DESIRED EVENTS 
Event Description 

ProcessCompletionEvent The end of the instance of the BPEL 
process 

ScopeStartEvent Launching the execution of a Scope 
ScopeCompletionEvent End of Scope 
ActivityExecEndEvent The end of the activity (invoke, 

reply,…) 
ProcessMessageExchangeEvent The instance of the BPEL process 

received a message from a Partner 
Link 

Fig. 6 shows the results of steps 1, 2, 3 and 4 that run in 
parallel with the execution of BPEL process. 
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Fig. 8 BPMN representation of the example 

 
First, we need to implement this BPMN representation to 

obtain a BPEL process. Secondly, we deployed the resulting 
BPEL process in Jelastic Cloud [12]. Once deployed, the 
Extractor Module parsed the BPEL process to obtain 
automatically a design time equation (the BPEL equation); for 
more detail on the parsing algorithm, see [1].  For our running 
example, Fig. 9 represents the BPEL equation which contains 
the name of the services and the design patterns of the 
composite service.  In the remainder of this section, we adopt 
the following notation for the various paths in the example: 

• S1: Customer applies for real estate credit;  
• S21: Check Credit rating;  
• S22:  Check real estate construction documents;  
• S23: Check land register record;  
• S31: Reject application;  
• S32: Prepare contract;  
• S41: Offer loan protection  insurance; and  

 

• S42: Offer residence insurance. 

 
Fig. 9 BPEL Equation obtained during the design phase 

 
Thanks to the Smart Listener (Sub Module of the RTP 

Extractor Module), we obtain the Web Service Log (Fig. 11). 
This log contains the names of invoked Web Services in run 
time and the response time of each service. We consider only 
the metric of response time for space limitation. From Fig. 10 
we conclude that the service CheckLandRegisterRecord is 
invoked in run time with a response time equal to 1s (My 
Time Stamp – Finish Time). 

 

 

 
Fig. 11 Extract from the Web Service Log 

 
Finally, the Web Service Log will be provided to The RT 

Extractor with the BPEL equation (obtained in the design 
phase) to obtain the equation in run time (BPEL RT equations) 
thanks to the mapping phase. Fig. 11 shows the BPEL RT 
Equation of the running example. 
 

 

 
Once the BPEL RT equation is obtained, the QoS 

Calculator Module computes the response time of the 
composite web service. This calculation is based on formulas 
that depend on the used patterns.  Table II shows the formulas 
for calculations according to the used patterns considered in 
our work.  

                   Fig. 11 Equation obtained in Run Time 
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TABLE II 
RESPONSE TIME FOR COMPOSED WEB SERVICES 

Patterns 
 
 

Metrics 

Sequence Flow Switch Pick Loop Multi choice 

Response 
Time ෍ RTሺs୲ሻ

୬

୲ୀଵ

 maxሼRTሺs୲ሻሽ ෍ RTሺs୲ሻ
୬

୲ୀଵ

 ෍ RTሺs୲ሻ
୬

୲ୀଵ

 n X RT maxሼRTሺs୲ሻሽ 

 
For example, for the sequential pattern, the response time is 

defined as the sum of the response times of the constituent 
Web services. For the flow pattern (which includes parallel, 
synchronization and simple merge pattern), the response time 
is defined as the maximum response time of the constituent 
Web services. 

The values calculated for the composite Web service will be 
compared with the agreed-upon SLA (see extract of SLA, Fig. 
13) to detect any potential violation.  Such violation can be 
signaled to the Cloud provider in order to intervene with the 
necessary corrective measures.  In the running example, the 
shown execution of our running example respects the agreed-
upon SLA. 

 

 

Fig. 12 Extract of SLA 

V.   CONCLUSION 
Monitoring Web service composition deployed in the Cloud 

based on the patterns used in BPEL process remains an open 
research issue.  In this paper we presented in detail a module 
of our framework QMoDeSV responsible of monitoring and 
detecting SLA violations in Cloud Computing environment. 
This framework covers both the design and execution phases 
of Web services. The module presented in this paper is the RT 
Extractor Module which is a run time module. It extracts an 
equation containing the names of invoked services and the 
actual execution path of BPEL processes forming a composite 
Web service. To do so, the RT extractor contains a smart 
listener sub-module composed of three components (Catch, 
Filter and Storage). The Catch component captures in a non-
intruding way all the events produced by the BPEL engine 
during the execution of a BPEL process. The Filter component 
filters these events to keep only those events pertinent to the 
agreed-upon SLA requirements. Finally, the Storage 
component saves information related to the filtered events in a 
Web Service Log (names of invoked services and the response 
time of each elementary service). In its second sub-module, 
the RT Extractor confronts the information of the saved Web 
Service Log to the BPEL design-determined equations to  

 
determine the actual, run-time equation of the service. This 
final equation will be used to calculate the QoS of the 
composite service thanks to formulas based on the 
composition patterns. Finally, the composite QoS can be 
compared to the agreed-upon SLA to detect any potential 
violation. 

In our future work, we will focus on the LHM (Local Host 
Monitor) and Lo2Hi modules responsible for managing the 
mapping of resource metrics gathered from Cloud 
environment to obtain SLA parameters.  
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