
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1216

Abstract—Due to the dynamic nature of the Cloud, continuous

monitoring of QoS requirements is necessary to manage the Cloud
computing environment. The process of QoS monitoring and SLA
violation detection consists of: collecting low and high level
information pertinent to the service, analyzing the collected
information, and taking corrective actions when SLA violations are
detected. In this paper, we detail the architecture and the
implementation of the first step of this process. More specifically, we
propose an event-based approach to obtain run time information of
services developed as BPEL processes. By catching particular events
(i.e., the low level information), our approach recognizes the run-time
execution path of a monitored service and uses the BPEL execution
patterns to compute QoS of the composite service (i.e., the high level
information).

Keywords—Monitoring of Web service composition, Cloud

environment, Run-time extraction of execution path of BPEL.

I. INTRODUCTION
LOUD computing is increasingly being promoted as the
next-generation of paradigms for hosting and delivering

services over the Internet [1]. In this paradigm, services can be
provided at different layers: Software (Software as a service:
SaaS), Platform (Platform as a Service: PaaS) and
Infrastructure (Infrastructure as a Service: IaaS). In fact,
Cloud computing provides users with services to access
software, data and/or hardware without the need to understand
any underlying complexity. In particular, in recent years, SaaS
implementations have become an increasingly popular a way
to let both users manage typical day-to-day tasks and
enterprises make money by arranging an ongoing software
licensing agreement with different businesses.

Despite these advantages, given the complexity of the
Cloud environment, service failures are quite likely and are
the norm rather than the exception. Consequently, Quality of
Service (QoS) degradations may frequently occur at all layers.
When dealing with SaaS applications, QoS monitoring is

Rima Grati is with the Faculty of Economics and Management of Sfax,

Route de l’Aéroport Km 4 Sfax 3018 (corresponding author to provide phone:
00216 27 525 020; e-mail: rima.grati@gmail.com).

Khouloud Boukadi is with the Faculty of Economics and Management of
Sfax, Route de l’Aéroport Km 4 Sfax 3018(e-mail:
khouloud.boukadi@fsegs.rnu.tn).

Hanene Ben-Abdallah is with the Faculty of Economics and Management
of Sfax, Route de l’Aéroport Km 4 Sfax 3018 (e-mail:
hanene.BenAbdallah@fsegs.rnu.tn).

essential for two reasons: on the one hand, to provide Cloud
usage that is “acceptable” to the various clients, and on the
other hand, to spare Cloud providers penalties for not offering
services at a certain level of QoS.

To monitor the QoS of services, most works in the literature
require modification of either the server or the client
implementation code [2, 4, 7]. However, to provide for
independence of any Cloud provider/environment, monitoring
should be performed in a non-intrusive way, i.e., without
modifying the implementation of the deployed Cloud services.
Furthermore, to the best of our knowledge, there is a lack of
approaches dealing with monitoring service composition in a
SaaS Cloud environment, the focus of this paper.

In our previous work, we proposed a framework for QoS
Monitoring and Detection of SLA Violations (QMoDeSV) [1].
This framework provides for the monitoring of composite
services deployed on the Cloud. It is designed to handle the
complete Web service composition management lifecycle in
the Cloud environment (i.e., composite Web service
deployment, resource allocation, monitoring of QoS and SLA
violation detection). In addition, QMoDeSV proposes a non-
intrusive, modular approach for monitoring QoS attributes:
QoS pertinent information is collected by “watching” locally
each service component. Then, based on the composition
pattern of the composite service, the overall QoS information
is computed. This information is used by a separate module in
the QMoDeSV framework to look for potential violations of
SLA pre-agreed upon QoS attributes. The findings of this
module can be very helpful for service providers, who can
then take corrective actions to improve their services.

In this paper, we will put the focus on the RTP Extractor
module which extracts the run time execution path of the
BPEL process. The execution path is then used to calculate the
QoS of a composite service in the Cloud according to its
patterns. These QoS calculated can be compared to agreed-
upon SLA requirements to detect SLA violations.

The remainder of this paper is organized as follows: Section
II overviews works related to monitoring Web services.
Section III briefly reviews the architecture of our QMoDeSV
framework and details the architecture and the implementation
of the RTP Extractor Module. Section IV illustrates the
functionality of the RTP Extractor through an example of a
banking business process. Section V summarizes the presented
work and highlights its future directions.

An Event based approach to Extract the Run
Time Execution Path of BPEL Process for

Monitoring QoS in the Cloud

Rima Grati, Khouloud Boukadi, and Hanene Ben-Abdallah

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1217

II. RELATED WORK
Most works in the literature are centered on the Web service

monitoring [2, 3, 4, 5]; less effort has been invested in Cloud
monitoring [6, 7, 8, 9, 10].

A. Web Service Monitoring
Thio et al. [2] propose a QoS monitoring framework for

Web service based applications. It extends the SOAP
implementation API, both for the client and the server, to
measure and log QoS parameter values. This enables the user
to perform automated performance measurements. An
experiment is described running more than 200 services
requests per day during 6 days and measuring the response
time. The approach depends on the used SOAP
implementation, and the required QoS monitoring extensions
have to be deployed into the SOAP implementation used by
the provider. This solution modifies the SOAP
implementation.

Ben-Halima et al. [3] propose a QoS-Oriented Self-Healing
middleware (QOSH) for Web service monitoring. QOSH
monitors response time parameters of Web services. It is
based on the interception of SOAP headers. Since this
approach enriches SOAP messages with QoS information.
QOSH modifies both the client and the server implementation
to allow QoS parameter evaluation.

Haiteng et al. [4] propose a solution to the problem of
monitoring Web services described as BPEL processes. The
solution introduces Monitor Broker into traditional Web
services architecture to access Web service runtime state
information and calculate the QoS values. Monitor Broker
architecture use Aspect Oriented Programming (AOP) that
allows for a clear separation of the service business logic from
the monitoring functionality. The initial implementation and
experiment with a travel reservation service example shows
that this approach is feasible and the monitoring cost is
affordable.

Sun et al. [5] propose a monitoring approach based on AOP.
Their goal is to check business process conformance with the
requirements that are expressed using WS-Policy. The
properties (e.g., temporal or reliability) of a Web service are
described as Extended Message Sequence Graph (EMSG) and
Message Event Transferring Graph (METG). A runtime
monitoring framework is then used to monitor the
corresponding properties that are then analyzed and checked
against the METG graphs. This work is also based on AOP
approach.

B. Cloud Service Monitoring
Shao et al. [6] propose a Runtime Model for Cloud

Monitoring (RMCM). RMCM uses interceptors (as filters in
Apache Tomcat and handlers in Axis) for service monitoring.
It collects all Cloud layer performance parameters. In the SaaS
layer, RMCM monitors applications while taking into account
their required constraints and design models. To do so, it
converts the constraints to a corresponding instrumented code
and deploys the resulting code at the appropriate location of
the monitored applications. Thus, it modifies the source code

of the applications.
Cao et al. [7] propose a monitoring architecture for Cloud

computing. It describes a QoS model that collects QoS
parameter values such as response time, cost, availability,
reliability and reputation. Their architecture is interesting, but
has not been implemented yet.

Clayman et al. [8] present Lattice framework for Cloud
service monitoring in the RESERVOIR EU project. It is
capable of monitoring physical resources, virtual machines
and customized applications embedded with probes.
Compared to our approach, the Lattice framework doesn’t
consider the detection of SLA violations to avoid SLA
penalties.

Rak et al. [9] propose Cloud application monitoring using
the mOSAIC approach. In a first step, the authors describe the
development of customized applications using mOSAIC API
to be deployed on Cloud environments. For these applications,
they propose in a second step some monitoring techniques.
Their interest is only to gather information that can be used to
perform manual or automatic load-balancing,
increase/decrease the number of virtual machines or calculate
the total cost of application execution. Their approach does
not consider the detection of SLA violations to avoid SLA
penalty cost and moreover, it is not generic since it monitors
only applications developed using the mOSAIC API.

Mdhaffar et al. [10] propose an approach called AOP4CSM
(Aspect-Oriented Programming For Cloud Service
Monitoring) which is based on aspect-oriented programming
and monitors quality-of service parameters of the Software-as-
a-Service layer. The use of AOP4CSM is exemplified in the
context of fault tolerance. Its installation does not need any
access to the source code of the service and the client. It has
been implemented within Axis (both Axis1 and Axis2).

In summary, we note that several monitoring works used
the AOP approach. These works treated either the Web service
monitoring or the Cloud monitoring. In our research, we chose
the event-based approach since it provides more efficient
results. In fact, the AOP approach is based on the concept of
proxy. The class of BPEL engine that will make an
appropriate treatment according to the BPEL process instance
will be enclosed by a proxy object that can perform processing
before or after the invocation of the method in the BPEL
engine class. As shown in Fig. 1, when a method (modeled by
the orange bubble) is called, the proxy object notifies that the
method was called and may indicate the invocation time
(which is slightly greater than the real invocation time).
However, in the event-based approach, the class of the BPEL
engine is responsible for launching event (with information
about the type of processing performed by the BPEL engine in
real time as well as the execution time). Hence, the event
based approach is slightly better in point of view precision and
performance than the AOP approach.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1218

F

m
co
is
co
in
Th
m
up

Fig. 1 Comparis

QMoDeSV p
monitoring Qo
ollected by “w

the role o
omposition pa
nformation is c
his informati

module to loo
pon QoS attrib

son between the
ap

proposes a no
oS attributes:
watching” loc
f the RTP

attern of the c
computed; thi
ion is used
k for potenti
butes. The fin

e event-driven a
pproach

on-intrusive, m
: QoS pertin
ally each serv
Extractor. T
omposite serv
is is the role o
by the QoS
ial violations
ndings of this

approach and th

Fig. 2 The Q

modular appro
nent informa
vice compone

Then, based
vice, the overa
of the QoSCal

Detector Vi
of SLA pre
module can b

he AOP

dis
co

pro
the
co
dep
the
wh
In
pa
the
Qo
run
de

QMoDeSV fram

oach for
ation is
ent; this
on the
all QoS
culator.
iolation
-agreed
be very

he
act

mo
to
Ex
im
ex

Note that, to
scussed appro
mposition in t

III. THE QM
This section
ovides for the
e Cloud. As
vers the des
ployment/run
e Extractor M
hich influence
the run-time

arallel five mo
e Local Host
oS Detector V
n time modul
tect possible S

mework overvie

lpful for serv
tions to impro
In our previ
odule of our fr

[1]. The re
xtractor and w

mplementation
ample and in

o the best o
oaches deals
the Cloud usin

MODESV: TH

presents the
e monitoring o

shown in Fig
sign phase (t
n-time phase o

Module determi
e the QoS att

phase, the Q
odules: the RT

Monitor, the
Violation. On
les run in par
SLA violation

ew

vice provider
ove their servi
ious work, w

framework; for
emainder of
we will detai
. We illustra
the case of re

of our knowl
with monit

ng an event dr

HE RTP- EXTR

e QMoDeSV
of composite s
g. 2, the QM
the Extractor
of a service. I
ines the desig
tributes of the
QMoDeSV fra
TP Extractor,
e Lo2Hi QoS
ce a Web serv
rallel with th
ns.

s, who can t
ices.
we presented
r more details
this paper

il its architec
ate its funct
sponse time.

ledge, none
toring Web s
riven approach

RACTOR MODU

V framework
services deplo

MoDeSV fram
r Module) an
In the design

gn execution p
e composite s
amework depl

the QoSCalc
Convertor, a

vice is execut
e BPEL insta

then take cor

d the design
s the reader ca
describes the
cture as well
tionality thou

of the
service
h.

ULE
which

oyed on
mework
nd the
phase,

patterns
service.
loys in
culator,
and the
ted, the
ance to

rrective

phase
an refer
e RTP

as its
ugh an

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1219

Fig. 3 Conceptual architecture of the RTP-Extractor Module

The role of the RTP-Extractor Module is to detect the

services invoked in run time as well as the patterns used by
these services. In addition, it extracts the execution path of the
BPEL process and the execution time of each elementary
service. As shown in Fig. 3, this module contains a sub-
module called Smart Listener. This latter has three
components namely the Catch component, the Filter
component and the Storage component. We will explain later
the role of these components.

Once the BPEL process starts its execution, the BPEL
engine will look for the listener connected to it (Fig. 3, step 1).
In our case we use Apache ODE (Orchestration Director
Engine). Apache ODE is an open source and it executes
business processes written following the WS-BPEL standard
[11].

When starting the execution of BPEL process, the BPEL
engine will generate progressively events with the execution
of BPEL process. The BPEL engine having our Smart listener
that has registered its events on startup it will launch the
generated events.

Fig. 4 shows the list of the listeners registered for events in
the Apache ODE. In our case, we have only one listener
(Smart Listener) who is registered from the start of Apache
ODE. Fig. 5 illustrates an example of starting the Smart
Listener.

Fig. 4 The list of listeners registered in the Apache ODE

Fig. 5 The start of Smart Listener

This listener is an intelligent listener because it can cover

and catch all the information generated by the BPEL process
(Fig. 3, step2, the Catch component). In addition, it can
retrieve events and filter them according to the needs and
accurate information mentioned by the developer (Fig. 3,
step3, the Filter component). When the listener detects an
event that is part of the needs, it stores it in form of objects in
memory; if the event is not needed, than it neglects it (Fig. 3,
step 4, the Storage component). The display of the
desired/needed events is in the form of a log file (Fig. 3, step
5). Table I shows a list of desired events. Multiple events are
generated by the BPEL engine and the Filter allows to
distinguish the events described below:

TABLE I

EXAMPLE OF DESIRED EVENTS
Event Description

ProcessCompletionEvent The end of the instance of the BPEL
process

ScopeStartEvent Launching the execution of a Scope
ScopeCompletionEvent End of Scope
ActivityExecEndEvent The end of the activity (invoke,

reply,…)
ProcessMessageExchangeEvent The instance of the BPEL process

received a message from a Partner
Link

Fig. 6 shows the results of steps 1, 2, 3 and 4 that run in
parallel with the execution of BPEL process.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1220

ac
Se
th
re
BP
2)
pr
co
eq
eq
in
el
in
co

To accompli

ccording the a
ervice Log is

he RTP Extr
esponse time
PEL equation
) are used alon
rovided by Sm
onfronted in a
quation (Fig.
quation is det
nvoked service
lementary se
nformation w
omposite Web

ish its mission
architecture il

produced by
ractor Modul
equation of

ns determined
ng with the in
mart Listener.
a mapping pha

3, step6, 7
termined, the
es, used patter
ervice) are
ill be used

b Service.

Fig. 6

n, the Smart
lustrated in F
 the Smart Li

le to determ
the BPEL pr
by the Extrac
formation in t
 These two in
ase to obtain
and 8). Onc

e relevant inf
rns and the re
saved (Fig.
for monitorin

6 Display of W

Fig. 7 The a

Listener is de
Fig. 7. Once th
istener, it is u

mine the appr
rocess. For th
ctor Module (s
the Web Servi
nformation pie
the actual BP
ce the overa
formation (na
esponse time

3, step 9)
ng the QoS

Web Service exec

architecture of th

esigned
he Web
used by
ropriate
his, the
see Fig.
ice Log
eces are
PEL RT
all final
ames of
of each
). This

of the

ou
bu
8).
cu
an
do
mo
wi
gat
Ap
con
ban
an
res
by
or

cution monitori

he Smart Listen

To illustrate
ur QoS monito
usiness process
. When a cu

ustomer’s cred
d the land reg

one in paralle
odel. As the re
ill be rejected
teway means
pplication” an
ntract has bee
nk might offe
d residence i
sidence insura

y-case. The OR
both of them

ing log file

ner

IV. E
the functions
oring framew
s in a bank de
ustomer appl

dit rating, the r
gister record ar
el; therefore a
esult of those a
d or the contr
s that only

nd ”Prepare C
en prepared, t

er additional p
insurance. Wh
ance or both ar
R-gateway sho
(in parallel) c

EXAMPLE
of our RTP-E

work, let us co
esigned as a B
ies for a rea
real estate con
re checked. A
an AND-gate
assessments, t
ract is to be p

one of the
ontract” can t
the process ei
roducts: loan
hether loan p
re offered, has
ows that only
an take place.

Extractor mod
onsider a sim
BPMN proces
al-estate cred

nstruction docu
ll these activit
way is used
the application
prepared. The

e activities ”
take place. Af
ither can end
protection ins

protection insu
s to be decided
one of the ac

dule of
mplified
ss (Fig.
dit, the
uments
ties are
in the

n either
e XOR
”Reject
fter the
or the

surance
urance,
d case-

ctivities

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1221

Fig. 8 BPMN representation of the example

First, we need to implement this BPMN representation to

obtain a BPEL process. Secondly, we deployed the resulting
BPEL process in Jelastic Cloud [12]. Once deployed, the
Extractor Module parsed the BPEL process to obtain
automatically a design time equation (the BPEL equation); for
more detail on the parsing algorithm, see [1]. For our running
example, Fig. 9 represents the BPEL equation which contains
the name of the services and the design patterns of the
composite service. In the remainder of this section, we adopt
the following notation for the various paths in the example:

• S1: Customer applies for real estate credit;
• S21: Check Credit rating;
• S22: Check real estate construction documents;
• S23: Check land register record;
• S31: Reject application;
• S32: Prepare contract;
• S41: Offer loan protection insurance; and

• S42: Offer residence insurance.

Fig. 9 BPEL Equation obtained during the design phase

Thanks to the Smart Listener (Sub Module of the RTP

Extractor Module), we obtain the Web Service Log (Fig. 11).
This log contains the names of invoked Web Services in run
time and the response time of each service. We consider only
the metric of response time for space limitation. From Fig. 10
we conclude that the service CheckLandRegisterRecord is
invoked in run time with a response time equal to 1s (My
Time Stamp – Finish Time).

Fig. 11 Extract from the Web Service Log

Finally, the Web Service Log will be provided to The RT

Extractor with the BPEL equation (obtained in the design
phase) to obtain the equation in run time (BPEL RT equations)
thanks to the mapping phase. Fig. 11 shows the BPEL RT
Equation of the running example.

Once the BPEL RT equation is obtained, the QoS

Calculator Module computes the response time of the
composite web service. This calculation is based on formulas
that depend on the used patterns. Table II shows the formulas
for calculations according to the used patterns considered in
our work.

 Fig. 11 Equation obtained in Run Time

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1222

TABLE II
RESPONSE TIME FOR COMPOSED WEB SERVICES

Patterns

Metrics

Sequence Flow Switch Pick Loop Multi choice

Response
Time ෍ RTሺs୲ሻ

୬

୲ୀଵ

 maxሼRTሺs୲ሻሽ ෍ RTሺs୲ሻ
୬

୲ୀଵ

 ෍ RTሺs୲ሻ
୬

୲ୀଵ

 n X RT maxሼRTሺs୲ሻሽ

For example, for the sequential pattern, the response time is

defined as the sum of the response times of the constituent
Web services. For the flow pattern (which includes parallel,
synchronization and simple merge pattern), the response time
is defined as the maximum response time of the constituent
Web services.

The values calculated for the composite Web service will be
compared with the agreed-upon SLA (see extract of SLA, Fig.
13) to detect any potential violation. Such violation can be
signaled to the Cloud provider in order to intervene with the
necessary corrective measures. In the running example, the
shown execution of our running example respects the agreed-
upon SLA.

Fig. 12 Extract of SLA

V. CONCLUSION
Monitoring Web service composition deployed in the Cloud

based on the patterns used in BPEL process remains an open
research issue. In this paper we presented in detail a module
of our framework QMoDeSV responsible of monitoring and
detecting SLA violations in Cloud Computing environment.
This framework covers both the design and execution phases
of Web services. The module presented in this paper is the RT
Extractor Module which is a run time module. It extracts an
equation containing the names of invoked services and the
actual execution path of BPEL processes forming a composite
Web service. To do so, the RT extractor contains a smart
listener sub-module composed of three components (Catch,
Filter and Storage). The Catch component captures in a non-
intruding way all the events produced by the BPEL engine
during the execution of a BPEL process. The Filter component
filters these events to keep only those events pertinent to the
agreed-upon SLA requirements. Finally, the Storage
component saves information related to the filtered events in a
Web Service Log (names of invoked services and the response
time of each elementary service). In its second sub-module,
the RT Extractor confronts the information of the saved Web
Service Log to the BPEL design-determined equations to

determine the actual, run-time equation of the service. This
final equation will be used to calculate the QoS of the
composite service thanks to formulas based on the
composition patterns. Finally, the composite QoS can be
compared to the agreed-upon SLA to detect any potential
violation.

In our future work, we will focus on the LHM (Local Host
Monitor) and Lo2Hi modules responsible for managing the
mapping of resource metrics gathered from Cloud
environment to obtain SLA parameters.

REFERENCES
[1] R. Grati, K. Boukadi and H. Ben-Abdallah “A QoS Monitoring

Framework for Composite Web services in the Cloud”, In The Sixth
International Conference on Advanced Engineering Computing and
Applications in Sciences (Advcomp’12). In press

[2] N. Thio and S. Karunasekera, “Automatic Measurement of a QoS Metric
for Web Service Recommendation,” in Proceedings of the Australian
conference on Software Engineering (ASWEC’05). IEEE Computer
Society, 2005, pp. 202–211.

[3] R. Ben-Halima, K. Drira, and M. Jmaiel, “A QoS-Oriented
Reconfigurable Middleware for Self-Healing Web Services,” in
Proceedings of the IEEE International Conference on Web Services
(ICWS’08). IEEE Computer Society, 2008, pp. 104–111.

[4] Zhang Haiteng, Shao Zhiqing , Zheng Hong “Runtime monitoring Web
services implemented in BPEL”, in Proceedings of the IEEE
International Conference on Uncertainty Reasoning and Knowledge
Engineering (URKE’ 11). IEEE Computer Society, 2011, pp. 228 - 231.

[5] Mingjie Sun; Bixin Li; Pengcheng Zhang “Monitoring BPEL-Based
Web Service Composition Using AOP”, in Proceedings of the IEEE
International Conference on Computer and Information Science
(ICIS’09).IEEE computer Society, 2009, pp. 1172 – 1177.

[6] J. Shao, H. Wei, Q. Wang, and H. Mei, “A Runtime Model Based
Monitoring Approach for Cloud,” in Proceedings of 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD 2010), I. C.
Society, Ed. Miami, Florida: IEEE Computer Society, 2010, pp. 313–
320.

[7] B.-Q. Cao, B. Li, and Q.-M. Xia, “A Service-Oriented Qos-Assured and
Multi-Agent Cloud Computing Architecture,” in Proceedings of the 1st
International Conference on Cloud Computing (CloudCom’09). Berlin,
Heidelberg: Springer- Verlag, 2009, pp. 644–649.

[8] S. Clayman, A. Galis, C. Chapman, M. L.R, L. M. Vaquero, K. Nagin,
B. Rochwerger, and G. Toffetti. “Monitoring future internet service
clouds” In towards the Future Internet - A European Research
Perspective book, April 2010.

[9] M. Rak, S. Venticinque, T. a. M andhr, G. Echevarria, and G. Esnal.
“Cloud application monitoring: The mosaic approach”. In Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on, pages 758 –763, 29 2011-dec. 1 2011.

[10] Afef Mdhaffar, Riadh Ben Halima, Ernst Juhnke, Mohamed Jmaiel and
Bernd Freisleben. In Proceedings of the IEEE International Conference
on Computer and Information Technology (CIT’ 11).

[11] Apache ODE http://ode.apache.org/. 2012
[12] Jelastic “http://jelastic.com/.” 2012.

