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Abstract—Multiobjective Particle Swarm Optimization 
(MOPSO) has shown an effective performance for solving test 
functions and real-world optimization problems. However, this 
method has a premature convergence problem, which may lead to 
lack of diversity. In order to improve its performance, this paper 
presents a hybrid approach which embedded the MOPSO into the 
island model and integrated a local search technique, Variable 
Neighborhood Search, to enhance the diversity into the swarm. 
Experiments on two series of test functions have shown the 
effectiveness of the proposed approach. A comparison with other 
evolutionary algorithms shows that the proposed approach presented 
a good performance in solving multiobjective optimization problems. 
 

Keywords—Particle swarm optimization, migration, variable 
neighborhood search, multiobjective optimization 

I. INTRODUCTION  

ULTIOBJECTIVE optimization problems have more 
than one independent objective that must be optimized 

at once. There is a set of the so-called non-dominated 
solutions (those which better satisfy each of the functions) 
rather than just one, which is called the Pareto set. The 
graphical representation of this Pareto-optimal set of solutions 
is called the Pareto front. Thus, the main issue of a good 
multi-objective algorithm particularly for the metaheuristics is 
to obtain the maximum number of non-dominated solutions, 
having a high diversity and spread, and being as closer to the 
optimal set as possible [1].

 Particle swarm optimization (PSO) is an evolutionary 
computation technique bio-inspired by the social behavior of 
species, such as a birds flock or a fish school. This algorithm 
is based on a particle’s population to find solutions through 
hyper dimensional search space. The change of the particle’s 
position is based on the socio-psychological tendency of 
particles to emulate the success of other particles. Each 
particle has an associated velocity vector which drives the 
optimization process and reflects the socially exchanged 
information. Although there has been considerable research 
conducted on PSO in order to solve multiobjective 
optimization problem (MOP) and to improve the convergence 
and diversity of the approximate Pareto front further still 
remains an issue that needs to be considered. An improved 
MOPSO has been developed in this paper. Our aim is to 
improve both diversity and convergence by combining island 
model with MOPSO and by using a local search technique in 
order to obtain a good balance between the exploitation and 
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exploration of the search space. 
The paper is structured as follows: the concept of PSO and 

the island models are briefly reviewed in Section II. In Section 
III, a multiobjective PSO is proposed to improve diversity and 
convergence to the true Pareto front. In Section IV, the results 
of the experiments and the analysis are shown. Conclusions 
are given in Section V. 

II. PRELIMINARY  

A. PSO 

PSO is a metaheuristic proposed in 1995 by Kennedy and 
Eberhart [2]. PSO is a population-based stochastic approach 
for solving continuous and discrete optimization problems. 
The concept under PSO is to emulate the social interaction 
behavior of birds flock and fish school. It utilizes a population 
of particles that fly through the problem hyperspace with 
given velocities. At each iteration, the velocities of the 
particles are stochastically adjusted according to the influence 
of its best solution and of the best solution of its neighbors, 
then computes a new point to be evaluated. The displacement 
of a particle is influenced by three components:  
 Physical component: the particle tends to keep its current 

direction of displacement;  
 Cognitive component: the particle tends to move towards 

the best explored site until now; 
 Social component: the particle tends to rely on the 

experience of its congeners, then moves towards the best 
site already explored by its neighbors. 

The displacement of each particle in the search space is 
based on its current position and the update of its velocity. Let 
𝑥 𝑡  be the position of the particle 𝑝  at the time step t. The 
particle position p  is modified by the addition of the velocity 
𝑣 𝑡  of the current position: 

 
x t x t 1 v t)                         (1) 

 
Each particle in the swarm, changes its velocity according 

to two essential information. The first information is related to 
its personal experience, which is the best position found by the 
particle during the search process, which is noted pbest. The 
second information is the best position found by the whole 
swarm. This information is obtained from the knowledge of 
how the other particles performed their searches. 

The principle change of the velocity is defined as follows: 
 

𝑣 𝑡 𝑤𝑣 𝑡 1 𝑟 𝑐 𝑥 𝑥 𝑡 𝑟 𝑐  𝑥

𝑥 𝑡                                         (2) 
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The 𝑣 𝑡  is the velocity of the i-th particle 𝑖 ∈ 1,2, . . . , 𝑠  of 
the d-th dimension where: 𝑐 , 𝑐  are the learning factors that 
will be fixed throughout the whole process, called acceleration 
coefficients, 𝑟 , 𝑟  are two random numbers in the range 
0,1  selected uniformly for each dimension at each iteration, 

𝑣 𝑡  is the physical component, 𝑟 𝑐 𝑥 𝑥 𝑡  is the 

cognitive component, where c controls the cognitive behavior 

of the particle, and 𝑟 𝑐  𝑥 𝑥 𝑡  is the social 

component, where 𝑐   controls the social behavior of the 
particle. 

 
Algorithm 1. The standard PSO algorithm 
1: Calculate the fitness function of each particle. 
2: Update 𝑥  and 𝑥 . 
3: Update the position (1) and velocity (2) of each particle 
4: If the stop criterion is not met, go to (2), else x  is the 
best position 
 
Due to the drawback of PSO mentioned, though MOPSO 

has good global optimization performance, the optimization 
efficiency of MOPSO sometimes obviously decreases near 
Pareto solutions. To solve the premature convergence issue, 
many effective particles updating strategies are incorporated 
into MOPSO to improve the diversity in the Pareto-optimal 
solutions, such as the hyper-grid approach [3], σ-method with 
clustering [4] and Sigma method [5]. On the other hand, the 
hybridization approach with other methods used to get a 
balance between exploitation and exploration. For example, 
the authors in [6] presented a co-evolutionary PSO algorithm 
associating with the artificial immune principle. In the 
proposed algorithm, the whole swarm was divided into two 
kinds of sub-swarms consisting of one elite subpopulation and 
several normal subpopulations. The best individual of each 
normal subpopulation will be memorized into the elite 
subpopulation during the evolution process. 

The authors in [7] proposed a hybridization approach, 
which is a combination of PSO and Differential Evolution 
(DE-PSO). They use a random displacement strategy to 
increase the exploration capacity and at the same time to 
accelerate the algorithm convergence, by using operators of 
DE algorithm. So, three strategies have been used: DE 
Updating Strategy (DEUS), Random Updating Strategy (RUS) 
and PSO Updating Strategy (PSOUS). The author in [8] 
presented an algorithm based on a master-slave model, in 
which a population consists of one master swarm and several 
slave swarms. The slave swarms execute a single PSO 
independently to maintain the diversity of the particles, while 
the master swarm evolves based on its own knowledge and on 
the knowledge of the slave swarms. Also, the authors in [9] 
proposed a hybrid approach between Speed-constrained Multi-
objective Particle Swarm Optimization (SMPSO) algorithm 
and the concept of tabu search in order to remedy to the 
premature convergence and to improve the exploitation in 
search space.  

B. Island Models 

Islands Model (IM) is a multi-population approach used by 

evolutionary algorithms. It is inspired by the punctuated 
equilibrium model. The first studies of the IM connected with 
the genetic algorithms showed a high efficiency and an 
equivalence between the exploitation and the exploration in 
the search space. In general, IM divides the population into 
subpopulations. Each population is considered an island and is 
isolated from other islands during the evolutionary process. 
The islands evolve independently for a while, and then, a 
process of migration is carried out by the islands which can 
exchange candidate solutions.  

This migration process has the advantage of promoting or 
encouraging the development of subpopulations by 
introducing new characteristics through the exchange of 
candidate solutions between the islands. The fundamental 
aspect of IM is the collaboration between the islands, it is 
carried out by a periodic migration process. This process uses 
a strategy for which candidate solutions are transferred from 
one subpopulation to another. Migration allows 
subpopulations to help others by introducing new information 
in the form of migratory points.  

There are several parameters specifying an island model, 
like: 
 Islands number: represents the number of subpopulations 

in the model; 
 Migration topology: represents the communication 

structure of the model; 
 Migratory frequency: determines how often migration 

occurs; 
 Migratory rate: determines how many individuals migrate 

from a subpopulation to another; 
 Synchronization type: represents the type of 

synchronization for the migration process (synchronous or 
asynchronous); 

 Migratory policy: defines which individuals will be 
removed and replaced when migration occurs; 

 Migratory flow: defines the path of the emigrants inside 
the communication structure. 

In the literature, several EA-based methods have integrated 
the island model concepts in order to improve the population 
diversity during the search and establish a balance between 
exploration and exploitation, Island based Genetic Algorithm 
[10], Island based Differential Evolution [11], [12]. Moreover, 
the parameters sensitivity of island models such as islands 
number, migration interval and migration frequency have been 
studied to show their effect on the convergence and their 
optimal values to improve the algorithms performance [13].  

Most of time the island models are using a static way by 
introducing their parameters such as the immigrant 
replacement policy, the topology of the communication among 
subpopulations, and the synchronous or asynchronous nature 
of the connection among subpopulations. The authors 
proposed a dynamic model to improve its performance [14], 
[15].  

III. PROPOSED APPROACH 

In order to improve the MOPSO algorithm, we propose to 
combine it with the island model [9] in order to maintain 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:11, 2018

1012

 

 

diversity by using a set of parameters. Then, we use Variable 
Neighborhood Search (VNS) technique [16] as a local 
approach for its simplicity to parameterize and its 
effectiveness. For these reasons, this technique is chosen as a 
local mechanism to enhance the exploitation in each island 
where it is applied for every pbest solution of each particle in 
the sub-swarm. 

 

 

Fig. 1 IMOPSO algorithm structure 
 

Step 1. The model sub-divided the swarm into a set of swarms 
connected by T topology. In the initialization phase of 
each sub-swarm, the particles are distributed randomly 
in the search space for each dimension. Also, the 
velocity is initialized in each sub-swarm too. Initial 
value for the pbest  is set to the particle position. 
Another set named archive can be defined in order to 
store the obtained non-dominated solutions. Due to the 
presence of an archive, the best solutions are preserved 
during iterations.  

Step 2. In the update phase, each particle i has a position 
defined by 𝑥  𝑥 , 𝑥 , … , 𝑥 , … , 𝑥  and a velocity 
defined by 𝑣 = (𝑣 , 𝑣 , … , 𝑣 , … 𝑣 ). Its movement is 
stochastically adjusted according to the influence of its 
best solution and of the best solution of its neighbors. 
In fact, the velocity and position of each particle i are 
updated using the two equations (1) and (2). 

Step 3. Update pbest and gbest: In the PSO algorithm, the 
personnel experience of the particle is captured in the 
pbest attribute, which corresponds to the best 
performance attained so far by it in its movement. In 
our approach, we use the following strategy for every 
current solution, we choose a set of neighborhoods 
N , k  1, . . . , k  generated randomly. Then, we 
compare the current solution of the i-th particle to the 
pbest solution of each particle of the chosen neighbor: 
if the pbest of the current solution dominates it, we kept 
it, otherwise it is replaced by the pbest of the 
considered neighbor. 

To choose the leader, select the gbest solution using a 
binary tournament based on the crowding value of the leaders. 
The maximum size of the leaders set is fixed equal to the size 
of the swarm. After each iteration, the leaders archive, and its 
crowding values are updated. If the size of leaders archive is 
larger than the maximum allowable size, only the best leaders 
are retained based on their crowding value. The rest of the 
leaders are eliminated.  

Algorithm 2. The Detailed Procedure of A Personal Guide  
1: For the d-th dimension of the i-th particle and j-th particle,  
2: Choose a random solution 
3: while  𝑁 , k=1,..., 𝑘  
4: Generate a pbest                                                                        

solution of the i-th particle at random from the k-th 
neighborhood. 

5:  𝑎  = pbest-i th 
6: 𝑎  = pbest-j th  
7: if 𝑎  dominated by 𝑎  
8: select 𝑎 and replaces the 𝑎  and get a new pbest solution 

otherwise continue with the another k-th neighbor; 
9: k ← k + 1. 
10: End While 
11: End For 
 

Step 4. Mutation Operator: Two mutation operators: 
Polynomial mutation is applied to each particle in the 
sub-swarm.  

 
Algorithm 3. Island-MOPSO 

1: Randomly initialize the islands (sub-swarms) connected by 𝑇 
topology 

2: While the sub-swarm has not converged and the maximum 
iterations number has not been reached. 

3: Evaluate the fitness of each particle in the sub-swarm 
4: Update pbest using VNS and gbest 
5: Perform mutation operation 
6: Perform migration operation 
7: End While  
8: Send the best solutions to the other island neighbor 
9: Replace the randomly chosen solutions 
10: Update the archive 
11: End 

 
Step 5. Migration Operator: Migration is determined by 

Random Ring topology 𝑇 which is totally dynamic and 
it is defined randomly each time the migration has to 
occur. The islands connect to each other as a 
unidirectional-connected graph. The edge between each 
two islands represented the feasible path between an 
island and its neighboring island. When the migration 
frequency is reached, in our case it is defined by the 
iterations number U , the migration rate occurs by 
determining the number of migrant particles to send 
and receive between the islands based on migration 
topology. The migration policy R  is another process 
in migration responsible for selecting the migrant 
particles to be exchanged among islands. The random-
random migration policy is used to send the random 
solutions from one island to its neighboring island by 
means of replacing the random particles. 

IV. EXPERIMENTAL TEST AND RESULTS 

The proposed approach is compared to several 
multiobjective evolutionary algorithms to test its performance: 
OMOPSO [17], SMPSO [18], and genetic algorithm NSGA II 
[19]. We selected problems out of two well-known benchmark 
suites, namely the ZDT [20] and the DTLZ [21] problems. 
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These problems cover various features like concave 
geometries, disconnected Pareto-fronts, biased and multimodal 
problems (Table I). The problem dimensions were chosen as 
to create an interesting complexity level between 3 and 30 
decisions variables. The algorithms are run for a population 
size of 100, the archive size is 100 solutions. The iterations 
number is equal to 500 iterations for PSO algorithms (the 
equivalent of the stopping criterion for NSGA II algorithm is a 
maximum evaluations number of the objective function equal 
to 50,000). We analyze the results quality of Pareto fronts 
after 30 independent runs of each function. 

The parameters related to island model are intensively 
studied to measure their effect on the convergence and 
diversity of the proposed approach. The number of islands 
used with various {I = 2, 5, 10} values has been treated in the 
three cases with random ring topology. The other parameters 
have been also studied such as the migration frequency 
represented by the iteration number= 100 iterations and the 
migration rate (R = 10% and the migration policy is 

random-random strategy. Also, the neighbor size used by VNS 
mechanism is = 3 in our experiments.  

 
TABLE I 

PROPERTIES OF THE TEST FUNCTIONS 
Test 

functions 
Objectives 

number 
Proprieties 

ZDT1 2 Convex 

ZDT2 2 concave 

ZDT3 2 Discontinue fronts, multimodal 

ZDT4 2 Convex, multimodal 

ZDT6 2 Concave, multimodal biased 

DTLZ1 3 Linear, multimodal 

DTLZ2 3 Concave 

DTLZ3 3 Concave, multimodal 

DTLZ4 3 Concave, biased 

DTLZ5 3 Uni-modal 

DTLZ6 3 Uni-modal 

DTLZ7 3 Discontinue fronts, multimodal 

 

 
TABLE II 

RESULTS OF HV INDICATOR (I 5) 
Test functions IMOPSO OMOPS SMPSO NSGA II p-value 

ZDT1 

Best 2.98 e-1 2.82 e-1 3.45 e-1 4.74e-1 

+ Average 4.95e-1 5.71e -1 5.12 e-1 8.14 e-1 

Worst 6.53 e-1 6.7 4e-1 6.32 e-1 8.23 e-1 

ZDT2 

Best 2.58 e-1 2.67 e-1 3.21 e-1 7.02 e-2 

+ Average 2.23e-1 3.28 e-1 3.27 e-1 2.36 e-1 

Worst 4.1 e-1 4.57 e-1 4.2 e-1 4.51 e-1 

ZDT3 

Best 4.36 e-1 4.87 e-1 5.22 e-1 8.69 e-2 

+ Average 4.98 e-1 5.21 e-1 5.75 e-1 6.14 e -1 

Worst 6.24 e-1 7.26 e-1 6.32 e-1 6.75 e-1 

ZDT4 

Best --- --- 4.54 e-2 6.45 e-2 

- Average 0.00 0.0 6.23 e-2 3.87 e-1 

Worst --- --- 6.85 e-2 4.43 e-1 

ZDT6 

Best 3.28 e-1 3.42 e-1 2.77 e-1 --- 

+ Average 3.52 e-1 3.97 e-1 3.61 e-1 0.00 

Worst 4.56 e-1 4.72 e-1 4.36 e-1 --- 

DTLZ1 

Best 2.87 e-1 2.99 e-1 2.63 e-1 --- 

+ Average 3.11e-1 3.22 e-1 4.01 e-1 0.00 

Worst 3.95 e-1 4.73 e-1 4.82 e-1 --- 

DTLZ2 

Best 6.51 e-2 6.56 e-2 6.88 e-2 7.25 e-2 

+ Average 1.99e-1 2.12e -1 3.27 e-1 3.83 e-1 

Worst 2.59 e-1 3.41 e-1 3.64 e-1 4.17 e-1 

DTLZ3 

Best -- -- 1.98 e-1 -- 

- Average -- 0.00 2.02 e-1 0.00 

Worst -- -- 3.61 e-1 -- 

DTLZ4 

Best 1.47e-1 1.91 e-1 1.97 e-1 3.68 e-1 

+ Average 1.94 e-1 2.09 e-1 2.41 e-1 4.45 e-1 

Worst 3.26 e-1 3.52 e-1 3.24 e-1 4.89 e-1 

DTLZ5 

Best 1.73 e-1 1.94 e-1 2.00 e.1 2.82 e-1 

+ Average 2.1 e-1 2.18e-1 2.23 e-1 3.12 e-1 

Worst 2.84 e-1 3.25 e-1 2.93 e-1 4.34 e-1 

DTLZ6 

Best 8.76 e-1 1.87 e-1 9.25 e-2 8.54 e-2 

+ Average 2.03 e-1 2.12 e-1 6.21 e-1 1.58 e-1 

Worst 2.79 e-1 3.89 e-1 6.82 e-1 2.36 e-1 

DTLZ7 

Best 2.84 e-1 2.86 e-1 2.96 e-1 3.24 e-1 

+ Average 3.25e-1 3.36 e-1 2.37 e-1 3.35e-1 

Worst 3.92 e-1 4.06 e-1 2.88 e-1 3.96 e-1 
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In order to compare the algorithms and since the evaluation 
of a multi-objective approach requires metrics and indicators 
in different scopes (such as diversity, distribution, 
convergence), we have used: 
 Hypervolume (HV) [21]: This metric measures the 

hypervolume of the portion of the objective space that is 
weakly dominated by an approximation set A and is to be 
maximized. Here, we consider the hypervolume 
difference to a reference set R where smaller values 
correspond to higher quality. 

 Spread (Spr) [22]: This indicator measures the extent of 
spread of a set of non-dominated solutions. It considers 
the Euclidean distance between consecutive solutions on 
average and extreme distances. Smaller values correspond 
to higher quality. 

 Epsilon indicator (Iϵ ) [23]: This indicator is a measure of 
the smallest distance that would be necessary to translate 
every solution in a PS so that it dominates the optimal PF 

of the problem. It depends on the solutions range of 
values, but smaller values are better. 

There is one indicator related to convergence (Epsilon), one 
to diversity (Spread), and one to the both convergence and 
diversity (Hypervolume). To compute these metrics and 
indicators, we have used the jMetal software. 

Furthermore, to give a better analysis of the results, a 
statistical test is required in order to provide confident results. 
This included a testing phase which allows us to perform a 
multiple comparison of samples. We have used the multi-
comparative function provided by MATLAB for that purpose. 
We always put down a confidence level of 95% (i.e., 
significance level of 5% or p-value below 0.05) in the 
statistical tests. Successful tests are marked with "+"symbols 
in the last column in all the tables containing the results; 
conversely, "− "means that no statistical confidence was found 
(p-value > 0.05). 

 
TABLE III 

RESULTS OF EPSILON INDICATOR (I 5) 

Test functions IMOPSO OMOPSO SMPSO NSGA II p-value 

ZDT1 

Best 4.74 e-3 6.05 e-3 1.46 e-2 5.32 e-3 

+ Average 4.96 e-3 6.42 e-3 1.82 e-2 5.72 e-3 

Worst 6.83 e-3 8.62 e-2 4.47 e-1 3.65 e-2 

ZDT2 

Best 4.67 e-3 5.84 e-3 4.68 e-3 4.84 e-3 

+ Average 5.32 e-3 6.14e-3 5.35 e-3 5.66 e-3 

Worst 7.47 e-3 9.32 e-3 8.56 e-3 8.96 e-3 

ZDT3 

Best 3.81 e-3 7.53 e-3 4.23 e-3 4.85 e-3 

+ Average 4.44e-3 1.32 e-2 5. e-3 6.12 e-3 

Worst 6.39 e-3 2.26 e-2 6.34 e-3 3.78 e-2 

ZDT4 

Best 4.21 5.23 7.09 e-1 6.42 e-3 

+ Average 4.43 5.64 7.51 e-1 7.88e-3 

Worst 4.98 6.3 8.49 e-1 4.31 e-2 

ZDT6 

Best 3.84 e-3 4.16 e-3 4.22 e-3 4.63 e-3 

+ Average 4.38 e-3 4.58 e-3 4.6 e-3 4.92 e-3 

Worst 6.15 e-2 6.47 e-2 6.29 e-2 7.39 e-2 

DTLZ1 

Best 1.43 1.65 2.76 e-1 3.32 e-1 

+ Average 1.89 1.92 3.25 e-1 3.72 e-3 

Worst 1.95 1.98 8.48 e-1 4.58 e-2 

DTLZ2 

Best 2.84 e-3 4.43 e-3 7.25 e-2 4.23 e-3 

+ Average 5.23 e-3 6.72 e-3 1.41 e-1 5.83 e-3 

Worst 3.86 e-2 4.35 e-2 1.74 e-1 4.53 e-2 

DTLZ3 

Best 4.87 8.52 4.24 e-1 4.55 e-3 

+ Average 8.61 8.73 7.59 e-1 6.57 e-3 

Worst 8.96 8.98 8.42 e-1 8.69 e-3 

DTLZ4 

Best 1.97 e-2 2.84 e-2 8.36 e-2 3.68 e-2 

+ Average 2.74e-2 3.23e-2 1.45 e-1 5.72 e-2 

Worst 3.34 e-2 4.39 e-2 2.39 e-1 6.83 e-2 

DTLZ5 

Best 3.67 e-3 3.74 e-2 4.26 e-3 4.59 e-3 

+ Average 4.44e-3 6.54 e-2 4.98 e-3 5.34 e-3 

Worst 3.65 e-2 7.67 e-2 3.57 e-2 6.41 e-2 

DTLZ6 

Best 3.81 e-3 4.74 e-3 4.13 e3 4.25 e-3 

+ Average 4.23 e-3 5.31e-3 4.65 e-3 5.23 e-3 

Worst 5.82 e-3 6.26 e-3 6.37 e-3 6.52 e-3 

DTLZ7 

Best 4.35 e-3 5.43 e-3 5.59 e-3 4.87 e-3 

+ Average 4.92e-3 7.12e-3 7.41 e-3 5.54 e-3 

Worst 6.78 e-3 5.47 e-2 6.67 e-2 6.22 e-2 

 
Table II shows the average, best and worst values of hypervolume for over 30 independent runs obtained by all of 
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the four algorithms. For further analysis, the ANOVA test is 
performed to evaluate the significant difference between the 
samples. The values in bold show the best result found for 
each test function using the different methods. It can estimate 
that the proposed method IMOPSO has achieved the best 
performance in hypervolume for nine among the 12 test 
functions. We can observe that the proposed approach gives 
the best results for the distribution solutions in Pareto fronts 
and it is superior to OMOPSO for all 12 of the test functions, 
superior to SMPSO expect in DTLZ1 and DTLZ3, and finally 
superior to NSGAII expect in ZDT6 and DTLZ1. 

Table III shows the average, best and worst values of I  
indicator, the modified IMOPSO provides good results for the 
following problems: ZDT1, ZDT2, ZDT3, ZDT6, DTLZ2, 
DTLZ4, DTLZ5, DTLZD6 and DTLZ7 which shows that the 
convergence is assured by using a local search technique: 
VNS for updating the pbest of each particle. It can be seen 
clearly that OMOPSO has some difficulties in solving ZDT4, 
DTLZ1 and DTLZ3 at the convergence level but the IMOPSO 
which is based on several islands could decrease these 
difficulties. Here, NSGAII shows a successful result to solve 
those problems compared to PSO algorithms. 

 
TABLE IV 

RESULTS OF SPREAD INDICATOR (I 5) 

Test functions IMOPSO OMOPSO SMPSO NSGA II p-value 

ZDT1 

Best 5.36 e-3 5.26 e-2 5.41 e-2 5.23e-2 

+ Average 6.43e-3 6.85e-2 6.76e-2 6.78e-2 

Worst 8.54 e-3 4.47 e-2 4.25 e-1 3.28e-1 

ZDT2 

Best 3.62 e-3 5.56 e-2 5.33 e-2 5.72e-2 

+ Average 5.37e-3 6.42e-2 5.84e-2 6.24e-2 

Worst 4.78 e-2 6.84 e-2 6.13 e-2 8.85e-2 

ZDT3 

Best 2.56 e-2 1.66 e-1 2.46 e-1 7.22e-1 

+ Average 3.16e-2 3.38e-1 3.47e-1 7.71e-1 

Worst 2.09 e-1 4.73 e-1 4.65 e-1 8.37e-1 

ZDT4 

Best 5.22 e-2 6.58 e-2 8.28 e-2 2.15e-1 

+ Average 7.52e-2 7.76e-2 9.1 e-2 2.81e-1 

Worst 2.42 e-1 2.47 e-1 3.38 e-1 3.79e-1 

ZDT6 

Best 4.57 e-1 5.37 e-1 4.28 e-1 4.73e-1 

+ Average 6.72e-1 6.81e-1 6.25e-1 6.94e-1 

Worst 6.89 e-1 7.26 e-1 6.97 e-1 7.59e-1 

DTLZ1 

Best 4.23 e-1 4.89 e-1 4.34 e-1 5.52e-1 

+ Average 5.26 e-1 5.69e-1 6.54e-1 6.78e-1 

Worst 5.86 e-1 6.93 e-1 7.31 e-1 7.46e-1 

DTLZ2 

Best 3.34 e-1 4.28 e-1 5.37 e-1 5.33e-1 

+ Average 5.63e-1 5.72e-1 6.42e-1 6.23e-1 

Worst 6.78 e-1 7.14 e-1 7.05 e-1 7.58e-1 

DTLZ3 

Best 5.35 e-1 6.17 e-1 6.52 e-1 7.24e-1 

+ Average 7.29e-1 7.37e-1 7.56e-1 8.21e-1 

Worst 8.42 e-1 8.58 e-1 8.2 e-1 8.87e-1 

DTLZ4 

Best 4.21 e-1 5.78 e-1 4.69 e-1 5.2 e-1 

+ Average 5.67 e-1 6.54 e-1 5.59e-1 6.75e-1 

Worst 6.36 e-1 7.84 e-1 7.21 e-1 7.44e-1 

DTLZ5 

Best 9.06 e-2 1.54e-1 1.92 e-1 1.25e-1 

+ Average 1.51 e-1 2.25e-1 2.35e-1 2.84e-1 

Worst 3.17 e-1 3.58 e-1 3.77 e-1 3.49e-1 

DTLZ6 

Best 8.68 e-2 1.12 e-1 1.83 e-1 4.21e-1 

+ Average 1.19 e-1 1.57 e-1 2.76e-1 5.07e-1 

Worst 3. 72e-1 3.65 e-1 4.38 e-1 6.27e-1 

DTLZ7 

Best 4.53 e-1 5.31 e-1 5.43 e-1 5.33e-1 

+ Average 5.01 e-1 5.86 e-1 6.31e-1 7.22e-1 

Worst 6.24 e-1 6.48 e-1 7.19 e-1 7.79e-1 
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Fig. 2 Pareto fonts for ZDT1 test function 

 

Fig. 3 Pareto fonts for ZDT2 test function 
 

 

Fig. 4 Pareto fronts for DTLZ2 test function 
 

 

Fig. 5 Pareto fronts for DTLZ6 test function 
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Fig. 6 Pareto fronts for DTLZ7 test function 
 

Table IV shows the results of average, best and worst 
values for the Spread indicator where the smallest values 
represent the best results. The fronts found for the most test 
functions show that modified IMOPSO is the best in terms of 
non-dominated solution distribution along the Pareto front. 
Indeed, it gives smaller values, thus showing better quality of 
the Spread indicator. It can be observed that the use of 
migration operator could improve the particles diffusion over 
the search space. Furthermore, the impact of using the island 
models parameters such as the random ring topology, the 
frequency rate and migration rate yield a higher amount of 
good solutions at the level of Pareto fronts. Also, the use of 
VNS technique allows the good exploitation into each island 
based on the neighborhood for each best local solutions of the 
particles. The first conclusion is a big achievement for the 
proposed approach by using island model and a local search 
technique to improve the MOPSO diversity. 

Looking at the tables, it can be noticed that the proposed 
approach and the comparative algorithms have significant 
influence on the values of every metric and indicator, since the 
p value is always much smaller than 0.05. Moreover, they 
have significant influence at a confidence level. 

To illustrate the working of the IOMPSO and OMOPSO 
algorithms, we have included in Figs. 2-6 the obtained 
approximations to the optimal Pareto front on the ZDT1, 
ZDT2, DTLZ2, DTLZ6 and DTLZ7 test functions. It can be 
seen from the observations of the approximate Pareto fronts 
found by IOMPSO improved in term of diversity. The choice 
of VNS is done in order to maintain the intensification into 
each island, also the migration operator could be a good 
mechanism to improve the diversity. 

V. CONCLUSIONS 

In this paper, we presented an approach for the 
multiobjective PSO algorithm which consists to combine it 

with the island models strategy and a local search technique in 
order to get a better spread into the swarm. The island models 
concepts have been embedded into the MOPSO algorithm. 
The particles are divided into several sub-swarms called 
islands. After such generations, the migration process occurs 
using random-ring topology and a random-random migration 
policy is performed in order to exchange the leaders among 
the islands. On other hands, the used of VNS mechanism for 
the pbest solution could maintain a good exploitation of the 
search space. Experiments on a series of ZDT and DTLZ test 
functions have been conducted to compare the proposed 
method with several state-of-the-art MOPSO algorithms and 
NSGA II. The results show that the proposed approach gives a 
better result in almost test functions. 
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