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Abstract—Information in the nervous system is coded as firing 

patterns of electrical signals called action potential or spike so an 
essential step in analysis of neural mechanism is detection of action 
potentials embedded in the neural data. There are several methods 
proposed in the literature for such a purpose. In this paper a novel 
method based on empirical mode decomposition (EMD) has been 
developed. EMD is a decomposition method that extracts oscillations 
with different frequency range in a waveform. The method is 
adaptive and no a-priori knowledge about data or parameter adjusting 
is needed in it. The results for simulated data indicate that proposed 
method is comparable with wavelet based methods for spike 
detection. For neural signals with signal-to-noise ratio near 3 
proposed methods is capable to detect more than 95% of action 
potentials accurately. 

 
Keywords—EMD, neural data processing, spike detection, 

wavelet decomposition. 

I. INTRODUCTION 
NFORMATION in the nervous system is coded as firing 
patterns of action potentials, so action potential detection 

from neural data is essential in the interpretation of neural 
mechanisms. Neural data composed of spikes and background 
noise which the later is a combination of unwanted signals due 
to fluctuations of energy carriers like ions or electrons and 
action potentials produced by neurons in far field. Because 
background noise consist of action potentials so spectral 
analysis methods based on Fourier transform aren't efficient in 
neural data analysis [1].  

So far several methods have been developed for detecting 
spikes embedded in neural data. The simplest and most 
convenient method is spike detection based on simple 
thresholding. In the case of low signal to noise ratios (SNRs) 
the efficiency of such method is significantly poor. Also 
recognition of overlapped spikes is impossible in simple 
thresholding method [2]. Methods based on neural network 
have been utilized for spike detection [3] but neural networks 
need a-priori information about signal and noise 
characteristics for training purposes which aren't always 
available in neural data processing, especially in low SNR 
cases. Another technique for spike detection is template 
matching which detects spikes based on the similarity between 
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neural signal and a predefined template. The result of such 
method outperforms than simple thresholding but its 
performance highly depends on the template selection and 
predefined threshold for similarity measurements [4]. 
Transforms like wavelet are other choices [2]-[5] to map 
neural data to transform space and search the presence of 
action potentials in that space. However in wavelet domain 
select a suitable wavelet is always a question and must be 
survived. For example comparison between discrete wavelet 
transforms (DWT) and stationary wavelet transform (SWT) 
indicates that SWT outperforms than DWT in spike detection 
[5]. In multiresolution wavelet domain the method based on 
multiplication of wavelet coefficients in some successive 
detail levels has been proposed in [1] which relies on the band 
limited properties of action potential. This method is sensitive 
to a threshold for decision. For solving spike detection, 
method based on high order statistics has been proposed in [6]. 
Based on this assumption, the background noise is Gaussian in 
nature [7], statistics with order higher than two can be used to 
separate Gaussian noise and spikes.  

In this paper an adaptive method based on EMD has been 
developed for action potential detection in an automated 
manner. The method is adaptive and needs no a-priori 
information about neural data. We have shown it is 
comparable with wavelet based methods. 

II. MATERIALS AND METHOD 

A. Recording from Cockroach 
A single tungsten microelectrode with impedance about 

1MΩ, inserted in the cockroach body, has been employed for 
recording real neural data. During recording, cockroach has 
been restrained firmly on a plastic disk. Cockroach only 
enables to move its antenna freely. This causes fewer artifacts 
to be induced on a recorded signal. The plastic disk is located 
on a faraday cage for electromagnetic interference reduction. 
The signal is applied to an electrophysiological amplifier set 
through a preamplifier, consist of TLC2272AC (Texas 
instruments, USA). Analog neural data has been amplified 
with a gain equal to 2000 and filtered in the range of 0.3-3 
kHz. A data acquisition card is utilized to digitize analog 
amplified and filtered data. The sampling frequency is 
adjusted to 30ksample/s for satisfying nyquist theorem. Using 
NI-Labview8.6 (National instruments, USA) software has 
been prepared for controlling data acquisition includes saving 
and displaying acquired data. This software controls sampling 
frequency of data acquisition card. To increase data sample 
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and reduce alignment error, recorded data has been upsampled 
with a factor equal 4.  

B. EMD Algorithm  
EMD is a method for decomposing a time series to some 

intrinsic mode functions (IMF). The assumption behind this 
method is that all time series are composed of IMFs as 
oscillatory modes [8]. It is a suitable tool for analyzing 
nonstationary signals. The most important characteristic 
features of IMFs are the equal numbers of extrema and zero 
crossing (expect one difference) and zero value for its upper 
and lower envelope average. EMD algorithm is briefly 
implemented as follows: 
1) Identify all extrema (maxima and minima) of the neural 

signal, x(t). 
2) Generate the upper and lower envelopes via cubic spline 

interpolation among all the maxima and minima points, 
respectively. 

3) Average two envelopes to compute a local mean series 
m(t). 

4) Subtract m(t) from the neural data to obtain an IMF 
candidate h(t)=x(t)-m(t). 

5) Check the properties of h(t): 
• If h is not an IMF (i.e. it does not satisfy the characteristic 

features of IMF explained above), replace x(t) With h(t) 
and repeat the procedure from step 1. 

• If h is an IMF, consider the residue r(t)=x(t)- h(t) as new 
x(t) and go to the next step. In this step h(t) is considered 
as the first IMF. The procedure for extracting each IMF is 
entitled as sifting. Usually it is time consuming to wait for 
achieving characteristic features of IMF, so if the 
difference between two successive sifting is lower than a 
predefined value, sifting is terminated and the result is 
considered as an IMF. 

6) For extracting other IMFs, the procedure from step 1 to 
step 5 is repeated on residue. Extracting procedure is 
terminated if residue is a constant or a function with one 
extrema. After extracting all IMFs, x(t)-time series signal- 
can be expressed as (1): 

 
ሻݐሺݔ ൌ ∑ ௝ܥ ൅ ௡ݎ

௡
௝ୀଵ                                    (1) 

  
where rn is the final residue, Cj is j-th IMF and n is the number 
of extracted IMFs. IMFs which are extracted firstly entitled as 
low order IMF and those extracted later are called higher order 
IMF. Lower order IMFs have higher frequency content and 
contain higher energy of signal. The effect of high frequency 
noise is dominant in lower order IMFs. It has been shown that 
EMD acts like a dyadic filter and the ratio of data sample over 
extrema in successive IMFs will decrease by the factor of two 
[9], [10]. 

C. Proposed Method 
As EMD acts like a dyadic filter bank [9] so each IMF 

contains a limited frequency content of the main signal in a 
manner that by increasing the order of IMFs, the frequency 
content of IMF will decrease by a factor of two, so the 
oscillation related to different component of neural signal like 

high frequency noise, spikes and non-spike events which are 
different in frequency content are included in different order 
of IMFs. For example each spike event has its dominant 
energy in some successive IMFs due to this fact that spikes are 
band-limited waveforms [1] but the high frequency noise 
which has different frequency content will be represented by 
different set of IMFs. This means that each spike can be 
represented by the summation of some successive IMFs that 
each of them contains a portion of spike's frequency or energy 
content. In time domain it is equivalent to say that the 
oscillations which make spike waveform appear in some 
successive limited number of IMFs. Another interesting 
feature of EMD is that it is localized in time so in temporal 
location of spike events, oscillations in related IMFs are 
expected. Therefore the idea is that by multiplication of some 
successive IMFs, it is possible to reinforce the spike events 
and debilitate other parts of signal like background noise.  

For extraction of spikes from neural data, the following 
algorithm is proposed:  
1. Select four IMFs starting the IMF with maximum 

amplitude. Here it has been supposed that the SNR of 
neural data is higher than zero so the amplitude of action 
potential is equal or greater than background noise.  

2. Multiply the selected IMFs. The spikes are band limited 
signals so their related oscillations are embedded in some 
successive IMFs. This multiplication will attenuate the 
effect of background non-spike events. Multiplication of 
absolute value of IMFs enables our algorithm to be robust 
against different form of spike morphologies.  

3. Multiplication result has several peaks with dominant 
amplitude around spike's temporal location so a decision 
threshold selection for eliminating small peaks is needed. 
For removing the necessity for such threshold, a simple 
soft thresholding scheme is used. If the nature of the 
background noise is considered to be Gaussian [7], it is 
possible to estimate a threshold level above the 
background noise from first IMF [11]. The estimation of 
standard deviation of background noise based on first 
IMF is considered by (2): 

 
δଵ ൌ ୫ୣୢ୧ୟ୬ሼ|୍MFభሺ୲ሻି୫ୣୢ୧ୟ୬ሼ୍MFభሺ୲ሻሽ|ሽ

଴.଺଻ସହ
      (2) 

 
 
estimating the standard deviation of background noise based 
on (2) is less sensitive to outliers than the traditional 
calculation of the sample standard deviation [5]. By 
calculating δ1, other IMF noise levels can be derived [11] from 
δ1 based on (3). 
 

௞ߜ ൌ ఋభ

√ଶ
ೖషభ            (3) 

 
where k is the order of IMF. By calculating the noise level for 
each IMF, it is possible to determine a threshold above 
background noise [12] for each IMF by (4) to obtain the 
smoothed version of each IMF. 
 

߬௞ ൌ  ௞ඥ2 log ሺ݉ሻ          (4)ߜ
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In (4) m is the IMF length and k is the order of IMF. Values 
of signal lower than τ contain background noise. Between 
selected IMFs, the IMF with maximum value is chosen and 
soft thresholding with correspond threshold value of ߬௞  is 
applied to it. Soft thresholding causes all non-spike events in 
final multiplication to be removed so the necessity of the 
threshold on multiplication result is discarded. Any peaks 
above zero in final multiplication represent spike in real data. 
If multiple peaks be detected in duration lesser than spike's 
length, peak with maximum value is selected. After 
determining peak location in the multiplication result, a 
window with a length of approximately 1ms automatically is 
located on neural data in determined peak location. Due to the 
special morphology of spikes 0.1ms of window is located 
before the peak location and 0.9ms of window is located after 
peak location. Portion of neural data located in 1ms window is 
selected as action potential. 1ms is the approximate duration 
of action potential of spikes in the nervous system [7]. 

D. Construct Simulated Data 
The main difficulty in evaluation of the spike detection 

algorithms is the absence of a ground truth data which the 
temporal location of spikes and their exact number can be 
specified clearly. To eliminate such problem a noisy spike 
synthesizer is used which can generate signals for which the 
ground truth is known [13]. Synthesized data used in this 
paper contains two target neurons. Some correlated and 
uncorrelated spike trains based on spike's templates of target 
neurons are produced which have Poisson distribution and 
added to desired templates. Finally white Gaussian additive 
noise is added to simulate a real data. In this data, exact time 
and template of spikes are clearly specified.  

III. RESULTS 
In this section the ability of proposed EMD based algorithm 

in spike detection for different neural data set (real and 
simulated data) and for different SNRs is examined. The SNR 
is defined as the ratio of powers for targeted signal waveforms 
and noise as (5): 
 

ܴܵܰ ൌ ቀ௔௖௧௜௢௡ ௣௢௧௘௡௧௜௔௟ ௪௔௩௘௙௢௥௠௦ሺ௣ି௣ሻ
௣௨௥௘ ௡௢௜௦௘ ௦௘௚௠௘௡௧ሺ௣ି௣ሻ

ቁ
ଶ
    (5) 

 
The action potential waveforms in the simulated data are 

specified so the average action potential peak-to-peak is 
applied in (5). 

A. Results for Real Data 
For investigating the ability of proposed algorithm, small 

portion of a real neural waveform from our recorded data 
which contains one dominant spike is selected. In Fig. 1 the 
neural data is displayed in upper trace and the location of 
dominant spike's peak is specified by a thick dot. The four 
selected IMFs are depicted in the middle traces in Fig. 1. In 
the vicinity of spike's peak, there are some peaks in 
multiplication result. Dominant peak is selected and its 
location is displayed in Fig. 1 (lower trace). Note that a 
threshold based on (4) has been exerted on the first IMF to 

eliminate the necessity for any manual threshold selection on 
the multiplication result. Also all detected spikes from our 
whole recorded data are depicted in Fig. 2 (a). This real data is 
inspected visually by an expert person and the presence of two 
templates of action potential is determined. The projection of 
all detected spikes on first and second principal components 
obtained by principal component analysis (PCA) is displayed 
in Fig. 2 (b). The existence of two clusters in PCA analysis 
emphasizes the existence of two spike templates. 

B. Comparison with other Techniques Using Simulated 
Data 

 To compare the proposed EMD based algorithm, simple 
thresholding and a method proposed in [1] based on wavelet 
transform have been used. In traditional thresholding a 
threshold is adjusted manually. To quantify the performance 
of algorithm (6) is used [6]. 

 

݁ݐܴܽ ݐ݅ܪ ൌ ௖ܰௗ௦

௧ܰ௥௦
כ 100 

݊݋݅ݏ݅ܿ݁ݎܲ   ൌ ே೎೏ೞ
ே೏ೞ

כ 100        (6) 
 

where Ncds is the number of correct detected spikes, Nds is the 
number of detected spikes and Ntrs is the number of true 
spikes. Hit rate and precision near 100% are ideal. Fig. 3 
shows the results for implementation of proposed EMD 
algorithm, wavelet based algorithm and simple thresholding 
for spike detection in simulated data. In wavelet based method 
'db3' wavelet has been used as mother wavelet which gave the 
best result and 5 decomposition levels have been used. The 
results for hit rate and precision for simulated data in different 
SNR have been shown in Fig. 3. 

IV. DISCUSSION AND CONCLUSION 
In this paper a new algorithm based on empirical mode 

decomposition (EMD) for neural spike detection has been 
proposed. Due to the band limited properties of action 
potentials, their frequency content is concentrated in a limited 
number of adjacent frequency windows. The main idea behind 
the proposed method is that as EMD acts like a dyadic filter 
bank [9], [10] it can extract the oscillations embedded in a 
signal (IMF extraction) in the frequency windows. It means 
that each oscillation contains a portion of signal's frequency 
content. It is expected that oscillations that construct an action 
potential are included in some successive IMFs in the related 
temporal location of action potential.  
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Fig. 1 A portion of recorded waveform from cockroach (upper 

window) Selected 4 first IMFs (middle) Result of multiplication of 
selected IMFs (lower). A threshold has been applied to first IMF as 

discussed in methods 
 

 
Fig. 2 Detected spikes using EMD based method from raw data (a) 

The projection of detected spikes on PCA space (b) 
 

 

 

Fig. 3 Hit Rate & Precision for simulated data: simple thresholding 
(dashed line), EMD based method (star mark) and Wavelet based 

method (dot mark) 
 
This means that spike event exhibits its effect in IMFs as 

the same temporal location as event occurs. Consequently 
spike event energy is demonstrated by localized oscillations in 
some limited numbers of successive IMFs while other non-
spike events are expressed by different set of IMFs. By 
multiplying some successive IMFs, a peak will be appeared in 
the neighboring location of action potential's peak. Fig. 1 
shows the Implementation of proposed EMD method on a 
short real neural data from our recorded data which contains 
one dominant spike. The lower trace in Fig. 1 shows that 
proposed method can determine action potential temporal 
location accurately. Note that multiplication of some 
successive IMFs reinforces spike events as band limited 
events and attenuates non-spike events. The result in Fig. 2 
shows all detected spikes by EMD algorithm from whole real 
neural data. An expert person visually inspected the presence 
of two templates in our recorded data which is proved by PCA 
analysis which depicted in Fig. 2 (b) and shows the presence 
of two clusters as the existence of two templates in our data. 
The results depicted in Fig. 3 indicate that for simulated data 
as a ground truth data with SNR greater than 1.5, proposed 
algorithm can detect more than 95% of spikes accurately that 
is slightly better than wavelet detection based method [1]. As 
can be seen in Fig. 3 the proposed algorithm detects action 
potential more superior than simple thresholding method 
which its performance deteriorates in low SNRs. Also the 
wavelet based methods for action potential detection are 
highly dependent on selection of mother wavelet. Varieties of 
wavelets have been used for this aim [1]-[5] in literature. In 
spite of the wavelet based methods, employing EMD helps to 
have an adaptive method which its result only depends on 
desired signal. Based on the soft thresholding that have been 
proposed in materials and method, our EMD based algorithm 
needs no predetermined threshold and all peaks above zero in 
multiplication of selected IMFs will be considered as a sign of 
action potential existence in raw data. Of course in some cases 
which the aim is detection of dominant spikes with high 
amplitude, user can adjust the threshold on multiplication of 
IMFs to avoid detection of spikes with lower energy.  
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