
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2650

Abstract Graph has become increasingly important in modeling
complicated structures and schemaless data such as proteins, chemical
compounds, and XML documents. Given a graph query, it is desirable
to retrieve graphs quickly from a large database via graph-based
indices. Different from the existing methods, our approach, called
VFM (Vertex to Frequent Feature Mapping), makes use of vertices
and decision features as the basic indexing feature. VFM constructs
two mappings between vertices and frequent features to answer graph
queries. The VFM approach not only provides an elegant solution to
the graph indexing problem, but also demonstrates how database
indexing and query processing can benefit from data mining,
especially frequent pattern mining. The results show that the proposed
method not only avoids the enumeration method of getting subgraphs
of query graph, but also effectively reduces the subgraph isomorphism
tests between the query graph and graphs in candidate answer set in
verification stage.

Keywords Decision Feature, Frequent Feature, Graph Dataset,
Graph Query.

I. INTRODUCTION

RAPHS, as a general data structure, provide a powerful
and primitive tool to model the data in a variety of

applications, e.g. social or information networks, biological
networks, 2D/3D objects in pattern recognition, wired or
wireless interconnections, chemical compounds or protein
networks. Nodes in graphs usually represent real world objects
and edges indicate relationships between the objects. For
example, in computer vision, graphs are used to represent
complex relationships, such as the organization of entities in
images. In chemical informatics and bio-informatics, graphs
are employed to denote compounds and proteins. In order to
accurately describe the characters of the data, the labeled
graphs are often applied. The nodes and edges are associated
with attributes in a labeled graph. With the tremendous amount
of structured or networked data accumulated in large databases,
how to efficiently support the scalable graph query processing
becomes a challenging research issue in database area.

Given a graph dataset GD and a query graph q, the target of
graph query is to get all supergraphs of q in GD, or

Xiantong Li is with the School of Computer Science and Technology at Harbin
Institute of Technology, Harbin, Heilongjiang, China 150001(Corresponding
author. phone: 13936394192; e-mail: lxt@hit.edu.cn).

Jianzhong Li is with Harbin Institute of Technology, Harbin, Heilongjiang,
China. 150001 (e-mail: lijzh@hit.edu.cn).

Q={g|g GD q g}. For example, in chemistry, the subgraph
can be used to retrieve the compounds containing the given
special substructure. Graph query can also be used in biology
identification.

Recently, graph query has been received much more concern
and been well studied in [1]-[13]. The indices of [1]-[4] are
founded on frequent features, such as frequent paths, subtrees,
or subgraphs, which are generated from graph mining methods.
Reference [5] and [6] are two similarity graph query algorithm
based on [1]. In [7]-[11], the strategies use other feature set to
construct the indices, such as graph closure, directed acyclic
graph decomposition, special components in graph, and so on.
In some special applications, some other more efficient
algorithms are provided, such as [12], [13] in XML.

Including precise and similar methods, the methodology of
the pressed algorithms is founded on Filter-Verification. The
filter stage erases fake answers as much as possible in order to

form a smallest candidate answer set. In verification stage,
each graph in candidate answer set is verified by taking
subgraph isomorphism test with query graph q. The subgraph
isomorphism is NP-complete problem [14] whereas the
candidate answer set should be as small as one can. The
inclusion logic is used while filtering takes place: Give two
labeled graphs g1 and g2. And g is a subgraph of g1 (g1). If
g1 is a subgraph of g2, then g is a subgraph of g2 too, or
((g1 g2) g2)). On the other side, if g is not a subgraph of
g2, it can be drawn that g1 is not a subgraph of g2 too, or (

g2) (g1 g2)).
The efficiency of graph query is restricted by two operations.

One is the subgraphs enumeration of query graph q. After
query graph q is given, the algorithm enumerates all subgraphs
of q, in order to find out the indexed feature set Fq which are
subgraphs of q, or Fq = {f|f q f F}, where F is the indexed
feature set. The other part is subgraph isomorphism between
candidate graphs and query graph in verification stage.
Subgraph isomorphism is NP-complete problem. The most
important issue of graph query research is to reduce the number
of subgraph isomorphism tests.

In this paper, a vertex-feature mapping based index structure
VFM (Vertex to Frequent Feature Mapping) is proposed to
handle graph query problem. There are two mappings in VFM.
One maps important vertex array (VA) to its neighbor
composed array (CA) and the other maps (VA, CA) to a
decision feature set (DF). Through the two mappings, VFM

An Efficient Graph Query Algorithm Based on
Important Vertices and Decision Features

Xiantong Li, Jianzhong Li

G

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2651

builds the frequent feature set Fq which q contains in
polynomial time. The main contributions of this paper are:

1. VFM builds the indexed frequent feature set in which are
contained by q. This set is formed by VFM-Index through the
mappings. In this way, the enumeration method is avoided to
decompose q and the complexity is reduced indeed.

2. Through the two mappings in VFM, a more precise
location of frequent indexed features is realized and produces a
much smaller candidate answer set.

The rest of this paper is organized as follows. In section 2,
the preliminaries of graph query are given. Index construction
algorithm and query algorithm are given in section 3 and the
efficiency of VFM is analyzed in section 4. In section 5, the
experimental results are given. The conclusion of this paper is
addressed in section 6.

II. PRELIMINARIES

Definition 2-1 A labeled graph G is a 5-tuple G =
L} where V is a set of vertices and E V ×V is a

set of undirected edges. and are the sets of vertex labels
and edge labels respectively. The labeling function L defines
the mappings V and E E.

Definition 2-2 Given a pair of labeled graphs G =
{V, L} and G = {V ,E ,L }, G is a subgraph
of G iff

V
u V, (L(u)= L

E
(u, v) E, (L(u, v)= L

Here, is also referred to as a supergraph of G.
Definition 2-3 Graph isomorphism is a bijection f:

V(G) V(G). For given two labeled graphs G={V,E, V, E,L}
and G ={V ,E , V , E , L }, if they are isomorphic, they
satisfied such conditions:

1). u V,L(u)=L (f(u)) and
2). u,v V,((u,v) E) ((f(u),f(v)) E), and
3). (u,v) E,L(u,v)=L (f(u),f(v)).
If G and G are graph isomorphic, it noted as G G .
The bijection f is an isomorphism between G and . We

also say that G is isomorphic to and vice versa.
Definition 2-4 A labeled graph G is subgraph isomorphic

to a labeled graph , denoted by G G , iff there exists a
subgraph G of G such that G is isomorphic to G .

Here, G is an embedding of G in G .
It is proven in [14] that subgraph isomorphism is

NP-complete. In the process of graph query, subgraph
isomorphism is unavoidable. How to reduce the number of
subgraph isomorphism test is the key character about efficiency
in graph query.

Definition 2-5 Given a graph dataset GD and query graph q,
the answer set of graph query is Q. The graphs in Q satisfy the
following condition:

Q = {g| g GD q g}.

In this paper, unless specific statement, the size of a graph is
the edges it has. Given a labeled graph G, the size of G is noted
as |G|. The algorithm proposed in this paper is used in
undirected labeled graph set, though it can be fit in directed
graph set with slight adjusted. For avoiding the confusions, the
graphs in graph dataset are named target graph.

III. VFM-INDEX

The naïve method of graph query is compared query graph q
and every target graph in graph dataset. It is very inefficient.
For reducing subgraph isomorphism computation in graph
query, the inclusion logic is introduced to filter out a smaller
candidate answer set from graph dataset. The inclusion logic is:
Given two graphs q and g. If q is a subgraph of g, then all
subgraphs of q are subgraphs of g, too. Otherwise, even if one
subgraph of q is not a subgraph of g, q is not a subgraph of g.

According to inclusion logic, the filter-verification method
of graph query is: 1) forming a subset of indexed features which
are subgraphs of query graph q, 2) getting the support set of
those features, 3) intersecting the support sets to build the
candidate set Cq, and 4) verifying the target graphs in Cq one
bye one.

Fig. 1 Data structure of VFM

The data structure of VFM-Index is shown in fig.1. It can be
divided into two parts, VFM-Vertex and VFM-Feature.
VFM-Vertex is composed by two types of arrays, VA (Vertex
Array) and CA (Composed Array). VA brings the information
of vertex label, vertex degree (neighbors), and neighbor
relationship. Each VA points to a set of CA array. CA array has
| | bits, which represents the labels. Here, 1 is
positive and 0 is negative. A serial of DF array is
VFM-Feature, which is pointed by CA. Each DF entry is a set of
decision features which have the important node VA and CA
described.

VFM-Index is organized as follow.
1. Off-line Index Construction. In this stage, VA, CA and DF

are built according to GD. At the same time, every entry of DF
should record its own support set.

2. Searching Stage. When query graph q is given,
VFM-Index gets important vertices of q. According to the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2652

values of each vertex of q, it locates DF entries through the
mappings between VA, CA.

3. Filtering Stage. VFM-Index construct candidate answer
set Cq by intersecting the decision features support set which
are contained in DF array in stage 2. Or,

(())q dfdf
C D df DF df q df g g GD .

4. Verification Stage. To return the correct answers,
VFM-Index verifies every target graph in Cq.

The rest of this section will discuss the construction of
VFM-Index and query process.

A. VFM-Vertex
Vertices are the basic part of a labeled graph. If the graph

index is built on vertices, the naïve method is forming a
relationship between vertices and target graphs. But, vertex
brings no structure information. Its filtering ability is poor and
not suitable for Filter-Verification method. However, the size
of such index structure can be totally controlled. Vertices index
size has a linear relationship with | V|.

VFM-Vertex describes the important vertices in a graph by a
3-tuple: VA (L, D, NC), L is the label of the vertex, D is the
degree (or neighbors) of the vertex, NC is the status of the
neighbor connections, which records the number of
connections between all its neighbors.

There are various ways of measuring the importance of a
vertex in a graph. For simplicity, we use the degree centrality
measure in this paper. In this measure, vertices with high
degrees are considered more important than vertices with low
degrees. Note that the defi flexible in
VFM-Vertex and customizable for specific application needs.
VFM-Vertex can be easily extended to use other measures of
node importance, such as closeness, betweenness, and
eigenvector centralities.

Fig. 2 Labeled graph G
For example, fig.2 shows a labeled graph G. For simplicity of

describing, we erase all edge labels and part vertex labels. a
and b are labels of vertices and the numbers are serial number
of vertices. Vertex a and vertex b can be described by VA, VAa:
(a, 4, 3), VAb: (b, 4, 2).

There is a linear relationship between VAs.
Definition 3-1 Given two vertices a, b in a labeled graph.

The relationship of VA between them is:
1) VAa = VAb, iff (La = Lb) (Da = Db) (NCa = NCb)
2) VAa VAb, iff

a) (La = Lb) (Da < Db) (NCa < NCb) or
b) (La = Lb) (Da = Db) (NCa < NCb) or
c) (La = Lb) (Da < Db) (NCa = NCb)

3) VAa VAb, others.
For a given query graph q in the process of graph query, the

way to pick frequent features q contained is a complicated part.
First, it enumerates all subgraphs of q. Then, subgraph
isomorphism tests take place between the subgraphs of q and
frequent features to find out which indexed features are
contained by q. In this paper, the frequent feature set of q is
forming by VA. The features in

{ | ()}q q f q fF f f F T T T T is much less than

indexed frequent features. VFM-Vertex avoids the process of
enumerating subgraphs of q and main part of subgraph
isomorphism between subgraphs of q and indexed frequent
features.

A number of vertices have the same value of VA. For
example, in fig.2, suppose the label of v1, v2 and v3 is c. The
value of VA of these vertices is (c, 2, 1). While, if the
information of neighbor labels are appended to VA, the vertices
can be classified more detailed. Such as above example, the
neighbor labels separate v1 from v2 and v3.

VFM-Vertex appends CA (Composed Array) into VA to
classify vertices much detailed. For a given graph G and
important vertex v in G, the node array of v is van which points
to a list of Composed Array, or CA. Every entry of CA is a | V|
bits array, which every bit represents a label in GD. If a label
belongs to one neighbor of v, the value of that bit is 1 . But, if
the value of | V| is too big to fit in main memory, the space
which CA used should be very large. If this condition occurs, a
method of [15] can be introduced to handle it. In this way, the
labels of a vertex can be controlled in Sbit bits, and Sbit is a value
which the user defined.

VFM-Vertex is composed by two parts. One part is the basic
information of a vertex, or the triple of VA. The other part is a
list of CA, which are connected with VA by structure
information mapping.

In the coming subsection, the frequent feature part,
VFM-Feature, is introduced.

B. VFM-Feature
Definition 3-2 The support of a graph g in graph dataset GD

is the percentage of g s supergraphs in GD, or:

||
|}|{|),(

GD
ggGDggGDgsupport iii

The definition of frequent feature is given about the concept
of support.

Definition 3-3 Given a graph dataset GD={g1,g2 gn}. A
graph feature g is frequent about GD, if and only if its support
is no less than a given support threshold min_sup, or: support(g,
GD) min_sup.

The support set of a frequent feature g is the set of all its
supergraphs in GD. It is noted as Dg={gi|gi GD g gi}. The
definition of support can be transformed to its support set form:
support(g,GD)=|Dg|/|GD|.

Frequent features expose the intrinsic characteristic of a
graph database. Suppose all the frequent features with
minimum support min_sup are indexed. Given a query graph q,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2653

if q is frequent, the graphs containing q can be retrieved
directly since q is indexed. Otherwise, q probably has a
frequent subgraph f whose support may be close to min_sup.
Since any graph with q embedded must contain q's subgraphs,
Df is a candidate answer set of query q. If min_sup is low, it is
not expensive to verify the small number of graphs in Df in
order to find the query answer set. Therefore, it is feasible to
index frequent fragments for graph query processing.

A further examination helps clarify the case where query q is
not frequent in the graph database. We sort all q's subgraphs in
the support decreasing order: f1, f2 fn. There must exist a
boundary value i where support(fi,GD) min_sup, and
support(fi+1,GD)<min_sup. Since all the frequent fragments
with minimum support min_sup are indexed, the graphs
containing fk(1 k i) are known. Therefore, we can compute the
candidate answer set Cq by

1 kfk i
D , whose size is at most

support(fi,GD). For many queries, support(fi,GD) is likely to be
close to min_sup. Hence the intersection of its frequent
fragments,

1 kfk i
D , leads to a small size of Cq. Therefore,

the cost of verifying Cq is minimal when min_sup is low.
Frequent features can be gained from graph mining

algorithms. During the process of mining, depth first search
(DFS) is chosen for the high efficiency. At the beginning of
mining, it always selects one frequent edge for expanding. It
expands one edge in one round until it reaches the biggest
subgraph. Then it feeds back to the upper layer to mine
continuously. Fig.3 shows a frequent feature mining space. The
fewer edges the graph has, the shorter distance it has from root
to it. The distance from root to node is the number of edges the
subgraph has which the node represents.

Fig. 3 Space of frequent feature mining
However, there are lots of redundancies between frequent

features. Obviously, the index composed with redundant
frequent features is too inefficient to answer graph query
efficiently. For example, there are two paths p1 = v1-v2-v3 and
p2 = v1-v2-v3-v4 in frequent feature set. If Dp1 = Dp2, then p1 and
p2 are redundant to each other. When such situation takes place,
keeping one of p1, p2 in the index is enough. In the general
resolution, it always keeps the smaller feature for the reason
that the probability of smaller features contained by q is much
higher than bigger ones.

The elimination of features with same support is far from
enough. In [1], the author proposes a discriminative ratio .
When the ratio between the support of feature f and the
intersection of all its sub-features support is less than , f is
redundant. The shortcoming of this factor is that the
calculation has the process of enumerating subgraphs of f. It is
very expensive. In this paper, a concept of decision feature is
given to replace discriminative ratio to reduce the redundancy
in frequent features.

The decision features (DF) occurs where the support jumps
happen.

Definition 3-4 Given graph dataset GD, support threshold
min_sup and decision factor . The frequent feature set is get
from depth first mining method. Feature f is a one edge
extending supergraph of f, or f is a son of f in DFS tree. If
support(f, GD)/support(f , GD) , there is a support jump
between f and f .

support(f, GD) is always no less than support(f , GD). For
this reason, 1, otherwise, it is meaningless.

The meaning of support jump is that there is a jump of
support between f and its one edge supergraph. For example, in
chemical compounds set, the frequency of benzene ring is very
high. Suppose that benzene ring is composed by e1 e2 e6. In
the process of extending from e1 to e1 e2 e3 e4 e5 e6, the value of
support is almost equal. But, if extra edge introduced into
benzene ring, the support jump occurs. The feature where
support jump occurs is decision feature (DF). The number of
DF is decided by decision factor .

In graph mining space, there is a path from root to leaf fn:
rf1f2 fn, in which fi is a frequent feature with i edges. The
decision features on this path are f1 ,f2 , ,fk , and |fi | |fi +1|.
According to definition 3-4, support(fi ,GD)>support(ft,GD)

support(fi +1,GD) where i' t<i'+1. If the value of decision
factor is given seemly, support(ft,GD) support(f(i+1) ,GD)· .
If the graph query index is built on decision features, the
redundancy should be controlled well.

However, though the depth first search is selected to be the
mining order to avoid duplication works, there are some
re-mining works. For example, in fig.3 which is a typical depth
first search tree (DFS tree), node a and b are two features in
mining process. In this mining process, it might be happen that
gb ga. If the mining method discovers gb which is a subgraph
of ga, and the support ratio between gb and ga satisfies the
definition of decision feature, then gb is a decision feature no
matter whether ga is a decision feature or not.

For quickly locating the decision features q has, VFM maps
VFM-Vertex to a list of decision features (DF in fig.1) which
satisfy the condition of VA and CA. Every DF in this list
contains those important vertices which are constrained by the
attributes of VA and CA. Through this mapping, VFM outputs
the features contained by q in polynomial time, without
enumeration process.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2654

C. Algorithm of index construction
The VFM-Index is composed by VFM-Vertex and

VFM-feature. VFM-Index has two mappings. One is the
mapping between VA and CA. The other is the mapping
between VFM-Vertex to a list of decision features (or DF). In
actually situation, all one edge features are added into decision
features to ensure the completeness of answers.

The construction algorithm of VFM-Index is given in
algorithm 1.

VFM-Index can be divided into three parts.
The major target of first part (line 1-4) is to produce the

frequent features by graph mining algorithm. In this stage, the
mining space of DFS tree is constructing. All one edge features
are put into the feature set (line 2-3). The index is constructed
off-line, graph mining algorithm can be chosen freely.

Algorithm 1. VFM-Index
Input: Graph dataset GD, decision factor
Output: VFM-Index
1. F
2. for all single edges in GD do
3. F e
4. mining frequent feature and forming DFS tree
5. for all nodes Vi in DFS tree do

6. if
1

,
,

k

k

support f GD
support f GD

7. F F fk

8. if fk Vi

9. if
,

,
k

k

support f GD

support f GD

10. F F fk

11. for each important vertices set V in GD do
12. vi vav

13. organize vi by descending order
14. for each vi do
15. cj ca
16. mapping(vi, cj)
17. for each cj do
18. Fk {f|f F (vicj) f}
19. organize Fk by descending order |Fk|
20. mapping(cj, Fk)
21. return V, C, F

The second part (line 5-10) is executed paralleled with part 1.
During the mining process, the supports of feature fk and its son
are compared to find out whether fk is a decision feature about
the given . If it does, fk is added into feature set F.

The third part (line 11-20) is the mapping formation stage. It
gets all important vertices of GD and calculates its VA. After
the mapping between VA and CA is built, the mapping of (VA,
CA) to DF is computed in line 17-20.

The set of V, C and F are returned in line 21.

D. Query algorithm
The graph query algorithm VFM-Query on VFM-Index is

given in algorithm 2.
At the beginning of VFM-Query, the whole set of GD forms

the candidate answer set Cq. After all features contained by q is
pick out through the two mappings, the support sets of all these
features are intersected with Cq to improve the precise of query.

When the algorithm begins, it visit q to pick out all its
important features vi. Then, decision features contained by q is
calculated through the two mappings (line 5). These features
are verified in line 7-9. At the end, the candidate answer set Cq

is return by intersecting the support sets of those features.
Algorithm 2. VFM-Query
Input: Graph dataset GD, VFM-Index, query graph q
Output: candidate answer set Cq

1. Cq GD
2. Fq

3. V {all important vertices in q}
4. for each entry vi in V do
5. Fi mapping(mapping(vi,ci),ni)
6. Fq Fq Fi

7. for each DF in Fq do
8. if fi q do
9. Fq Fq - fi

10. for every feature f in Fq do
11. Cq Cq Df

12. return Cq

IV. EFFECTIVENESS OF VFM
While a query graph q is issued, the response time of the

query processing algorithm VFM can be estimated by Tquery =
Tfilter_nodes + Tfilter_features + TisoCand * |Cq|, where Tquery is the
query response time, Tfilter_nodes is the time of filtering the
features through important nodes, Tfilter_features is the time of the
filtering of decision features, TisoCand is the time for subgraph
isomorphism test between candidate graph and query graph q,
and | Cq | is the size of candidate graphs set. In VFM, the features
contained by q is formalized by the two mappings, the
complexity of this process is polynomial. For this reason,
Tfilter_nodes is much faster than other enumerating methods. The
mappings between VA to CA and (VA, CA) to DF ensure a
smaller frequent feature set. The smaller the features are, the
fewer the subgraph isomorphism tests are taken. VFM-Vertex
produces not only a cheap Tfilter_nodes, but also a cheap
Tfilter_features.

On the other hand, the other part of high complicated is
TisoCand * |Cq|. Subgraph isomorphism is NP-complete, the
effect factor is |Cq|. The experimental results given in section 5
show that VFM formulate a smaller candidate answer set than
other algorithm does.

V. EXPERIMENTAL STUDY

In this section, we will report our experimental results that

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2655

validate the effectiveness and efficiency of the VFM algorithm.
The performance of VFM is compared with that of TreePi,
which outperforms gIndex in [2].

We use two types of datasets in our experiments: one real
dataset and a series of synthetic datasets. The real dataset is an
AIDS antiviral screen dataset containing more than 43,000
classified chemical molecules. This dataset is available
publicly on the web site of the Developmental therapeutics
Program. The synthetic data generator is the same as that in
[16]. The generator allows the users to specify the number of
graphs, their average size, the number of seed graphs, the
average size of seed graphs, and the number of distinct labels.

All our experiments were performed on a 3.2GHZ, 512GB
memory, Intel PC running on Windows XP Professional with
Service Package III. Both TreePi and VFM are compiled with
gcc/g++.

A. AIDS Antiviral Screen Dataset
In this subsection, we report the experimental results on the

antiviral screen dataset. The following parameters are set for
TreePi. We set = 5, = 2, =10 for the support threshold
function, and =1.5.As we now use a randomized algorithm to
partition the query graph, we set , which is relatively
large. The same maximum size of features and equivalent
number of features are chosen in TreePi and VFM so that a fair
comparison between them can be performed.

In this experiment, 10,000 is selected as the test dataset.
During the tests, six query sets are tested, each of which has
1,000 queries. We randomly select 1,000 graphs from the
antiviral screen dataset and then extract a connected m edge
subgraph from each graph randomly. These 1,000 subgraphs
are taken as query set, denoted by Qm. m is selected from 4 to 24.
The query sets are divided into two groups, low support group if
its support is less than 50 and high support group otherwise.
Since frequent patterns are used as index structures, it is crucial
to show the index algorithm can perform well on both high
support and low support queries.

Fig.4(a) and fig.4(b) present the pruning performance of
TreePi and VFM on low support queries and high support
queries, respectively. We also plot the average size of the actual
support set of the query graphs, which is the optimal
performance of a pruning algorithm. As shown in the figures,
VFM surpasses TreePi in all query sets of different sizes.

a) Low support queries

b) High support queries
Fig. 4 Pruning Performance

Fig.5 presents the running time in constructing index
patterns in both TreePi and VFM. The database size varies
from 2,000 to 10,000 and the index is constructed from scratch
for each database. The index construction time of the two
methods is both approximately proportional to the database
size, while VFM is relatively faster due to the following reasons:
(1) the calculation of important vertices is much cheaper than
subgraphs or subtrees. (2) The two mapping method is more
efficient than center distance constraints.

Fig. 5 Index Construction Time
In fig.6, the running time for query processing in both TreePi

and VFM is presented. The X-axis represents the edge size of
the query graph, and the Y-axis represents the running time to
find the corresponding support sets of query graphs. For each
edge size, we randomly generate 1000 graphs as query graphs
and a graph database of size 6000 is used. Obviously VFM is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2656

much faster than TreePi, since it reduces more than half of the
running time for the query graphs of almost all the edge sizes.
The reasons of the promotion of efficiency are: (1) the vertices
calculation is cheaper than subtrees and center distance
constrains. (2) The candidate answer set, which is tested in
fig.4, of VFM is smaller than TreePi.

Fig. 6 Query Processing Time

B. Synthetic dataset
In this subsection, we present the performance comparison

on synthetic datasets. The synthetic graph dataset is generated
as follows: First, a set of seed fragments are generated
randomly, whose size is determined by a Poisson distribution
with Mean I. The size of each graph is a Poisson random
variable with mean T. Seed fragments are then randomly
selected and inserted into a graph one by one until the graph
reaches its desired size. More details about the synthetic data
generator are available in [9]. A typical dataset may have the
following settings: it has 8,000 graphs and uses 1,000 seed
fragments with 40 distinct labels. On average, each graph has
20 edges and each seed fragment has 10 edges. This dataset is
denoted by D8kI10T20S1kL40.

Fig. 7 Index Construction Time

Fig. 8 Query Processing Time
Fig.7 and fig.8 show the comparison of index construction

time and query processing time on synthetic dataset
respectively. The comparisons show the similar results about
on real data set.

VI. CONCLUSION

In this paper, a node to decision feature two-step mapping
based graph query algorithm VFM is proposed. VFM is a
filter-verification method. It is different from other graph
query algorithms, VFM-Index is composed by VA, CA and DF.
For avoiding the enumeration of subgraphs of q, VFM
formulates all decision features that q has in polynomial time
through mappings VA to CA and (VA, CA) to DF. The size of
candidate answer set is reduced by the introduction of decision
feature and promotes query efficiency a lot. Efficiency analysis
and experimental results show that VFM has a better executing
efficient and more suitable to be developed than TreePi.

REFERENCES

[1] X. Yan, P. S. Yu, et al. "Graph Indexing: A Frequent Structure based
Approach", in Proc. SIGMOD'04, 2004, p. 335-346.

[2] S. Zhang, M. Hu, et al. "TreePi: A Novel Graph Indexing Method", in Proc.
ICDE'07, 2007, p. 966-975.

[3] J. Cheng, Y. Ke, et al. "FG-Index: Towards Verification Free Query
Processing on Graph Databases", in Proc. SIGMOD'07, 2007, p. 857-872.

[4] P. Zhao, J. X. Yu, et al. "Graph Indexing: Tree + Delta >= Graph", in Proc.
VLDB'07, 2007, p. 938-949.

[5] X. Yan, P. S. Yu, et al.
-777.

[6] X. Yan, F. Zhu, et al.

[7] D. Shasha, J. T. Wang, et al. "Algorithmics and Applications of Tree and
Graph Searching", in Proc. PODS'02, 2002, p. 39-52.

[8] H. He, A. K. Singh. "Closure-Tree: An Index Structure for Graph Queries",
in Proc. ICDE'06, 2006, p. 38.

[9] D. W. Williams, J. Huan, et al. "Graph Database Indexing Using Structured
Graph Decomposition", in Proc. ICDE'07, 2007, p. 976-985.

[10] H. Jiang, H. Wang, et al. "GString: A Novel Approach for Efficient Search in
Graph Databases", inProc. ICDE'07, 2007, p. 566-575.

[11] L. Zou, L. Chen, et al. "A novel spectral coding in a large graph database", in
Proc. EDBT'08, 2008, p. 181-192.

[12] K. Gupta, D. Suciu. "Stream Processing of XPath Queries with Predicate"s,
in Proc. SIGMOD, 2003, p. 419-430.

[13] P. Bohannon, W. Fan, et al. Narayan, "Information Preserving XML
Schema Embedding", in Proc. VLDB, 2005, p. 85-96.

[14] M. Garey, D. Johnson, Javier Bezos. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[15] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422 426, 1970.

[16] M. Kuramochi, and G. Karypis. Frequent subgraph discovery. ICDE, 2001

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2657

Xiantong Li (1973.7-) is a Ph.D candidate of School of Computer Science and
Technology at Harbin Institute of Technology, China. His current inteeresting is
about Data Mining, Graph Mining, and Graph Query.

He has worked in the Harbin Institute of Technology Software Development
Ltd. His articles which are published is: An Efficient Frequent Subgraph Mining
Algorithm. Xiantong Li, Jianzhong Li, Hong Gao. Journal of Software, Vol.18,

. And, DAG Decomposition Based
Algorithm of Graph Similarity Containment Query. Xiantong Li, Jianzhong Li.
Journal of Harbin Institute of Technology. Vol.41, No.4, April, 2009.

