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Abstract—This research paper presents a framework on how to 

build up malware dataset. Many researchers took longer time to clean 
the dataset from any noise or to transform the dataset into a format that 
can be used straight away for testing. Therefore, this research is 
proposing a framework to help researchers to speed up the malware 
dataset cleaning processes which later can be used for testing. It is 
believed, an efficient malware dataset cleaning processes, can 
improved the quality of the data, thus help to improve the accuracy and 
the efficiency of the subsequent analysis. Apart from that, an in-depth 
understanding of the malware taxonomy is also important prior and 
during the dataset cleaning processes. A new Trojan classification has 
been proposed to complement this framework. This experiment has 
been conducted in a controlled lab environment and using the dataset 
from Vx Heavens dataset. This framework is built based on the 
integration of static and dynamic analyses, incident response method 
and knowledge database discovery (KDD) processes. This framework 
can be used as the basis guideline for malware researchers in building 
malware dataset. 
 

Keywords—Dataset, knowledge database discovery (KDD), 
malware, static and dynamic analyses. 

I. INTRODUCTION 
OWADAYS we are overwhelmed with lots of noise, 
missing and inconsistent dataset that need to be clean up 

prior conducting an analysis. Data cleaning process is needed to 
clean the dataset by filling in missing values, smoothing noise 
data, identifying or removing outliers, and resolving 
inconsistencies. Furthermore, a raw data is rarely can be used 
directly for learning or mining algorithms. This is the urge the 
formation of this research. An efficient framework to clean up 
dataset is introduced to ease the dataset cleaning task. 

For this research the scope of the malware dataset is the 
Trojan dataset. A Trojan is also known as a Remote 
Administration Tool (RAT). It is a piece of software made for 
monitoring a system with malicious intention for examples 
stealing sensitive information such as username and password, 
credit card number and file deletion [8]. An example of a 
Trojan is called as a Flame Trojan. On May 2012, this Trojan 
has infected thousands of computers all over the world and it 
has been described as one of the most complex threats ever 
discovered. It has the capabilities to take screenshots secretly, 
record audio and sends this information to its creator via an 
encrypted channel. It caused chaos, loss of money and 
productivity and to certain extent tarnish organization's 
reputation. Therefore, due to the Trojan bad implications and 
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lack of huge clean dataset of Trojan freely available for further 
analysis, this is the urge where this research comes in.  

Apart from that, the motivations for this research are: 
i. The hardness of the researcher or malware analyst to 

clean up dataset for the subsequent data mining analysis. 
Standard procedures to clean up the dataset need to be 

carried out prior to the analysis part. This is to ensure the results 
or the outputs produced in the subsequent mining analysis will 
have a better accuracy and lower false positive rates. The 
dataset cleanup process is one of the most time consuming and 
the level of difficulty to clean up the dataset increases if the size 
of the dataset is large [11], [21].  
ii. To get a clean dataset, it consumes a lot of time to process 

it.  
There are various techniques can be used to clean up dataset 

but  which one is the easiest and less time consuming? Many 
researchers gave up to do the cleanup up dataset since it is time 
consuming and requiring many man power to do it [21]. To 
clean up the dataset, the researcher needs to test each sample 
one by one.    

Based on the above motivations, this research paper aims are 
to produce a framework to build up Trojan dataset and to 
provide a clean dataset based on the framework proposed. This 
clean dataset is transformed into the format which can be used 
for the subsequent analysis for data mining algorithm. Prior the 
dataset transformation, a new Trojan classification has been 
produced as part of the data transformation process. 

 In this research, Trojan dataset was downloaded from Vx 
Heavens website. By the time this research has completed, the 
link to this dataset has been taken out. But still the dataset can 
be referred from many other sources such as by [11], [25]-[28]. 
The scope of this research is on Windows platform only. There 
are thousands of Trojans that targeting this platform. Besides 
that, this research also focused on pre-processing stage, which 
is preparing a clean Trojan dataset to be used in subsequent 
analysis such as data mining analysis. 

This paper is organized as follows. Section II presents the 
related works with cleaning dataset. Section III explains the 
methodology used in this paper which consists of static and 
dynamic analyses and the architecture of the controlled lab 
environment. Section IV presents the research finding which 
consists of a new Trojan classification, the new dataset 
transformation and machine learning algorithm results and 
Section V is a closing remarks and summaries the future work 
of this research paper. 
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II. RELATED WORKS 
Cases where data is used for data mining directly without any 

kind of pre-processing are so rare. Data pre-processing seems 
to constitute an obligatory step, though this step at the same 
time is time consuming [4].There are a number of data 
pre-processing techniques. Data cleaning is part of processes 
involve for data pre-processing, where it can be applied to 
remove noise and correct inconsistencies in the data. Moreover, 
data integration merges data from multiple sources into a 
coherent data store, such as a data warehouse or a data cube. 
Data transformation, such as normalization, may be applied. 
For example, normalization may improve the accuracy and 
efficiency of mining algorithms involving distance 
measurements.  

Malware can be classified based on characteristics including 
the way of infection and the target of the attack as well as 
concealment techniques implement by related malware to 
evade detection [23]. Sophisticated malware use complicated 
techniques to make security tools difficult to detect. Some of 
the techniques used by malware to protect them are obfuscation 
technique, encryption, polymorphism and packing [24]. 

Graziano et al. [5] included cleaning and normalization 
processes of the dataset in their malware analysis system as one 
of the important steps in order to gain a more accurate result. 

They implemented related processes in large scale 
environments in order to minimize the false positive. While 
Barreno et al. [2] stated that it may be difficult to get clean 
dataset especially in the initial training of malicious data 
analysis. Same goes with the malware dataset and other form 
dataset for information security research. Therefore, a proper 
technique to improve quality of dataset especially in malware 
analysis is very important. 

Data reduction can reduce the data size by aggregating, 
eliminating redundant features or clustering [6]. After 
downloading the dataset, the process was started by 
transforming the Trojan’s raw data into an appropriate format. 
The steps involved in this phase included data cleansing to 
remove any noise, duplication or outlier and data 
transformation. Under this process, the static and dynamic 
analyses were implemented using the incident response 
standard operating procedures (SOP). SOP is a step by step 
process and the detail information that the researcher should 
conduct. Table I below shows the comparison of the research 
related to the dataset clean up. 

III. METHODOLOGY 
The methods used in this research follow the standard 

operating procedures (SOP) as shown in Fig. 1. 
 

TABLE I 
COMPARISON TABLE OF RELATED WORK TO THE DATASET CLEAN UP 

Title and Authors Method Domain 

PAPER 1: MadihahMohd Saudi, A 
New Model for Worms Detection and 
Response[11]. 

Static and dynamic analyses. 
• Used feature selection, static analysis, dynamic analysis and data cleaning 

and transformation. 
• The five main features of the worm algorithm are being extracted into 

semiformat structure comprising five different of subareas which are the 
payload, infection, activation, operating algorithm and propagation to 
capture the worm characteristic.  

• Lastly, it is transformed into nominal data with five numeric values. 

Worms on Windows 
platform 

PAPER 2: Thomas Stibor, A Study Of 
Detecting Computer Viruses In 
Real-Infected Files in the n-gram 
Representation with Machine 
Learning Methods [17]. 

The hexdump. 
• Step: The hexdump is “cut” into substrings of length n 2 N, denoted as 

n-grams.  
The collection is transformed into a vector of dimension5 d = 16n 

DOS executable files 
on DOS and some 
Windows platforms. 

PAPER 3: Luai Al Shalabi, 
ZyadShaaban and Basel Kasasbeh, 
Data Mining: A Preprocessing Engine 
[1]. 

Normalization: min-max normalization, z-score normalization and 
normalization by decimal scaling. 
• HSV data set was normalized using the three methods of normalization.  
• Used two training data sets for each normalization method.  
Decision tree methodology for data mining and knowledge discovered was 
used to test the six training data sets that were designed earlier. 
 

HSV data set from UCI 
repository. 

PAPER 4: 
RahmatWidiaSembiring&JasniMoha
madZain, The Design of 
Pre-Processing Multidimensional 
Data Based on Component Analysis 
[15]. 

RapidMiner is used for data pre-processing using FastICA algorithm. 
• Conducted two tests of classification, namely the implementation of 

pre-processing, FastICA and clustering, and compared the results with no 
pre-processing. 
 

Wisconsin breast 
cancer datasets, lung 
cancer datasets and 
prostate cancer 
datasets. 

PAPER 5: Thomas Zimmermann and 
Peter Weißgerber, Preprocessing CVS 
Data for Fine-Grained Analysis [22]. 

Functions sections approach 
• The extraction calls the CVS log command in the root directory of the 

project to be extracted.  
• In mapping of changes to fine-grained entities, each revision is 

decomposed into its building blocks, and then a diff between the two 
revisions r1 and r2 is calculated.  

• The result is used to create the set. 
• Next, each line is mapped to its enclosing function. 
• In data cleaning, they filter out transactions of size greater N in the analysis 

CVS archives 
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Fig. 1 A framework to build the Trojan dataset 

A. Dataset 
The first step was, downloading the dataset from VX 

Heavens website. All Trojan and variants were downloaded to 
be tested. However, only the Trojan from Windows platform 
was chosen. For the domain of this research, Windows platform 
was chosen due to more attacks and vulnerabilities exploited in 
Windows platform discovered [7]. In addition, the amounts of 
Trojans that attack on other platforms are fewer than Windows. 
From a survey on the Internet provided by 
http://www.esecurityplanet.com (2012), in comparing with 
Linux platform, Windows has the reputation for being the 
worse due to there have been more accounts of Windows being 
under the attack of worms, viruses and Trojans. Basically the 
problems are because Windows is poorly coded, so Windows is 
a bigger target compared to Linux. Because of a lot of attacks, 
hence there are a lot of Trojan appeared from Windows. Fig. 2 
shows the different types of Trojan downloaded. The dataset in 
this research consists of different types of Trojans source from 
VX Heavens. From 1,982 samples of Trojan downloaded from 
VX Heavens, the categories are: Clicker, DDOS, BAT, AOL, 
Boot, ASP, ANSI, ArcBomb, CSC, IRC, JS, PHP, VBS, and 
DOS.  

There are several reasons why this research chose to gather 
data from the VX Heavens source; firstly, many studies have 
used this data for their testing, for example from Dai et al. [3] 
and Stibor [17]. The second reason is because the variants are 
more important than the quantity of the datasets, since these 
already represent different types of Trojan in VX Heavens and 
the third is due to the scope of this research, which only focuses 
on Windows Trojan. Other researchers that used the dataset 
from VX Heaven are from Nataraj et al. [12], Shafiq et al. [16], 
Dai et al. [3], and Mohd Saudi et al. [10]. 
 

 
(a) The whole trojan dataset 

 

 
(b) Details for others trojan dataset 

Fig. 2 Different type of trojan dataset (a) The whole trojan dataset (b) 
Details for others trojan dataset 

B. Research Environment 
The researcher set up the controlled laboratory with 2 

computers which are installed with VMWare. The lab is built 
up in a controlled lab environment, separated from the 
production network. Fig. 3 shows the architecture of the lab. 

 

 
Fig. 3 Lab architecture 

 
The following in Table II is the lists of the tools used in this 

lab. Almost 80% of the tools used are an open source software 
or free basis. 
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data mining research. The Trojan dataset was presented in 
nominal data which was compatible to be used directly in 
WEKA machine learning algorithm for data mining process. 
Furthermore, based on the experiment conducted using WEKA 
software, the TPR of the classified data which is 98.8% is 
produced. This result can be used as a reference and 
comparison by other researchers with the same interests.  

For future work, different machine learning algorithms will 
be tested to the dataset produced from this research. Apart from 
that, the dataset produced in this research paper will be 
uploaded in the website so other researcher with the same 
interest can use the dataset and framework introduced. This 
paper is part of a larger project to build up an automated 
malware clean up model. Ongoing research will include other 
malware classification and the development of software to 
automate the malware dataset cleanup. 
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