
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1288

 

 

  
Abstract—In an era of knowledge explosion, the growth of data 

increases rapidly day by day. Since data storage is a limited resource, 
how to reduce the data space in the process becomes a challenge issue. 
Data compression provides a good solution which can lower the 
required space. Data mining has many useful applications in recent 
years because it can help users discover interesting knowledge in large 
databases. However, existing compression algorithms are not 
appropriate for data mining. In [1, 2], two different approaches were 
proposed to compress databases and then perform the data mining 
process. However, they all lack the ability to decompress the data to 
their original state and improve the data mining performance. In this 
research a new approach called Mining Merged Transactions with the 
Quantification Table (M2TQT) was proposed to solve these problems. 
M2TQT uses the relationship of transactions to merge related 
transactions and builds a quantification table to prune the candidate 
itemsets which are impossible to become frequent in order to improve 
the performance of mining association rules. The experiments show 
that M2TQT performs better than existing approaches. 
 

Keywords—Association rule, data mining, merged transaction, 
quantification table. 
 

I. INTRODUCTION 
great amount of data is being accumulated very rapidly in 
the Internet era. Consequently, it takes a lot of time and 

effort to process these data for knowledge discovery and 
decision making.  Data compression is one of good solutions to 
reduce data size that can save the time of discovering useful 
knowledge by using appropriate methods, for example, data 
mining. Data mining is used to help users discover interesting 
and useful knowledge more easily. 

It is more and more popular to apply the association rule 
mining in recent years because of its wide applications in many 
fields such as stock analysis, web log mining, medical 
diagnosis, customer market analysis, and bioinformatics. In this 
research, the main focus is on association rule mining and data 
pre-process with data compression.  
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M.C. Hung et al. proposed a knowledge discovery process 
from compressed databases in [1] which can be decomposed 
into the following two steps:  

(1) Data pre-process step: 
Data pre-process transforms the original database into a new 

data representation where several transactions are merged to 
become a new transaction. Eventually, it generates a new 
transaction database at the end of the data pre-process step. 

(2) Data mining step: 
It uses an Apriori-like algorithm [11]-[14] of association rule 

mining to find useful information. Details are described later. 
There are some problems in this approach. First, the 

compressed database is not reversible after the original 
database is transformed by the data pre-process step. It is very 
difficult to maintain this database in the future. Second, 
although some rules can be mined from the new transactions, it 
still needs to scan the database again to verify the result. This is 
because the data mining step produces potentially ambiguous 
results. It is a serious problem to scan the database multiple 
times because of the high cost of re-checking the frequent 
itemsets.  

Another solution was developed by Mafruz Zaman Ashrafi 
et al. [2]. However, they suffer from similsr problems 
mentioned above. It is even a bigger challenge to maintain the 
compressed database in the future. In addition, it spends too 
much time to check candidate itemsets in the data mining step. 

In this research, a more efficient approach, called Mining 
Merged Transactions with the Quantification Table (M2TQT) 
is proposed, which can compress the original database into a 
smaller one and perform the data mining process without the 
above problems.  

Our approaches have the following characteristics: 
(a) The compressed database can be decompressed to the 

original form. 
(b) Reduce the process time of association rule mining by 

using a quantification table. 
(c) Reduce I/O time by using only the compressed 

database to do data mining.  
(d) Allow incremental data mining. 

The rest of the paper is organized as follows. The 
background and related works are provided in Section 2. The 
proposed algorithm is described in Section 3. The experimental 
environment and results are presented in Section 4. Finally, 
Section 5 concludes the paper and discusses the future work.  

An Efficient Data Mining Approach on 
Compressed Transactions  

Jia-Yu Dai, Don-Lin Yang, Jungpin Wu, and Ming-Chuan Hung 
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II. RELATED WORK 
When making decisions, people would like to have enough 

information to avoid making wrong decisions that may cause 
losses. Data mining can be used to find useful information as a 
part of knowledge discovery in databases (KDD) for better 
decision-making. KDD can convert source data into useful 
information using the main process [3] depicted in Fig. 1. 

 
 

Fig. 1 The process of KDD 
The goal of data preprocessing is to transform the input data 

into a suitable form for data mining or analysis. In general, data 
mining techniques can be divided into three categories: 
classification [4], [5], clustering [6], and association rule [11]. 

Classification is the process that data is divided into different 
classes with the known property. First, data is divided into two 
datasets which are training dataset and testing dataset. Second, 
a classification model is generated from the training dataset and 
then tests are made to verify the model’s accuracy. Finally, the 
verified model is used to classify new transaction data into 
respective classes.  

Clustering is the process that data is divided into mutiple 
groups in which the data are similar. It is an unsupervised 
process.  

Association rule can be expressed as “if A, then B” after 
satisfying the measures of support and confidence. For 
example, assume that a customer buys milk and bread whereas 
another buys milk and meat. One would like to discuss “if a 
new customer buys milk, then he/she will buy bread too” or “if 
a new customer buys milk, then he/she will also buy meat”. The 
concept of association rule mining in the next subsection.  

Data post–processing is to ensure the result is valid and 
usable. For example, visualization can be used for analysts to 
explore the data mining results from a variety of viewpoints. 
This can help users better utilize the mined rules or patterns.    

It is more and more popular for many users perform 
association rule mining in recent years. Many approaches are 
proposed [7-14], [17] in association rule mining Let I = {i1, i2, 
…, im} be a set of items. Let D be a transaction database which 
contains a set of transactions. Let t= (tid, t-itemset) be a 
transaction. Tid is a transaction number and t-itemset contains a 
set of items. Let X be a set of items. If a transaction t contains X 
if only if X ⊆  t. Length of a transaction which contains a 
K-itemset is K. There are two important measurements which 
are support and confidence in association rule mining. Support 
is the frequency of occurring patterns in D and confidence is the 
strength of implication. Their definitions are as follows: 

 (1) Support (X) = |T(X)| / |D|          
 (2) Confidence (X→Y) = Support (X�Y) / Support (X) 
T(X) is any transaction in D that contains X. |D| is the total 

number of transactions in D. We can define what we think an 
interesting relation is in a transaction database. 

In support-confidence framework, if it is an interesting relation 
for X →Y，then X and Y must be frequent. How to define a 
frequent relation? There are two conditions. One condition is 
support(X) ≧ minsupport and support(Y) ≧minsupport(Y). 
Another is Confidence (X→Y) ≧ minconfidence. Minsupport 
and minconfidence are user-defined thresholds.  

The problems of mining association rules are mainly divided 
into two sub-problems. One is to discover the frequent itemsets 
and another is to generate the association rules. The first 
problem is more difficult than the second one. Most papers are 
focusing on the first problem.  

The apriori [8] algorithm is one of the classical algorithms in 
the association rule mining. It uses simple steps to discover 
frequent itemsets. Apriori algorithm is given in Fig. 2. Lk is a set 
of k-itemsets. It is also called large k-itemsets. Ck is a set of 
candidate k-itemsets. How to discover frequent itemsets? 
Apriori algorithm finds out the patterns from short frequent 
itemsets to long frequent itemsets. It does not know how many 
times the process should take beforehand. It is determined by 
the relation of items in a transaction. The process of the 
algorithm is as follows:  

At the first step, after scanning the transaction database, it 
generates frequent 1-itemsets and then generates candidate 
2-itemsets by means of joining frequent 1-itemsets. At the 
second step, it scans the transaction database to check the count 
of candidate 2-itemsets. It will prune some candidate 2-itemsets 
if the counts of candidate 2-itemsets are less than predefined 
minimum support. After pruning, the remaining candidate 
2-itemsets become frequent 2-itemsets which are also called 
large 2-itemsets. It generates candidate 3-itemsets by means of 
joining frequent 2-itemsets. Therefore, CK is generated by 
joining large (K-1)-itemsets obtained in the previous step. 
Large K itemsets are generated after pruning. The process will 
not stop until no more candidate itemset is generated.      

 

 
Fig. 2 Apriori algorithm 

Since most data occupy a large amount of storage space, it is 
beneficial to reduce the data size which makes the data mining 
process more efficient with the same results. Compressing the 
transactions of databases is one way to solve the problem. [1] 
Proposed a new approach for processing the merged 
transaction database. It is very effective to reduce the size of a 
transaction database. Their algorithm is divided into data 
preprocess and data mining. The overview of the approach is 
shown in Fig. 3. 
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Fig. 3 An overview of the merged transaction algorithm 

 
There are two sub-processes in the data preprocess. One 

sub-process transforms the original database into a new data 
representation. It uses lexical symbols to represent raw data. 
Here, it’s assumed that items in a transaction are sorted in 
lexicographic order. Another sub-process is sorting all the 
transactions to various groups of transactions and then merges 
each group into a new transaction. For example, T1= {A, B, C, 
E} and T2 = {A, B, C, D} are two transactions. T1 and T2 are 
merged into a new transaction T3= {A2, B2, C2, D1, E1}. Fig. 4 
shows an example of the sort grouping method and Fig. 5 
shows an example of data mining sub-process.    

 

 
Fig. 4 An example of sort grouping 

 
Fig. 5 An example of data mining 

 
The process called merge-mining algorithm is used to find 

frequent itemsets from the new transaction DM. There are two 
phases in this algorithm. The first phase is finding frequent 
itemsets. The second phase is to prune redundancy. It is 
possible that frequent itemsets generated in the first phase 
might not exist in the DM. For this reason, it needs to verify 
those frequent itemsets by scanning DM again. Fig. 6 is the 
pseudo code of merge-mining algorithm. The notations are 
shown in Fig. 7. 

 

 
Fig. 6 The pseudo code of merge-mining algorithm 
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Fig. 7 The notations of merge-mining algorithm 

Pincer-Search algorithm [9] is an Apriori-like algorithm. It 
takes advantage of Apriori algorithm to find maximal frequent 
itemsets. The process is mainly divided into two parts, 
bottom-up search and top-down search. Bottom-up search uses 
the process similar to Apriori algorithm. The key is the 
top-down search. 

Top-down search is to find maximal frequent itemsets by 
using the information generated in bottom-up search. And then 
bottom-up search is to find frequent itemsets by using the 
information generated in top-down search. They are performed 
in turns until all of the maximal frequent itemsets are found. 
The pseudo code of Pincer Search algorithm is shown in Fig. 8 

 

 
Fig. 8 Pincer-Search algorithm 

III. PROPOSED METHOD 
The description of the proposed algorithm focuses on 

compressing related transactions and building a quantification 
table for pruning candidate itemsets that are impossible to 
become frequent itemsets. Finally, an example is provided to 
show the processes of our method. To simplify the description, 

it assumes the items in each transaction are presented in a 
lexicographical order. 

A.  Overview 
Algorithms like [1], [2] compress transactions to reduce the 

size of a transaction database. Then, they use Apriori-like 
algorithms to mine the compressed database. Whereas the two 
phases approach of compression and data mining are used, they 
suffer the following problems:   

(1) In the data compression phase, the original database 
can not be recovered to support transaction updates. 

(2) In the data mining phase, a lot of candidate itemsets 
could be generated in a large transaction database. 
Since both [1] and [2] need to scan the database more 
than once, they have a much higher process cost.  

The first problem is due to the lack of rule or constraint in the 
process of merging transactions in the data compression phase. 
Therefore, the compressed database can not be decompressed 
to its original form In addition, they don’t use user-defined 
threshold to filter infrequent 1-itemsets from the original 
database..  

Another problem is that Apriori-like algorithms generate a 
lot of candidate itemsets and need to check the candidate 
itemsets by scanning the database. It is very time-consuming. 
Our goal is to take the advantages of [1] and Apriori algorithm 
without suffering from the problem of checking candidate 
itemsets and recovering the database for new data. In order to 
provide a better performance, we limit the number of database 
scan to be one in the data compression phase and build a 
quantification table. In the data mining phase, we use the same 
approach of Apriori algorithm to generate candidate itemsets 
and reduce the number of candidate itemsets by using the 
quantification table. We also reduce the time of scanning the 
database. 

We present a novel approach which can 
(1)  support local transaction variation 
(2)  recover the transaction database to its original state 
(3)  make the compressed database much smaller than 

the original one 
(4) reduce data mining time 

We called our approach the Mining Merged Transactions 
with the Quantification Table (M2TQT) which has three phases: 

(1) merge related transactions to generate a 
compressed database  

(2) build a quantification table  
(3) discover frequent itemsets 
 

B.  M2TQT Approach 
First, M2TQT uses the transaction relation distance to merge 

the relevant transactions. The definition of the transaction 
relation distance is defined in Section C. Section D introduce 
how to build a quantification table in Section D. Then, it 
illustrates the process of compressing a database in Section E. 
Next, Section F shows how to compute support of itemsets 
from minimum-frequency function in Section F. Finally, it 
explains how to recover data from the compressed database in 
Section G. 
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C.  Transaction Relation Distance 
Based on the relation distance between transactions one can 

merge transactions with closer relationship to generate a better 
compressed database. Here the transaction relation and 
transaction relation distance are defined as follows: 

Definition 1: 
(1) Transaction Relation: 

The relation between two different transactions T1 
and T2 is that T1 is either a subset or a superset of T2. 

(2) Transaction Relation Distance: 
Distance is the number of different items between 
two transactions.  
Example 1: T1={ ABCE} and T2={ ABC} ,DT1-T2= 1 
Example 2: T3={ A} and T4={ C } ,DT3-T4= 2 

D. A Quantification Table 
To reduce the number of candidate itemsets to be generated, 

additional information is required to help prune non-frequent 
itemsets. A simple quantification table is used to record this 
information when each transaction is processed. Assuming the 
items in a transaction appear in a lexicographical order, our 
approach starts working from the left-most item and calls it a 
prefix-item. After finding the length of the input transaction as 
n, it records the count of the itemsets appearing in the 
transaction under the respective entries of length Ln, Ln-1,.. L1. 
A quantification table is composed of these entries where each 
Li contains a prefix-item and its support count. An example 
database in Table I is used to show the construction of a 
quantification table in Table II.  

 
TABLE I 

AN EXAMPLE DATABASE 
TID Transactions 
100 ABCDE 
200 CDE 
300 ACD 

 
TABLE II 

A QUANTIFICATION TABLE FOR TABLE I 
L5 
A1 

L4 
A1 
B1 

L3 
A2 
B1 
C2 

L2 
A2 
B1 
C3 
D2 

L1 
A2 
B1 
C3 
D3 
E2 

 
For instance, after reading the transaction {ABCDE} of TID 

100, it knows the transaction length n is 5. For the prefix-item 
A, the counters under L5 to L1 are all increased by one from the 
initial value of zero. That is, A1 appears in each Li, where i = 5 
to 1. For the prefix-item B, the counters under L4 to L1 are all 
increased by one as well. That is, B1 appears in each Li, where i 
= 4 to 1. The same process is performed for items C, D, and E. 
Similarly, after reading TID 200 {CDE}, the table has C2 in L3, 
L2, and L1; D2 in L2 and L1; E2 in L1. Finally, with the last 
transaction {ACD}, it will increase the counters by one from 
A1 to A2 in L3, L2, and L1; C2 to C3 in L2 and L1; D2 to D3 in 
L1. Table 2 shows the result of building the quantification table. 

With this table, we can easily prune the candidate itemsets 
whose counters are smaller than the minimum support. 

E.  The Process of Database Compression 
Let d be a relation distance and it is initialized to 1 at the 

beginning. Transactions will be merged into their relevant 
transaction groups in the merged blocks based on the 
transaction relation distance. M2TQT consists of the following 
steps: 

Step 1: Read a transaction at a time from the original 
database.  

Step 2: Record the information of the input transaction to 
build a quantification table. 

Step 3: Compute the length n of the transaction. 
Step 4: If the merged block is not empty, read the relevant 

transaction groups from the merged block.  
Step 5: Compute relation distance between the transaction 

and relevant transaction groups. If the transaction is a superset 
of the longest transaction of a relevant transaction group, a 
subset of the smallest transaction of a relevant transaction 
group, or equal to one transaction of a relevant transaction 
group, it can be merged into the relevant transaction group. For 
example, we assume d=1. Two transactions {BCG} and {BG} 
are merged into a relation transaction group {BCG=2.1.2}. A 
“=” symbol is used to separate items and their respective 
support counts. We read another transaction {BC} and compute 
the relation distance between {BCG=2.1.2} and {BC}. Since 
the relation distance is 1, {BC} is merged into the relation 
transaction group. Finally, the relevant transaction group 
becomes {BCG=3.2.2}.  

  Step 6: Compute the relation distance between the 
transaction and those transactions coming from (n+d) block, n 
block, and (n-d) block where n > d. If it finds the satisfied 
relevant transactions, merge the transactions to become a 
relevant transaction group and then classify it as (n+d) merged 
block, n merged block or (n–d) merged block. If no relevant 
transaction can be found, the transaction is classified as n 
merged block. 

Step 7: Repeat the above six steps until the last transaction is 
read. 

Step 8: Read a transaction from the merged blocks. 
Step 9: Compute the relation distance between the 

transaction and all other transactions in the relevant transaction 
groups. If the transaction is a sub-transaction of the maximum 
length transaction of a relation transaction group and its 
distance is satisfied, it can merge the transaction into the 
relation transaction group to generate a new count. The process 
continued until the last transaction is read. 

Step10: Set d to d+1. 
 Step11: Repeat the above steps 8 - 10 until no more relation 

distance is found between transactions. 

F.  Minimum-frequency Function 
The minimum-frequency function takes original transactions 

and merged transactions as input. It returns the minimum 
number of itemsets in the transactions. For example, let a 
candidate 2-itemset C2 be {BC, AE} and merged transactions of 
T* be {{AE=2.1}, {BCG=2.1.2}, {CDEG=2.3.3.1}, {ABCE}, 
{C}}. After calling minimum-frequency function with T* 
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being the input, it returns 0+1+0+1+0=2 for BC and 
1+0+0+1+0=2 for AE. This is an efficient function to count the 
number of itemsets in the transactions. 

G.  Recover Data from Compressed Database to Original 
Database 

With the proposed approach it can recover data from the 
compressed database. Assume the relation distance is equal to 
1. A merged transaction is expressed as  <s1, s2… , sk .., sn-1, 
sn>= c1, c2…ck.. cn-1.cn, where s1, s2… , sk , sn-1, sn are items and 
c1, c2…, ck, cn-1, cn are their corresponding support counts 
separated by “.”. The smallest count in ci for i = 1 to n is the 
support of the longest transaction, i.e., { s1, s2… , sk , sn-1, sn }. If 
ck is the smallest count in c1, c2…, ck, cn-1, cn , then the count of 
the longest transaction { s1, s2… , sk , sn-1, sn } is ck. Therefore, 
the transaction { s1, s2… , sk , sn-1, sn } is recovered and the 
merged transaction becomes <s1, s2…  , sn-1, sn>= c1-ck.c2-ck… 
cn-1-ck. cn-ck. The items with a zero count are removed from the 
merged transaction. Repeat the above process to find the next 
longest transaction in the merged transaction until no count left. 
For example, the merged transaction <ABCD>=3.1.4.2 has the 
smallest count of 1 such that the count of transaction <ABCD> 
is 1. Next, decrease the count of each item in <ABCD> by 1 to 
get <ACD>=3-1.4-1.2-1 = 2.3.1. Note that item B in the 
merged transaction is removed since it has a zero count. Next, 
the smallest count among A, C, and D is also 1 such that the 
count of transaction <ACD> is 1. Then, the merged transaction 
becomes <AC>==2-1.3-1=1.2 and the smallest count of 1 is the 
count of transaction <AC>. Finally, <C>=2-1=1 and we have 
decompressed the merged transaction <ABCD>=3.1.4.2 to get 
back the original transactions {ABCD}, {ACD}, {AC}, {C}. 
Here, {{ABCD}, {ACD}, {AC}, {C}} also satisfy the 
specified relation distance. 

H. A Simple Example 
To illustrate the process of the proposed approach, a simple 

example is shown below. There are 9 transactions with a total 
number of 6 distinguished items in the original database as 
shown in the left-hand side of Fig. 9. Assume the minimum 
support is 2 meaning that an itemset is frequent if its count is 
greater than or equal to 2. 

 

 
Fig. 9 The original database and its compressed database 

 
Fig. 10 A quantification Table for the database in Fig. 9 

Phase 1: 
The first step is to compress the original database after 

scanning their transactions. Assuming the transaction relation 
distance =1, read the first transaction {ABCE} to compute its 
length n = 4 and put it into Length-4 block. Next, read 
transaction {CDE} to get the length n = 3 and then compute 
transaction relation distance between {ABCE} and {CDE} to 
get the distance of 3. They can not be compressed because the 
relation distance is not equal to 1. Therefore, transaction 
{CDE} is put into Length-3 block. After reading the third 
transaction {DE} with a length of 2, it examines if the 
transaction appears in any merged transactions. If it exists, they 
are merged to generate a new merged transaction with 
increased counts. On the other hand, it examines whether the 
computed transaction relation distances with all merged 
transactions agree to the assumed distance. If it exists, 
transaction {DE} is merged with the existing merged 
transaction which satisfies the transaction relation distance. If 
transaction {DE} has no relation in the merged transactions, it 
will check with the items in L=1, L=2 and L=3 blocks. Since 
the relation distance between {DE} and {CDE} is 1, they are 
merged into a new transaction {CDE=1.2.2}. This new 
transaction is put into Length-3 merged block. Subsequent 
transactions are processed in the same way. The compressed 
database is shown in the right-hand side of Fig. 9 where the 
number of transactions becomes 5. 

 
Phase 2: 
When the compressed database is generated, it also builds a 

quantification table at the same time as shown in Fig. 10.  
 
Phase 3: 
The compressed database is used to generate frequent 

itemsets with any Apriori-like algorithm for association rule 
mining. The minimum support is set to 2. From the 
quantification table, it can generate frequent 1-itemsets {A, B, 
C, D, E, G}. Frequent 1-itemsets are used to generate candidate 
2-itemsets. At the same time, it checks the counts of itemsets in 
L2 of the quantification table to prune the candidate itemsets 
which are impossible to become frequent itemsets. The 
generated candidate 2-itemsets are {AB, AC, AD, AE, AG, BC, 
BD, BE, BG, CD, CE, CG, DE, DG, EG}. Because the item’s 
frequency is recorded in the merged transactions, one can use 
the minimum-frequency function to determine the count of a 
candidate itemset. The minimum-frequency function returns 
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the minimal number of item occurrences in a merged 
transaction and it also returns a value of 1 for an original 
transaction. For instance, let C2 be {{A E}, {CG}} and 
compressed transaction T* = {{AE=2.1}, {BCG=2.1.2}, 
{CDEG=2.3.3.1}, {ABCE}, {C}}. After calling the 
minimum-frequency function for {A E}, it returns {1, 0, 0, 1, 
0}. The total frequency of {A E} is 1+0+0+1+0=2. For {CG}, 
it returns {0, 1, 1, 0, 0}. The total frequency of {CG} is 
0+1+1+0+0=2. 

Using the quantification table, one can prune the candidate 
2-itemset {EG} and then scan the compressed database to 
check if the rest of candidate 2-itemsets are frequent. Candidate 
3-itemsets are generated from frequent 2-itemsets which are 
{AE：2, BG：2, CD：2, CE：3, CG：2, DE：2}. Finally, it outputs 

the frequent 3-itemset {CDE：2} after scanning the compressed 
database. 

IV. EXPERIMENTAL RESULT 
M2TQT and Merged Transactions Approach [1] were 

implemented in java programming language and all 
experiments run on a PC of Intel Pentium 4 3.0GHz processor 
with DDR 400MHz 4GB main memory. Synthetic datasets are 
generated by using the IBM dataset generator [15] for our 
experiments. Table III lists the parameters used in the IBM 
dataset generator.  

 
TABLE III 

PARAMETERS USED IN THE IBM DATASET GENERATOR 
D Number of transactions 
T Average size of transactions 
I Average size of maximal potentially–large itemsets 
L Number of potentially-large itemsets 
N Number of items 

 
The parameter settings used to generate experimental 

datasets are shown in Table IV. The average length of the 
transaction T is set as 4 and 10 and the average size of maximal 
potentially-large itemsets I as 4 and 5. To compare with the 
Merged Transactions Approach, the generated datasets have 
the number of items N=8 and 50, and the number of 
potentially-large itemset L=1000.   

 
TABLE IV 

DATABASE PARAMETER SETTINGS 
Dataset T I D 

T4I5D10K 
T10I4D10K 

T4I5D1K 

4 
10 
4 

5 
4 
5 

228K 
407K 
21K 

 
The dataset T4I5D10k is used to run, our algorithm, merged 

transactions approach and Apriori algorithm. Let the average 
size of the potentially large itemset be 5 for the minimum 
supports 5%, 10%, 15%, and 20%, and compare our algorithm 
with Apriori algorithm and merged transactions approach. The 
performance of our algorithm is much better than the other two 
approaches as shown in Fig. 11. When the minimum support is 
5%, the execution time of merged transactions approach is 

about 1.72 times of our approach. Our method outperforms the 
other two more than 40% as an average. 

 

 
Fig. 11 The experiment result of T4I5D10K 

 
The performance of using a quantification table is also 

analyzed in our experiment. From Fig. 12, it shows that the 
effect of using the table is low when the minimum support is 
lower. But the effect gets higher when the minimum support is 
high because it is possible to reduce more I/O time. In general, 
the performance of using a quantification table is better than 
without using it. 

 

 
Fig. 12 With and without using a quantification table 

 
For incremental mining, the dataset T4I5D1K is used to run 

the experiments of merged transactions approach and our 
algorithm. Let the average size of the potentially large itemset 
be 5 for the minimum supports 15%, 20%, 25%, and 30%. Here, 
20% of the dataset T4I5D1K are used for the updates and 80% 
as the original data. Fig. 13 shows that four cases need to be 
considered in the incremental data mining. As in [16], our 
approach considers Case2 and Case3. The performance of our 
algorithm is much better than merged transactions approach as 
shown in Fig. 14. The average improvement of the execution 
time is about 8 times in favor of our approach. 
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Fig. 13 Four cases regarding an itemset being frequent or not after 

transaction additions 

 

 
Fig. 14 The experiment of T4I5D1K 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, a new approach called Ming Merged 

Transactions with the Quantification Table is proposed to 
compress related transactions into a new transaction by 
scanning the transaction database only once. The M2TQT 
approach utilizes the compressed transactions to mining 
association rule efficiently with a quantification table. There 
are several advantages of M2TQT over the other approaches:   

 

(1) No multiple database scans, because M2TQT reads the 
database only once if the compressed database fits into 
main memory. 

(2) Reduce the process time of association rule mining 
because M2TQT prunes candidate itemsets which are 
impossible to become frequent.   

(3) A compressed database can be decompressed to the 
original database to support transaction updates. 

 

The M2TQT algorithm was implemented to compare with the 
Apriori and Merged Transactions Approach for large datasets. 
The experiment results show that our approach performs the 
other two approaches. 

In the future, more improvements on the compression rate 
are under investigation. Some interesting research issues 
related to compression-based mining include the study of the 

best rate of compression for discovering frequent patterns. The 
extension of M2TQT method for FP-tree [12], [14] is another 
interesting topic for future work. 
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