
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1288

Abstract—In an era of knowledge explosion, the growth of data

increases rapidly day by day. Since data storage is a limited resource,
how to reduce the data space in the process becomes a challenge issue.
Data compression provides a good solution which can lower the
required space. Data mining has many useful applications in recent
years because it can help users discover interesting knowledge in large
databases. However, existing compression algorithms are not
appropriate for data mining. In [1, 2], two different approaches were
proposed to compress databases and then perform the data mining
process. However, they all lack the ability to decompress the data to
their original state and improve the data mining performance. In this
research a new approach called Mining Merged Transactions with the
Quantification Table (M2TQT) was proposed to solve these problems.
M2TQT uses the relationship of transactions to merge related
transactions and builds a quantification table to prune the candidate
itemsets which are impossible to become frequent in order to improve
the performance of mining association rules. The experiments show
that M2TQT performs better than existing approaches.

Keywords—Association rule, data mining, merged transaction,
quantification table.

I. INTRODUCTION
great amount of data is being accumulated very rapidly in
the Internet era. Consequently, it takes a lot of time and

effort to process these data for knowledge discovery and
decision making. Data compression is one of good solutions to
reduce data size that can save the time of discovering useful
knowledge by using appropriate methods, for example, data
mining. Data mining is used to help users discover interesting
and useful knowledge more easily.

It is more and more popular to apply the association rule
mining in recent years because of its wide applications in many
fields such as stock analysis, web log mining, medical
diagnosis, customer market analysis, and bioinformatics. In this
research, the main focus is on association rule mining and data
pre-process with data compression.

This work was supported in part by the National Science Council, Taiwan,

under Grants NSC95-2221-E-035-068-MY3 and NSC96-2218-E-007-007.
Jia-Yu Dai and Don-Lin Yang (dlyang@fcu.edu.tw) are with the

Department of Information Engineering and Computer Science, Feng Chia
University, Taiwan.

Jungpin Wu is with the Department of Statistics, Feng Chia University,
Taiwan.

Ming-Chuan Hung is with the Department of Industrial Engineering and
Systems Management, Feng Chia University, Taiwan.

M.C. Hung et al. proposed a knowledge discovery process
from compressed databases in [1] which can be decomposed
into the following two steps:

(1) Data pre-process step:
Data pre-process transforms the original database into a new

data representation where several transactions are merged to
become a new transaction. Eventually, it generates a new
transaction database at the end of the data pre-process step.

(2) Data mining step:
It uses an Apriori-like algorithm [11]-[14] of association rule

mining to find useful information. Details are described later.
There are some problems in this approach. First, the

compressed database is not reversible after the original
database is transformed by the data pre-process step. It is very
difficult to maintain this database in the future. Second,
although some rules can be mined from the new transactions, it
still needs to scan the database again to verify the result. This is
because the data mining step produces potentially ambiguous
results. It is a serious problem to scan the database multiple
times because of the high cost of re-checking the frequent
itemsets.

Another solution was developed by Mafruz Zaman Ashrafi
et al. [2]. However, they suffer from similsr problems
mentioned above. It is even a bigger challenge to maintain the
compressed database in the future. In addition, it spends too
much time to check candidate itemsets in the data mining step.

In this research, a more efficient approach, called Mining
Merged Transactions with the Quantification Table (M2TQT)
is proposed, which can compress the original database into a
smaller one and perform the data mining process without the
above problems.

Our approaches have the following characteristics:
(a) The compressed database can be decompressed to the

original form.
(b) Reduce the process time of association rule mining by

using a quantification table.
(c) Reduce I/O time by using only the compressed

database to do data mining.
(d) Allow incremental data mining.

The rest of the paper is organized as follows. The
background and related works are provided in Section 2. The
proposed algorithm is described in Section 3. The experimental
environment and results are presented in Section 4. Finally,
Section 5 concludes the paper and discusses the future work.

An Efficient Data Mining Approach on
Compressed Transactions

Jia-Yu Dai, Don-Lin Yang, Jungpin Wu, and Ming-Chuan Hung

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1289

II. RELATED WORK
When making decisions, people would like to have enough

information to avoid making wrong decisions that may cause
losses. Data mining can be used to find useful information as a
part of knowledge discovery in databases (KDD) for better
decision-making. KDD can convert source data into useful
information using the main process [3] depicted in Fig. 1.

Fig. 1 The process of KDD
The goal of data preprocessing is to transform the input data

into a suitable form for data mining or analysis. In general, data
mining techniques can be divided into three categories:
classification [4], [5], clustering [6], and association rule [11].

Classification is the process that data is divided into different
classes with the known property. First, data is divided into two
datasets which are training dataset and testing dataset. Second,
a classification model is generated from the training dataset and
then tests are made to verify the model’s accuracy. Finally, the
verified model is used to classify new transaction data into
respective classes.

Clustering is the process that data is divided into mutiple
groups in which the data are similar. It is an unsupervised
process.

Association rule can be expressed as “if A, then B” after
satisfying the measures of support and confidence. For
example, assume that a customer buys milk and bread whereas
another buys milk and meat. One would like to discuss “if a
new customer buys milk, then he/she will buy bread too” or “if
a new customer buys milk, then he/she will also buy meat”. The
concept of association rule mining in the next subsection.

Data post–processing is to ensure the result is valid and
usable. For example, visualization can be used for analysts to
explore the data mining results from a variety of viewpoints.
This can help users better utilize the mined rules or patterns.

It is more and more popular for many users perform
association rule mining in recent years. Many approaches are
proposed [7-14], [17] in association rule mining Let I = {i1, i2,
…, im} be a set of items. Let D be a transaction database which
contains a set of transactions. Let t= (tid, t-itemset) be a
transaction. Tid is a transaction number and t-itemset contains a
set of items. Let X be a set of items. If a transaction t contains X
if only if X ⊆ t. Length of a transaction which contains a
K-itemset is K. There are two important measurements which
are support and confidence in association rule mining. Support
is the frequency of occurring patterns in D and confidence is the
strength of implication. Their definitions are as follows:

 (1) Support (X) = |T(X)| / |D|
 (2) Confidence (X→Y) = Support (X�Y) / Support (X)
T(X) is any transaction in D that contains X. |D| is the total

number of transactions in D. We can define what we think an
interesting relation is in a transaction database.

In support-confidence framework, if it is an interesting relation
for X →Y，then X and Y must be frequent. How to define a
frequent relation? There are two conditions. One condition is
support(X) ≧ minsupport and support(Y) ≧minsupport(Y).
Another is Confidence (X→Y) ≧ minconfidence. Minsupport
and minconfidence are user-defined thresholds.

The problems of mining association rules are mainly divided
into two sub-problems. One is to discover the frequent itemsets
and another is to generate the association rules. The first
problem is more difficult than the second one. Most papers are
focusing on the first problem.

The apriori [8] algorithm is one of the classical algorithms in
the association rule mining. It uses simple steps to discover
frequent itemsets. Apriori algorithm is given in Fig. 2. Lk is a set
of k-itemsets. It is also called large k-itemsets. Ck is a set of
candidate k-itemsets. How to discover frequent itemsets?
Apriori algorithm finds out the patterns from short frequent
itemsets to long frequent itemsets. It does not know how many
times the process should take beforehand. It is determined by
the relation of items in a transaction. The process of the
algorithm is as follows:

At the first step, after scanning the transaction database, it
generates frequent 1-itemsets and then generates candidate
2-itemsets by means of joining frequent 1-itemsets. At the
second step, it scans the transaction database to check the count
of candidate 2-itemsets. It will prune some candidate 2-itemsets
if the counts of candidate 2-itemsets are less than predefined
minimum support. After pruning, the remaining candidate
2-itemsets become frequent 2-itemsets which are also called
large 2-itemsets. It generates candidate 3-itemsets by means of
joining frequent 2-itemsets. Therefore, CK is generated by
joining large (K-1)-itemsets obtained in the previous step.
Large K itemsets are generated after pruning. The process will
not stop until no more candidate itemset is generated.

Fig. 2 Apriori algorithm

Since most data occupy a large amount of storage space, it is
beneficial to reduce the data size which makes the data mining
process more efficient with the same results. Compressing the
transactions of databases is one way to solve the problem. [1]
Proposed a new approach for processing the merged
transaction database. It is very effective to reduce the size of a
transaction database. Their algorithm is divided into data
preprocess and data mining. The overview of the approach is
shown in Fig. 3.

Data
Post –
Process

Information Input
Data

Data
Preprocess

Data
Mining

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1290

Fig. 3 An overview of the merged transaction algorithm

There are two sub-processes in the data preprocess. One

sub-process transforms the original database into a new data
representation. It uses lexical symbols to represent raw data.
Here, it’s assumed that items in a transaction are sorted in
lexicographic order. Another sub-process is sorting all the
transactions to various groups of transactions and then merges
each group into a new transaction. For example, T1= {A, B, C,
E} and T2 = {A, B, C, D} are two transactions. T1 and T2 are
merged into a new transaction T3= {A2, B2, C2, D1, E1}. Fig. 4
shows an example of the sort grouping method and Fig. 5
shows an example of data mining sub-process.

Fig. 4 An example of sort grouping

Fig. 5 An example of data mining

The process called merge-mining algorithm is used to find

frequent itemsets from the new transaction DM. There are two
phases in this algorithm. The first phase is finding frequent
itemsets. The second phase is to prune redundancy. It is
possible that frequent itemsets generated in the first phase
might not exist in the DM. For this reason, it needs to verify
those frequent itemsets by scanning DM again. Fig. 6 is the
pseudo code of merge-mining algorithm. The notations are
shown in Fig. 7.

Fig. 6 The pseudo code of merge-mining algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1291

Fig. 7 The notations of merge-mining algorithm

Pincer-Search algorithm [9] is an Apriori-like algorithm. It
takes advantage of Apriori algorithm to find maximal frequent
itemsets. The process is mainly divided into two parts,
bottom-up search and top-down search. Bottom-up search uses
the process similar to Apriori algorithm. The key is the
top-down search.

Top-down search is to find maximal frequent itemsets by
using the information generated in bottom-up search. And then
bottom-up search is to find frequent itemsets by using the
information generated in top-down search. They are performed
in turns until all of the maximal frequent itemsets are found.
The pseudo code of Pincer Search algorithm is shown in Fig. 8

Fig. 8 Pincer-Search algorithm

III. PROPOSED METHOD
The description of the proposed algorithm focuses on

compressing related transactions and building a quantification
table for pruning candidate itemsets that are impossible to
become frequent itemsets. Finally, an example is provided to
show the processes of our method. To simplify the description,

it assumes the items in each transaction are presented in a
lexicographical order.

A. Overview
Algorithms like [1], [2] compress transactions to reduce the

size of a transaction database. Then, they use Apriori-like
algorithms to mine the compressed database. Whereas the two
phases approach of compression and data mining are used, they
suffer the following problems:

(1) In the data compression phase, the original database
can not be recovered to support transaction updates.

(2) In the data mining phase, a lot of candidate itemsets
could be generated in a large transaction database.
Since both [1] and [2] need to scan the database more
than once, they have a much higher process cost.

The first problem is due to the lack of rule or constraint in the
process of merging transactions in the data compression phase.
Therefore, the compressed database can not be decompressed
to its original form In addition, they don’t use user-defined
threshold to filter infrequent 1-itemsets from the original
database..

Another problem is that Apriori-like algorithms generate a
lot of candidate itemsets and need to check the candidate
itemsets by scanning the database. It is very time-consuming.
Our goal is to take the advantages of [1] and Apriori algorithm
without suffering from the problem of checking candidate
itemsets and recovering the database for new data. In order to
provide a better performance, we limit the number of database
scan to be one in the data compression phase and build a
quantification table. In the data mining phase, we use the same
approach of Apriori algorithm to generate candidate itemsets
and reduce the number of candidate itemsets by using the
quantification table. We also reduce the time of scanning the
database.

We present a novel approach which can
(1) support local transaction variation
(2) recover the transaction database to its original state
(3) make the compressed database much smaller than

the original one
(4) reduce data mining time

We called our approach the Mining Merged Transactions
with the Quantification Table (M2TQT) which has three phases:

(1) merge related transactions to generate a
compressed database

(2) build a quantification table
(3) discover frequent itemsets

B. M2TQT Approach
First, M2TQT uses the transaction relation distance to merge

the relevant transactions. The definition of the transaction
relation distance is defined in Section C. Section D introduce
how to build a quantification table in Section D. Then, it
illustrates the process of compressing a database in Section E.
Next, Section F shows how to compute support of itemsets
from minimum-frequency function in Section F. Finally, it
explains how to recover data from the compressed database in
Section G.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1292

C. Transaction Relation Distance
Based on the relation distance between transactions one can

merge transactions with closer relationship to generate a better
compressed database. Here the transaction relation and
transaction relation distance are defined as follows:

Definition 1:
(1) Transaction Relation:

The relation between two different transactions T1
and T2 is that T1 is either a subset or a superset of T2.

(2) Transaction Relation Distance:
Distance is the number of different items between
two transactions.
Example 1: T1={ ABCE} and T2={ ABC} ,DT1-T2= 1
Example 2: T3={ A} and T4={ C } ,DT3-T4= 2

D. A Quantification Table
To reduce the number of candidate itemsets to be generated,

additional information is required to help prune non-frequent
itemsets. A simple quantification table is used to record this
information when each transaction is processed. Assuming the
items in a transaction appear in a lexicographical order, our
approach starts working from the left-most item and calls it a
prefix-item. After finding the length of the input transaction as
n, it records the count of the itemsets appearing in the
transaction under the respective entries of length Ln, Ln-1,.. L1.
A quantification table is composed of these entries where each
Li contains a prefix-item and its support count. An example
database in Table I is used to show the construction of a
quantification table in Table II.

TABLE I

AN EXAMPLE DATABASE
TID Transactions
100 ABCDE
200 CDE
300 ACD

TABLE II

A QUANTIFICATION TABLE FOR TABLE I
L5
A1

L4
A1
B1

L3
A2
B1
C2

L2
A2
B1
C3
D2

L1
A2
B1
C3
D3
E2

For instance, after reading the transaction {ABCDE} of TID

100, it knows the transaction length n is 5. For the prefix-item
A, the counters under L5 to L1 are all increased by one from the
initial value of zero. That is, A1 appears in each Li, where i = 5
to 1. For the prefix-item B, the counters under L4 to L1 are all
increased by one as well. That is, B1 appears in each Li, where i
= 4 to 1. The same process is performed for items C, D, and E.
Similarly, after reading TID 200 {CDE}, the table has C2 in L3,
L2, and L1; D2 in L2 and L1; E2 in L1. Finally, with the last
transaction {ACD}, it will increase the counters by one from
A1 to A2 in L3, L2, and L1; C2 to C3 in L2 and L1; D2 to D3 in
L1. Table 2 shows the result of building the quantification table.

With this table, we can easily prune the candidate itemsets
whose counters are smaller than the minimum support.

E. The Process of Database Compression
Let d be a relation distance and it is initialized to 1 at the

beginning. Transactions will be merged into their relevant
transaction groups in the merged blocks based on the
transaction relation distance. M2TQT consists of the following
steps:

Step 1: Read a transaction at a time from the original
database.

Step 2: Record the information of the input transaction to
build a quantification table.

Step 3: Compute the length n of the transaction.
Step 4: If the merged block is not empty, read the relevant

transaction groups from the merged block.
Step 5: Compute relation distance between the transaction

and relevant transaction groups. If the transaction is a superset
of the longest transaction of a relevant transaction group, a
subset of the smallest transaction of a relevant transaction
group, or equal to one transaction of a relevant transaction
group, it can be merged into the relevant transaction group. For
example, we assume d=1. Two transactions {BCG} and {BG}
are merged into a relation transaction group {BCG=2.1.2}. A
“=” symbol is used to separate items and their respective
support counts. We read another transaction {BC} and compute
the relation distance between {BCG=2.1.2} and {BC}. Since
the relation distance is 1, {BC} is merged into the relation
transaction group. Finally, the relevant transaction group
becomes {BCG=3.2.2}.

 Step 6: Compute the relation distance between the
transaction and those transactions coming from (n+d) block, n
block, and (n-d) block where n > d. If it finds the satisfied
relevant transactions, merge the transactions to become a
relevant transaction group and then classify it as (n+d) merged
block, n merged block or (n–d) merged block. If no relevant
transaction can be found, the transaction is classified as n
merged block.

Step 7: Repeat the above six steps until the last transaction is
read.

Step 8: Read a transaction from the merged blocks.
Step 9: Compute the relation distance between the

transaction and all other transactions in the relevant transaction
groups. If the transaction is a sub-transaction of the maximum
length transaction of a relation transaction group and its
distance is satisfied, it can merge the transaction into the
relation transaction group to generate a new count. The process
continued until the last transaction is read.

Step10: Set d to d+1.
 Step11: Repeat the above steps 8 - 10 until no more relation

distance is found between transactions.

F. Minimum-frequency Function
The minimum-frequency function takes original transactions

and merged transactions as input. It returns the minimum
number of itemsets in the transactions. For example, let a
candidate 2-itemset C2 be {BC, AE} and merged transactions of
T* be {{AE=2.1}, {BCG=2.1.2}, {CDEG=2.3.3.1}, {ABCE},
{C}}. After calling minimum-frequency function with T*

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1293

being the input, it returns 0+1+0+1+0=2 for BC and
1+0+0+1+0=2 for AE. This is an efficient function to count the
number of itemsets in the transactions.

G. Recover Data from Compressed Database to Original
Database

With the proposed approach it can recover data from the
compressed database. Assume the relation distance is equal to
1. A merged transaction is expressed as <s1, s2… , sk .., sn-1,
sn>= c1, c2…ck.. cn-1.cn, where s1, s2… , sk , sn-1, sn are items and
c1, c2…, ck, cn-1, cn are their corresponding support counts
separated by “.”. The smallest count in ci for i = 1 to n is the
support of the longest transaction, i.e., { s1, s2… , sk , sn-1, sn }. If
ck is the smallest count in c1, c2…, ck, cn-1, cn , then the count of
the longest transaction { s1, s2… , sk , sn-1, sn } is ck. Therefore,
the transaction { s1, s2… , sk , sn-1, sn } is recovered and the
merged transaction becomes <s1, s2… , sn-1, sn>= c1-ck.c2-ck…
cn-1-ck. cn-ck. The items with a zero count are removed from the
merged transaction. Repeat the above process to find the next
longest transaction in the merged transaction until no count left.
For example, the merged transaction <ABCD>=3.1.4.2 has the
smallest count of 1 such that the count of transaction <ABCD>
is 1. Next, decrease the count of each item in <ABCD> by 1 to
get <ACD>=3-1.4-1.2-1 = 2.3.1. Note that item B in the
merged transaction is removed since it has a zero count. Next,
the smallest count among A, C, and D is also 1 such that the
count of transaction <ACD> is 1. Then, the merged transaction
becomes <AC>==2-1.3-1=1.2 and the smallest count of 1 is the
count of transaction <AC>. Finally, <C>=2-1=1 and we have
decompressed the merged transaction <ABCD>=3.1.4.2 to get
back the original transactions {ABCD}, {ACD}, {AC}, {C}.
Here, {{ABCD}, {ACD}, {AC}, {C}} also satisfy the
specified relation distance.

H. A Simple Example
To illustrate the process of the proposed approach, a simple

example is shown below. There are 9 transactions with a total
number of 6 distinguished items in the original database as
shown in the left-hand side of Fig. 9. Assume the minimum
support is 2 meaning that an itemset is frequent if its count is
greater than or equal to 2.

Fig. 9 The original database and its compressed database

Fig. 10 A quantification Table for the database in Fig. 9

Phase 1:
The first step is to compress the original database after

scanning their transactions. Assuming the transaction relation
distance =1, read the first transaction {ABCE} to compute its
length n = 4 and put it into Length-4 block. Next, read
transaction {CDE} to get the length n = 3 and then compute
transaction relation distance between {ABCE} and {CDE} to
get the distance of 3. They can not be compressed because the
relation distance is not equal to 1. Therefore, transaction
{CDE} is put into Length-3 block. After reading the third
transaction {DE} with a length of 2, it examines if the
transaction appears in any merged transactions. If it exists, they
are merged to generate a new merged transaction with
increased counts. On the other hand, it examines whether the
computed transaction relation distances with all merged
transactions agree to the assumed distance. If it exists,
transaction {DE} is merged with the existing merged
transaction which satisfies the transaction relation distance. If
transaction {DE} has no relation in the merged transactions, it
will check with the items in L=1, L=2 and L=3 blocks. Since
the relation distance between {DE} and {CDE} is 1, they are
merged into a new transaction {CDE=1.2.2}. This new
transaction is put into Length-3 merged block. Subsequent
transactions are processed in the same way. The compressed
database is shown in the right-hand side of Fig. 9 where the
number of transactions becomes 5.

Phase 2:
When the compressed database is generated, it also builds a

quantification table at the same time as shown in Fig. 10.

Phase 3:
The compressed database is used to generate frequent

itemsets with any Apriori-like algorithm for association rule
mining. The minimum support is set to 2. From the
quantification table, it can generate frequent 1-itemsets {A, B,
C, D, E, G}. Frequent 1-itemsets are used to generate candidate
2-itemsets. At the same time, it checks the counts of itemsets in
L2 of the quantification table to prune the candidate itemsets
which are impossible to become frequent itemsets. The
generated candidate 2-itemsets are {AB, AC, AD, AE, AG, BC,
BD, BE, BG, CD, CE, CG, DE, DG, EG}. Because the item’s
frequency is recorded in the merged transactions, one can use
the minimum-frequency function to determine the count of a
candidate itemset. The minimum-frequency function returns

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1294

the minimal number of item occurrences in a merged
transaction and it also returns a value of 1 for an original
transaction. For instance, let C2 be {{A E}, {CG}} and
compressed transaction T* = {{AE=2.1}, {BCG=2.1.2},
{CDEG=2.3.3.1}, {ABCE}, {C}}. After calling the
minimum-frequency function for {A E}, it returns {1, 0, 0, 1,
0}. The total frequency of {A E} is 1+0+0+1+0=2. For {CG},
it returns {0, 1, 1, 0, 0}. The total frequency of {CG} is
0+1+1+0+0=2.

Using the quantification table, one can prune the candidate
2-itemset {EG} and then scan the compressed database to
check if the rest of candidate 2-itemsets are frequent. Candidate
3-itemsets are generated from frequent 2-itemsets which are
{AE：2, BG：2, CD：2, CE：3, CG：2, DE：2}. Finally, it outputs

the frequent 3-itemset {CDE：2} after scanning the compressed
database.

IV. EXPERIMENTAL RESULT
M2TQT and Merged Transactions Approach [1] were

implemented in java programming language and all
experiments run on a PC of Intel Pentium 4 3.0GHz processor
with DDR 400MHz 4GB main memory. Synthetic datasets are
generated by using the IBM dataset generator [15] for our
experiments. Table III lists the parameters used in the IBM
dataset generator.

TABLE III

PARAMETERS USED IN THE IBM DATASET GENERATOR
D Number of transactions
T Average size of transactions
I Average size of maximal potentially–large itemsets
L Number of potentially-large itemsets
N Number of items

The parameter settings used to generate experimental

datasets are shown in Table IV. The average length of the
transaction T is set as 4 and 10 and the average size of maximal
potentially-large itemsets I as 4 and 5. To compare with the
Merged Transactions Approach, the generated datasets have
the number of items N=8 and 50, and the number of
potentially-large itemset L=1000.

TABLE IV

DATABASE PARAMETER SETTINGS
Dataset T I D

T4I5D10K
T10I4D10K

T4I5D1K

4
10
4

5
4
5

228K
407K
21K

The dataset T4I5D10k is used to run, our algorithm, merged

transactions approach and Apriori algorithm. Let the average
size of the potentially large itemset be 5 for the minimum
supports 5%, 10%, 15%, and 20%, and compare our algorithm
with Apriori algorithm and merged transactions approach. The
performance of our algorithm is much better than the other two
approaches as shown in Fig. 11. When the minimum support is
5%, the execution time of merged transactions approach is

about 1.72 times of our approach. Our method outperforms the
other two more than 40% as an average.

Fig. 11 The experiment result of T4I5D10K

The performance of using a quantification table is also

analyzed in our experiment. From Fig. 12, it shows that the
effect of using the table is low when the minimum support is
lower. But the effect gets higher when the minimum support is
high because it is possible to reduce more I/O time. In general,
the performance of using a quantification table is better than
without using it.

Fig. 12 With and without using a quantification table

For incremental mining, the dataset T4I5D1K is used to run

the experiments of merged transactions approach and our
algorithm. Let the average size of the potentially large itemset
be 5 for the minimum supports 15%, 20%, 25%, and 30%. Here,
20% of the dataset T4I5D1K are used for the updates and 80%
as the original data. Fig. 13 shows that four cases need to be
considered in the incremental data mining. As in [16], our
approach considers Case2 and Case3. The performance of our
algorithm is much better than merged transactions approach as
shown in Fig. 14. The average improvement of the execution
time is about 8 times in favor of our approach.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1295

Fig. 13 Four cases regarding an itemset being frequent or not after

transaction additions

Fig. 14 The experiment of T4I5D1K

V. CONCLUSIONS AND FUTURE WORK
In this paper, a new approach called Ming Merged

Transactions with the Quantification Table is proposed to
compress related transactions into a new transaction by
scanning the transaction database only once. The M2TQT
approach utilizes the compressed transactions to mining
association rule efficiently with a quantification table. There
are several advantages of M2TQT over the other approaches:

(1) No multiple database scans, because M2TQT reads the
database only once if the compressed database fits into
main memory.

(2) Reduce the process time of association rule mining
because M2TQT prunes candidate itemsets which are
impossible to become frequent.

(3) A compressed database can be decompressed to the
original database to support transaction updates.

The M2TQT algorithm was implemented to compare with the
Apriori and Merged Transactions Approach for large datasets.
The experiment results show that our approach performs the
other two approaches.

In the future, more improvements on the compression rate
are under investigation. Some interesting research issues
related to compression-based mining include the study of the

best rate of compression for discovering frequent patterns. The
extension of M2TQT method for FP-tree [12], [14] is another
interesting topic for future work.

REFERENCES
[1] M. C. Hung, S. Q. Weng, J. Wu, and D. L. Yang, "Efficient Mining of

Association Rules Using Merged Transactions," in WSEAS Transactions
on Computers, Issue 5, Vol. 5, pp. 916-923, 2006.

[2] M. Z. Ashrafi, D. Taniar, and K. Smith, "A Compress-Based Association
Mining Algorithm for Large Dataset," in Proceedings of International
Conference on Computational Science, pp. 978-987, 2003.

[3] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "The KDD process for
extracting useful knowledge from volumes of data," Communications of
the ACM, Vol. 39, pp. 27-34, 1996.

[4] E. Hullermeier, "Possibilistic Induction in Decision-Tree Learning," in
Proceedings of the 13th European Conference on Machine Learning, pp.
173-184, 2002.

[5] J. R. Quinlan, "C4.5: programs for machine learning," Morgan Kaufmann
Publishers Inc, 1993.

[6] A. K. Jain and R. C. Dubes, Algorithm for clustering data: Prentice-Hall,
Inc., 1988.

[7] R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules
Between Sets of Items in Large Databases," in Proceedings of the
International Conference on Management of Data, pp. 207-216, 1993.

[8] R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association
Rules," in Proceedings of the 20th International Conference on Very
Large Data Bases, pp. 487-499, 1994.

[9] D. I. Lin and Z. M. Kedem, "Pincer-search: an efficient algorithm for
discovering the maximum frequent set," IEEE Transactions on
Knowledge and Data Engineering, Vol. 14, pp. 553-566, 2002.

[10] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, "Dynamic Itemset
Counting and Implication Rules for Market Basket Data," in Proceedings
of the International Conference on Management of Data, pp. 255-264,
1997.

[11] A. Savasere, E. Omiecinski, and S. Navathe, "An Efficient Algorithm for
Mining Association Rules in Large Databases," in Proceedings of the 21st
International Conference on Very Large Data Bases, pp. 432-444, 1995.

[12] J. Han, J. Pei, and Y. Yin, "Mining Frequent Patterns without Candidate
Generation," in Proceedings of the International Conference on
Management of Data, pp. 1-12, 2000.

[13] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, "MAFIA: A
maximal frequent itemset algorithm," IEEE Transactions on Knowledge
and Data Engineering, Vol. 17, pp. 1490-1504, 2005.

[14] G. Grahne and J. Zhu, "Fast algorithms for frequent itemset mining using
FP-trees," IEEE Transactions on Knowledge and Data Engineering, Vol.
17, pp. 1347-1362, 2005.

[15] IBM Almaden Research Center, "Synthetic Data Generation Code for
Associations and Sequential Patterns," URL:http://www.almaden.ibm.
com/software/quest/, 2006.

[16] D. W. L. Cheung, S. D. Lee, and B. Kao, "A general incremental
technique for maintaining discovered association rules," in Proceedings
of the 15th International Conference on Database Systems for Advanced
Applications, pp. 185-194, 1997.

[17] D. Xin, J. Han, X. Yan, and H. Cheng, "Mining Compressed
Frequent-Pattern Sets," in Proceedings of the 31st international
conference on Very Large Data Bases, pp. 709-720, 2005.

