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An efficient computational algorithm for solving the
nonlinear Lane-Emden type equations

Gholamreza Hojjati, Kourosh Parand

Abstract—In this paper we propose a class of second derivative
multistep methods for solving some well-known classes of Lane-
Emden type equations which are nonlinear ordinary differential
equations on the semi-infinite domain. These methods, which have
good stability and accuracy properties, are useful in deal with stiff
ODEs. We show superiority of these methods by applying them on
the some famous Lane-Emden type equations.
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problems, Multistep methods, Astrophysics.

I. INTRODUCTION

MANY problems in science and engineering arise in
unbounded domains. Different spectral methods have

been proposed for solving problems on unbounded domains.
The most common method is through the use of polynomials
that are orthogonal over unbounded domains, such as the
Hermite spectral and the Laguerre spectral methods [?], [12],
[24], [25], [27], [38], [55], [57].

Guo [26], [28], [30] proposed a method that proceeds by
mapping the original problem in an unbounded domain to a
problem in a bounded domain, and then using suitable Jacobi
polynomials to approximate the resulting problems.

Another approach is replacing the infinite domain with
[−L,L] and the semi-infinite interval with [0, L] by choosing
L, sufficiently large. This method is named as the domain
truncation [5].

Christov [11] and Boyd [6], [7] used another effective
direct approach for solving such problems that are based
on rational approximations. They developed some spectral
methods on unbounded intervals by using mutually orthogonal
systems of rational functions. Boyd [7] defined a new spectral
basis, named rational Chebyshev functions on the semi-infinite
interval, by mapping it to the Chebyshev polynomials. Guo et
al. [29] introduced a new set of rational Legendre functions
which are mutually orthogonal in L2(0,+∞). They applied
a spectral scheme using the rational Legendre functions for
solving the Korteweg-de Vries equation on the half line. Boyd
et al. [4] applied pseudospectral methods on a semi-infinite
interval and compared the rational Chebyshev, Laguerre and
the mapped Fourier sine methods.

Authors of [41]–[46] applied the spectral method to solve
the nonlinear ordinary differential equations on semi-infinite
intervals. Their approach is based on the rational Tau and
collocation methods.
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Lane-Emden type equations are nonlinear ordinary differen-
tial equations on semi-infinite domain. They are categorized
as singular initial value problems. These equations describe
the temperature variation of a spherical gas cloud under the
mutual attraction of its molecules and subject to the laws
of classical thermodynamics. The polytropic theory of stars
essentially follows out of thermodynamic considerations, that
deals with the issue of energy transport, through the transfer of
material between different levels of the star. These equations
are one of the basic equations in the theory of stellar structure
and has been the focus of many studies [1]–[3], [10], [19],
[31], [37], [39], [47]–[50], [54], [58], [59], [61].

We simply begin with the Poisson equation and the condi-
tion for hydrostatic equilibrium:

dP

dr
= −GM(r)

r2
,

dM(r)

dr
= 4πρr2,

where G is the gravitational constant, P is the pressure, M(r)
is the mass of a star at a certain radius r, and ρ is the
density, at a distance r from the center of a spherical star. The
combination of these equations yields the following equation,
which as should be noted, is an equivalent form of the Poisson
equation

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4πGρ.

From these equations one can obtain the Lane-Emden equation
through the simple supposition that the density is simply
related to the density, while remaining independent of the
temperature. We already know that in the case of a degenerate
electron gas, the pressure and density are ρ ∼ P

3
5 , assuming

that such a relation exists for other states of the star, we are
led to consider a relation of the following form:

P = Kρ1+
1
m ,

where K and m are constants, at this point it is important to
note that m is the polytropic index which is related to the ratio
of specific heats of the gas comprising the star. Based upon
these assumptions we can insert this relation into our first
equation for the hydrostatic equilibrium condition and from
this equation we have[

K(m+ 1)

4πG
λ

1
m−1

]
1

r2
d

dr

(
r2

dy

dr

)
= −ym,

where the additional alteration to the expression for density
has been inserted with λ representing the central density of
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the star and y that of a related dimensionless quantity that are
both related to ρ through the following relation

ρ = λym.

Additionally, if place this result into the Poisson equation, we
obtain a differential equation for the mass, with a dependance
upon the polytropic index m. Though the differential equation
is seemingly difficult to solve, this problem can be partially
alleviated by the introduction of an additional dimensionless
variable x, given by the following:

r = ax,

a =

[
K(m+ 1)

4πG
λ

1
m−1

] 1
2

.

Inserting these relations into our previous equations we obtain
the famous form of the Lane-Emden equations, given in the
following:

1

x2
d

dx

(
x2

dy

dx

)
= −ym.

Taking these simple relations we will have the standard Lane-
Emden equation with g(y) = ym,

y′′ +
2

x
y′ + ym = 0, x > 0. (1)

At this point it is also important to introduce the boundary
conditions which are based upon the following boundary
conditions for hydrostatic equilibrium and normalization con-
sideration of the newly introduced quantities x and y. What
follows for r = 0 is

r = 0 → x = 0, ρ = λ→ y(0) = 1. (2)

As a result an additional condition must be introduced in order
to maintain the condition of Eq. (2) simultaneously:

y′(0) = 0.

In other words, the boundary conditions are as follows

y(0) = 1, y′(0) = 0.

The values of m which are physically interesting, lie in the
interval [0,5]. The main difficulty in the analysis of this type
of equation is the singularity behavior occurring at x = 0.
Exact solutions for Eq. (1) are known only for m = 0, 1 and
5. For other values of m the standard Lane-Emden equation
is to be integrated numerically. Thus we decided to present a
new and efficient technique to solve it numerically.

On the other hand, in recent years, the study of numerical
methods for solving stiff initial-value problems for ordinary
differential equations has reached a certain maturity. There
now exist some excellent codes which are both efficient and
reliable for solving these particular classes of problems. For
example, as Enright [23] used second derivative of solution
in his algorithm, Cash [8] and Ismail [34] introduced sec-
ond derivative multistep methods that have good stability
properties. These methods are A-stable of high orders. One
class of the these efficient methods, that have good stability
and accuracy properties, is a new class of second derivative

multistep methods (SDMMs) that have introduced by Hojjati
et al. [32]. The main superiority of this new class of methods
leads us to apply them to solve Lane-Emden type equations.

This paper is arranged as follows: in section 2, we review
the proposed methods for solving Lane-Emden equations.
In section 3, we briefly describe the new second derivative
multistep methods that we use to solve Lane-Emden equation.
Finally in section 4, we apply the new SDMMs for numerical
solution of some famous ordinary differential equations of
Lane-Emden type.

II. OUT OF PAPER

Recently, many analytical methods have been used to solve
Lane-Emden equations. The main difficulty arises in the sin-
gularity of the equations at x = 0. Currently, most techniques
which were used in handling the Lane-Emden-type problems
are based on either series solutions or perturbation techniques.

Bender et al. [3] proposed a new perturbation technique
based on an artificial parameter δ, the method is often called
δ-method.

Mandelzweig et al. [39] used the quasilinearization ap-
proach to solve the standard Lane-Emden equation. This
method approximates the solution of a nonlinear differential
equation by treating the nonlinear terms as a perturbation about
the linear ones, and unlike perturbation theories is not based
on the existence of some small parameters.

Shawagfeh [54] applied a nonperturbative approximate an-
alytical solution for the Lane-Emden equation using the Ado-
mian decomposition method. His solution was in the form of
a power series. He used Padé approximants method [15], [17]
to accelerate the convergence of the power series.

In [58], Wazwaz employed the Adomian decomposition
method [18], [22] with an alternate framework designed to
overcome the difficulty of the singular point. It was applied to
the differential equations of Lane-Emden type. Further author
of [59] used the modified decomposition method for solving
the analytical treatment of nonlinear differential equations such
as the Lane-Emden equation.

Liao [37] provided an analytical algorithm for Lane-Emden
type equations. This algorithm logically contains the well-
known Adomian decomposition method. Different from all
other analytical techniques, this algorithm itself provides us
with a convenient way to adjust convergence regions even
without Padé technique.

J.-H He [31] employed Ritz’s method to obtain an analyt-
ical solution of the problem. By the semi-inverse method, a
variational principle is obtained for the Lane-Emden equation
which can gave much numerical convenience when applied to
finite element methods or Ritz methods.

Parand et al. [42], [43], [46] presented two numerical
techniques to solve higher ordinary differential equations such
as Lane-Emden. Their approach was based on the rational
Chebyshev and rational Legendre tau methods.

Ramos [47]–[50] solved Lane-Emden equations through
different methods. Author of [48] presented the linearization
method for singular initial-value problems in second-order
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ordinary differential equations such as Lane-Emden. These
methods result in linear constant-coefficients ordinary differ-
ential equations which can be integrated analytically, thus
yielding piecewise analytical solutions and globally smooth
solutions. Later this author [50] developed piecewise-adaptive
decomposition methods for the solution of nonlinear ordi-
nary differential equations. In [49], series solutions of the
Lane-Emden type equation have been obtained by writing
this equation as a Volterra integral equation and assuming
that the nonlinearities are sufficiently differentiable. These
series solutions have been obtained by either working with
the original differential equation or transforming it into an
ordinary differential equation that does not contain the first-
order derivatives. Series solutions to the Lane-Emden type
equation have also been obtained by working directly on the
original differential equation or transforming it into a simpler
one.

Yousefi [61] presented a numerical method for solving the
Lane-Emden equations. He converted Lane-Emden equations
to integral equations, using integral operator, and then he
applied Legendre wavelet approximations.

Bataineh et al. [2] presented an algorithm based on homo-
topy analysis method (HAM) [14] to obtain the exact and/or
approximate analytical solutions of the singular IVPs of the
Emden-Fowler type equation.

In [10], Chowdhury et al. presented an algorithm based on
the homotopy-perturbation method (HPM) [16], [52], [53] to
solve singular IVPs of time-independent equations.

Aslanov [1] introduced a further development in the Ado-
mian decomposition method to overcome the difficulty at
the singular point of non-homogeneous, linear and non-linear
Lane-Emden-like equations.

Dehghan and Shakeri [19] applied an exponential transfor-
mation to the Lane-Emden type equations to overcome the
difficulty of a singular point at x = 0 and solved the resulting
nonsingular problem by the variational iteration method [20],
[21].

Yildirim et al. [60] presented approximate-exact solutions
of a class of Lane-Emden type singular IVPs problems, by
the variational iteration method.

Marzban et al. [40] used a method based upon hybrid
function approximations. They used the properties of hybrid of
block-pulse functions and Lagrange interpolating polynomials
together for solving the nonlinear second-order initial value
problems and the Lane-Emden equation.

Recently, Singh et al. [56] provided an efficient analytic
algorithm for Lane-Emden type equations using modified
homotopy analysis method, also they used some well-known
Lane-Emden type equations as test examples.

We refer the interested reader to [35], [36] for analysis of the
Lane-Emden equation based on the Lie symmetry approach.

III. SECOND DERIVATIVE MULTISTEP METHOD

In this section, we detail the properties of a second deriva-
tive multistep method (SDMM), that has introduced by Hojjati
et. al [32]. Consider the stiff initial value problem

y′(x) = f(x, y(x)), y(a) = y0, (3)

on the finite interval I = [a, b]. Let Δ = {a = x0 < x1 <
· · · < xn = b} be a partition of [a, b] with step size h, that is

xi+1 − xi = h, i = 0, · · · , n− 1.

In (3), y : [x0, xN ] → R
m and f : [x0, xN ]× R

m → R
m are

continuous.
A potentially good numerical method for the solution of stiff

systems of ODEs must have good accuracy and some reason-
ably wide region of absolute stability. A-stability requirement
puts a severe limitation on the choice of a suitable methods
for stiff problems. One of the main directions of search for
higher order A-stable multistep methods is using high order
derivatives of the solutions. By applying second derivative of
solution in algorithm of linear multistep methods, a new class
of methods has been introduced. These methods are known as
second derivative multistep methods (SDMM).

The general SDMM can be written in the form
k∑

j=0

αjyn+j = h

k∑
j=0

βjfn+j + h2
k∑

j=0

γjgn+j

where αj , βj , γj are parameters to be determined and gn+j =

f
(1)

n+j .
The new SDMM, takes the following general form
k∑

j=0

α̂jyn+j = hβ̂kfn+k + h2(γ̂kgn+k − γ̂k+1gn+k+1), (4)

where α̂k = 1 and the other coefficients are chosen so that
equation (4) has order k+2. The coefficients of k-step methods
of class (4) are given in [32]. This method has equipped by
super-future point technique (using yn+k+1) and uses second
derivative of solutions. Assuming that the solution values
yn, yn+1, . . . , yn+k−1 are available, the way in which (4) is
used in practice is applying the predictor that has following
form

k∑
j=0

αjyn+j = hβkfn+k + h2γkgn+k, (5)

where αk = 1 and the other coefficients are chosen so that
equation (5) has order k+1. The coefficients of k-step methods
of class (5) are given in [32].
The SDMM approach [32] goes as follows:

Step 1. Use the predictor (5) to compute the first predictor
ȳn+k, assuming that approximate solutions yn+j have been
computed at xn+j , for 0 ≤ j ≤ k − 1,

ȳn+k +
∑k−1

j=0
αjyn+j = hβkf(xn+k, ȳn+k)

+h2γkg(xn+k, ȳn+k).

Step 2. Use the predictor (5) to compute the second predictor
ȳn+k+1,

ȳn+k+1 +ᾱk−1yn+k +
∑k−2

j=0
αjyn+j =

hβkf(xn+k+1, ȳn+k+1) + h2γkg(xn+k+1, ȳn+k+1).

Step 3. Evaluate ḡn+k+1 = g(xn+k+1, ȳn+k+1).
Step 4. Compute yn+k as the solution of

k∑
j=0

α̂jyn+j = hβ̂kfn+k + h2(γ̂kgn+k − γ̂k+1ḡn+k+1).
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TABLE I
A(α)-STABILITY OF NEW SDMM

k p α k p α
1 3 90◦ 7 9 85.3◦
2 4 90◦ 8 10 80.5◦
3 5 90◦ 9 11 73.5◦
4 6 90◦ 10 12 61.9◦
5 7 89.8◦ 11 13 50.3◦
6 8 88.3◦ 12 14 29.9◦

The method is a k-step method of order k + 2. It is A-
stable up to order 6. The corresponding (approximate) regions
of A(α)-stability are given in Table I. For more details see
[32].

IV. NUMERICAL RESULTS

In this section, we apply the new SDMM for numerical
solution of some ordinary differential equations of Lane-
Emden type. In general, the Lane-Emden type equations are
formulated as

y′′(x) +
α

x
y(x) + f(x)g(y) = h(x), αx ≥ 0, (6)

with initial conditions

a. y(0) = A,

b. y′(0) = B, (7)

where α, A and B are real constants and f(x), g(y) and h(x)
are some given functions. For other special forms of g(y),
the well-known Lane-Emden equations were used to model
several phenomena in mathematical physics and astrophysics
such as the theory of stellar structure, the thermal behavior of a
spherical cloud of gas, isothermal gas spheres and the theory of
thermionic currents [9], [51]. Here we consider various f(x),
g(y), A and B, in two cases homogeneous (h(x) = 0) and
non-homogeneous (h(x) �= 0).

A possible way of solving problem near x = 0 is to find a
series solution y = 1 + a2x

2 + a4x
4 + · · · . Substitution this

into the equation the coefficients can be found in turn. This
series will work if x is small enough. When we have enough
values for x > 0, we start off an ordinary initial value solver.

Example 1. (The standard Lane-Emden equation)
For f(x) = 1, g(y) = ym, A = 1 and B = 0, Eq. (6) is the
standard Lane-Emden equation that was used to model the
thermal behavior of a spherical cloud of gas acting under the
mutual attraction of its molecules and subject to the classical
laws of thermodynamics [13], [54].

y′′(x) +
2

x
y′(x) + ym(x) = 0, x ≥ 0, (8)

subject to the initial conditions

y(0) = 1,

y′(0) = 0,

TABLE II
COMPARISON THE FIRST ZERO OF y, BETWEEN BENDER AND PRESENT

METHOD FOR m = 2, 3, 4

m Present method Bender Exact value

2 4.3528 4.3603 4.35287460
3 6.8960 7.0521 6.89684862
4 14.9710 17.967 14.9715463

TABLE III
APPROXIMATION OF y(x) FOR m = 3 USING PRESENT METHOD

x Present method Horedt

0.5 0.959839069882982 0.959839
1.0 0.855057568546280 0.855058
5.0 0.110819835159975 0.110820
6.0 0.043737983910256 0.043738

6.896 0.000036011165997 0.000036

0 1 2 3 4 5 6
−0.2
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0.4

0.6

0.8
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m=4
m=5

Fig. 1. The results of Ex. 1

where m ≥ 0 is constant. Substituting m = 0, 1 and 5 into
Eq. (8) leads to the exact solution

y(x) = 1− 1

3!
x2,

y(x) = sin(x)
x ,

y(x) =
(
1 + x2

3

)−1/2

,

respectively. In other cases there aren’t any analytic exact
solutions. We apply the SDMM to solve the standard Lane-
Emden Eq. (8) for m = 2, 3, 4 and 5. In Table II, we we
calculate the first zero of y of the Lane-Emden equation in the
cases m = 2, 3, 4 and compare it with the results of Bender
[3].

In Table III, the approximation values of y obtained from
SDMM are compared with the results of Horedt [33].

In Fig. 1, we plot the results of applying SDMM on Lane-
Emden equation in the cases m = 2, 3, 4, 5.

Example 2. The white-dwarf equation
In this model we consider the “white-dwarf ” equation

y′′ +
2

x
y′ + (y2 − C)3/2 = 0, (9)

introduced by Davis [13] and Chandrasekhar [9] in his study
of the gravitational potential of the degenerate white-dwarf
stars. The initial conditions of (9) are

y(0) = 1, y′(0) = 0.
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Fig. 2. The results of Ex. 2

It is clear that (9) is of Lane-Emden type where f(y) = (y2−
C)3/2. If C = 0, (9) reduces to Lane-Emden equation of index
m = 3. Fig. 2 shows the approximation plot of y(x) for few
values of C.

Example 3. For f(x) = 1, g(y) = 4(2ey+ey/2), A = 0 and
B = 0, Eq. (6) will be one of the Lane-Emden type equations
that is to solve.

y′′(x) +
2

x
y′(x) + 4(2ey + ey/2) = 0, x ≥ 0, (10)

subject to the initial conditions

y(0) = 0,

y′(0) = 0,

which has the following analytical solution:

y(x) = −2 ln(1 + x2). (11)

We solved this problem by using SDMM and reported the
results in Table IV.

TABLE IV
THE RESULTS OF EX. 3

x Exact solution Present method Absolute Error
0.25 -1.21249243632870E-1 -1.21249243632901E-1 3.09E-14
0.50 -4.46287102628420E-1 -4.46287102628442E-1 2.29E-14
0.75 -8.92574205256839E-1 -8.92574205256853E-1 1.42E-14
1.00 -1.38629436111989E+0 -1.38629436111990E+0 6.88E-15

Example 4. For f(x) = 1, g(y) = −6y − 4y ln(y), A = 1
and B = 0, Eq. (6) will be one of the Lane-Emden type
equations that is:

y′′(x) +
2

x
y′(x)− 6y(x) = 4y(x) ln(y(x)), x ≥ 0, (12)

subject to the initial conditions

y(0) = 1,

y′(0) = 0,

which has the following analytical solution:

y(x) = ex
2

. (13)

The obtained results of applying SDMM to this problem are
reported in Table V.

TABLE V
THE RESULTS OF EX. 4

x Exact solution Present method Absolute Error
0.25 1.06449445891786E+0 1.06449445891767E+0 1.84E-13
0.50 1.28402541668774E+0 1.28402541668749E+0 2.48E-13
0.75 1.75505465696030E+0 1.75505465695991E+0 3.92E-13
1.00 2.71828182845904E+0 2.71828182845834E+0 7.09E-13

Example 5. For f(x) = −2(2x2 + 3), g(y) = y, A = 1 and
B = 0, Eq. (6) will be one of the Lane-Emden type equations that
is

y′′(x) +
2

x
y′(x)− 2(2x2 + 3)y = 0, x ≥ 0, (14)

subject to the boundary conditions

y(0) = 1,

y′(0) = 0,

which has the following analytical solution:

y(x) = ex
2

. (15)

We apply SDMM to solve the equation (14) and report the results in
Table VI.

TABLE VI
THE RESULTS OF EX. 5

x Exact solution Present method Absolute Error
0.25 1.06449445891786E+0 1.06449445891768E+0 1.77E-13
0.50 1.28402541668774E+0 1.28402541668753E+0 2.14E-13
0.75 1.75505465696030E+0 1.75505465696000E+0 2.93E-13
1.00 2.71828182845904E+0 2.71828182845859E+0 4.54E-13

V. CONCLUSION

We applied an efficient class of methods for solving Lane-Emden
type equations. The singularity of the equations at x = 0 causes that
in beginning of the integration interval we deal with a stiff problem.
Stability properties of the mentioned methods let us to overcome this
difficulty and get reasonable results.
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