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Abstract—The reliability of distributed systems and computer 

networks have been modeled by a probabilistic network or a graph G. 
Computing the residual connectedness reliability (RCR), denoted by 
R(G), under the node fault model is very useful, but is an NP−hard 
problem. Since it may need exponential time of the network size to 
compute the exact value of R(G), it is important to calculate its tight 
approximate value, especially its lower bound, at a moderate 
calculation time. In this paper, we propose an efficient algorithm for 
reliability lower bound of distributed systems with unreliable nodes. 
We also applied our algorithm to several typical classes of networks 
to evaluate the lower bounds and show the effectiveness of our 
algorithm.  
 

Keywords—Distributed systems, probabilistic network, residual 
connectedness reliability, lower bound.  

I. INTRODUCTION 
HE reliability of distributed systems and computer 
networks have been modeled by a probabilistic network 

or a graph G whose nodes and/or edges may fail [1]. The 
ability of the communication between the residual (remaining 
working) nodes is measured by RCR R(G), which is the 
probability that the residual nodes can communicate with each 
other [2]−[5]. 

Generally, there are three kinds of fault models in a 
probabilistic network [1]:  

• Node fault model: The edges of a graph are perfectly 
reliable, but the nodes fail independently with certain 
probabilities. 

• Edge fault model: The nodes of a graph are perfectly 
reliable, but the edges fail independently with certain 
probabilities. 

• Node-and-edge fault model: Nodes and edges of a graph 
fail independently of each other, with certain node and 
edge failure probabilities. 

For all these three fault models, it has been shown that the 
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analysis problems are all NP−hard [1], [5]−[7]; that is, there 
exists no efficient algorithms for computing R(G).   

There are quite a number of papers dealing with 
approximation algorithms for estimating R(G) under the node 
fault model [8]-[10]. Colbourn [8] proposed a polynomial 
algorithm of certain restricted classes of graphs, including 
trees, series-parallel graphs, and permutation graphs. He and 
Chen [9] developed efficient algorithms of arbitrary graphs, 
and bound expressions for estimating R(G). They 
demonstrated theoretically and numerically that the difference 
between the upper and the lower bounds gradually tends to 
zero as the number of nodes tends to infinity under the 
condition that the node failure probability is reasonably low, 
e.g., less than 0.1. He, Tian and Chen [10] presented a new 
approach that combines a Monte Carlo simulation scheme and 
the deterministic bounding approach in [9] to obtain a 
probabilistic point estimator for R(G). Unfortunately, the 
complexity of the algorithms in [9] is highly polynomial since 
the entire operational time complexity for the lower bound is 
O(n5). 

In this paper, we present a new approach with efficient 
algorithm for evaluating the reliability lower bound of 
distributed systems with unreliable nodes. Our algorithm for 
the lower bound is faster than the proposed algorithm by He 
and Chen [9], and calculated in { }( )3min ,O n n nκ κ κ+  time, 

where n and κ are the order and the vertex connectivity of G, 
respectively. The new lower bound is also tighter than the 
lower bound in [9]. 

II. ACRONYMS AND NOTATIONS 
DS  Distributed System 
RCR  Residual Connectedness Reliability 
LB  Lower Bound 
NF  Node Fault 
G   graph 
R(G) residual connectedness reliability of G 
n   number of nodes in G 
q   node failure probability 

( )R G  lower bound of G 

III. METHOD 
Formally, the RCR, R(G), of a probabilistic graph G is the 

probability that the residual subgraph is connected, or all the 
operating nodes of the DS can communicate with each other. 
We thus have the following definition:  
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R(G)=Pr{the subgraph induced by the residual nodes of G 
is connected},                  (1) 

where Pr{A} stands for the probability of random event A. 
Suppose that each node fails with the same probability q, 
formula (1) can be rewritten as 

( ) ( ) ( )
0

1
n

in i
i

i
R G F G q q−

=

= −∑ ,                    (2) 

where ( )iF G is the number of connected subgraphs induced 
by i residual nodes of G. 

Our approach of obtaining the LB is directly based on 
formula (1), the original definition of the R(G). Without loss 
of generality, we assume that graph G is connected initially 
and its node set is V = {v1, …, vn}. 

To derive the LB of R(G), we need the following 
definitions: 

The vertex connectivity of a graph G, denoted byκ , is the 
smallest number of vertices whose deletion separates the 
graph or makes it trivial. 

The maximum degree of a graph G, denoted by Δ , is the 
maximum degree of its vertices. 

Then the LB of R(G) is given in Theorem 1. 
Theorem 1: Let G be a graph with order n, node failure 

probability q, maximum degree Δ and vertex connectivityκ . 
Then the lower bound of R(G) is 

( ) ( ) ( ) ( )
2

1  1
r r i i

i

R G r i q qκ κ−

=

≥ − + −∑ ,                 (3) 

where  ( ) ( ) 1 3
11

1 2 1nn
r n κ κκ

κ

Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎛ ⎞⎛ ⎞−⎡ ⎤

= − Δ + + +⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠
   (4) 

 
Proof: Let g be a path graph with order r and node failure 

probability qκ . Then 

( ) ( ) ( ) ( )
2

1  1
r r i i

i
R g r i q qκ κ−

=

= − + −∑  ,                (5) 

where r is defined in (4). 
Let ( )GΛ and ( )gΛ are the max numbers of minimum 

vertex cuts in G and g, respectively.  
Then, we can obtain from (4) that: 

( ) 22
1

rg r
r

⎛ − ⎞⎡ ⎤Λ = − ⎜ ⎟⎢ ⎥−⎢ ⎥⎝ ⎠
 

and  
( ) ( )G gΛ ≤ Λ  

Since G and g have the same node connectivity probability 
qκ , and all minimum cuts of g are disjointed, then 

( ) ( )R G R g≥ . 
This leads to the proof of the theorem; that is: 

( ) ( ) ( ) ( )
2

1  1
r r i i

i

R G r i q qκ κ−

=

≥ − + −∑ . 

IV. ALGORITHM 
Before we derive the algorithm, we need to first find the 

vertex connectivity κ of G, using the proposed algorithm by 
Henzinger, Rao and Gabo [11]. Then the LB ( )R G of 

( )R G is obtained by the following algorithm. 
 
ALGORITHM: LOWER−BOUND 
Input   : Probabilistic graph , , , G q κΔ  
Output: ( )R G /* ( )R G according to Theorem 1*/ 

1 : ( ) ( ) 1 3
11

1 2 1nn
r n κ κκ

κ

Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎛ ⎞⎛ ⎞−⎡ ⎤

← − Δ + + +⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠
 

2 : ( ) 0R G ←  
3 : for i ← 2 to r 

4 :      do ( ) ( ) ( ) ( ) ( )( )1  1
r i i

R G R G r i q qκ κ−
← + − + −  

5 : return ( )R G  

V. COMPLEXITY 
The main computational process for obtaining the LB of 

R(G) is to find the vertex connectivity κ of G. This procedure 
can be done in time { }( )3min ,O n n nκ κ κ+ , using the 

proposed algorithm by Henzinger, Rao and Gabo [11], while 
the calculation of the bound value, taken directly from 
Theorem 1, can be done in time O(n2). Thus the complete 
algorithm for the LB takes { }( )3min ,O n n nκ κ κ+  

operations. 

VI. COMPUTATIONAL RESULTS AND DISCUSSION 
In order to show the efficiency of our algorithm, we apply 

our method to some typical classes of graphs, for example:  
• Order n path Pn, 
• Star graph Sn,  
• Circle graph Cn, 
• p−dimension hypercube Qp, and 
• Harary graph Hk,n. 
To computationally examine the effectiveness and the 

efficiency of our LB five sets of typical graphs were used (see 
Tables I−V). When compared to the proposed LB by He and 
Chen [9], in each instance our LB was tighter (see Tables 
I−V). 

For computing their LB, He and Chen [9] need to obtain as 
many short paths between each pair of non-adjacent nodes as 
possible. If Dijkstra’s shortest algorithm is employed, which is 
O(n2)-complex, to find the shortest path one after another. 
Since there are at most n−1 disjointed paths between each pair 
of nodes and n(n−1)/2 pairs of nonadjacent nodes resulting at 
most n3 paths. Thus the complexity of their LB is O(n5). This 
analysis shows that their algorithm for computing LB is highly 
polynomial. 
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TABLE I 
LOWER BOUNDS FOR nP  

 q  n  New  LB  LB by [9] 

11 10×  0.043458 0 
21 10×  0.739851 0.697072 

52  

31 10×  0.970433 0.969971 
21 10×  0.07788 0 
31 10×  0.775595 0.745747 

82  

41 10×  0.974919 0.974597 
31 10×  0.359691 0 
41 10×  0.902844 0.89779 

102  

51 10×  0.989832 0.98978 

 
 

TABLE II 
LOWER BOUNDS FOR nS  

 q  n  New  LB  LB by [9] 

11 10×  0.891 0 
21 10×  0.989901 0 

52  

31 10×  0.998999 0.535 
21 10×  0.989901 0 
31 10×  0.998999 0 

82  

41 10×  0.9999 0 
31 10×  0.998999 0 
41 10×  0.9999 0 

102  

51 10×  0.99999 0 

 
 

TABLE III 
LOWER BOUNDS FOR nC  

 q  n  New  LB  LB by [9] 

11 10×  0.005943 0 
21 10×  0.950276 0.676768 

52  

31 10×  0.99949 0.967968 
21 10×  0.03775 0 
31 10×  0.967765 0.743744 

82  

41 10×  0.999672 0.974397 
31 10×  0.591978 0 
41 10×  0.994771 0.89759 

102  

51 10×  0.999948 0.98976 

 
 

TABLE IV 
LOWER BOUNDS FOR 5Q  

q New  LB LB by [9] 

0.1 0.992736 0.967696 
0.08 0.997614 0.988708 
0.06 0.999433 0.997137 
0.04 0.999925 0.999596 
0.02 0.999998 0.999986 

TABLE V 
LOWER BOUNDS FOR 4,16H  

q New  LB LB by [9] 

0.1 0.98452 0 
0.08 0.99363 0.240162 
0.06 0.99798 0.564867 
0.04 0.999601 0.802995 
0.02 0.999975 0.949799 

 
 

As a result, our algorithm for computing the LB for 
reliability R(G) of distributed systems with unreliable nodes is 
faster than the proposed algorithm by He and Chen [9], and 
the new LB is also tighter. 

VII. CONCLUSION 
In this paper, we presented a new approach with efficient 

algorithm for evaluating the reliability lower bound of 
distributed systems with unreliable nodes. We have applied 
our algorithm to several typical classes of graphs (networks) 
to show the efficiency of the algorithm. Our approach 
produces a good evaluation for RCR that can be used in 
general study in graphs and computer networks. 
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