
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1327

Abstract—Program slicing is the task of finding all statements in

a program that directly or indirectly influence the value of a variable
occurrence. The set of statements that can affect the value of a
variable at some point in a program is called a program backward
slice. In several software engineering applications, such as program
debugging and measuring program cohesion and parallelism, several
slices are computed at different program points. The existing
algorithms for computing program slices are introduced to compute a
slice at a program point. In these algorithms, the program, or the
model that represents the program, is traversed completely or
partially once. To compute more than one slice, the same algorithm
is applied for every point of interest in the program. Thus, the same
program, or program representation, is traversed several times.

In this paper, an algorithm is introduced to compute all forward
static slices of a computer program by traversing the program
representation graph once. Therefore, the introduced algorithm is
useful for software engineering applications that require computing
program slices at different points of a program. The program
representation graph used in this paper is called Program Dependence
Graph (PDG).

Keywords—Program slicing, static slicing, forward slicing,
program dependence graph (PDG).

I. INTRODUCTION
T a program point p and a variable x, the slice of a
program consists of all statements and predicates of the

program that might affect the value of x at point p. Program
slicing can be static or dynamic. In the static program slicing
(e.g., [1]), it is required to find a program slice that involves
all statements that may affect the value of a variable at a
program point for any input set. In dynamic program slicing
(e.g., [2]), the slice is found with respect to a given input set.
Many algorithms have been introduced to find static and
dynamic slices. These algorithms compute the slices
automatically by analyzing the program data flow and control
flow. Computing slices of a given procedure is called intra-
procedural slicing [1]. Computing slices of a multi-procedure
program is called inter-procedural slicing [3]. This paper
focuses on computing intra-procedural static slices.

The basic algorithms for computing static intra-procedural
slices follow three main approaches. The first approach uses

Jehad Al Dallal is with Department of Information Sciences, Kuwait
University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

data flow equations (e.g., [1], [4]), the second approach uses
information-flow relations (e.g., [5]), and the third approach
uses program dependence graphs (e.g., [6]). Dependency
graph-based slicing algorithms are in general more efficient
than the algorithms that use data flow equations or
information-flow relations [7].

Depending on the slicing purpose, slicing can be backward
or forward [3]. In backward slicing, it is required to find the
set of statements that may affect the value of a variable at
some point in a program. This can be obtained by walking
backwards over the PDG to find all the nodes that affect the
value of a variable at the point of interest. In the forward
slicing, it is required to find the set of statements that may be
affected by the value of a variable at some point in a program.
This can be obtained by walking forward over the PDG to find
all the nodes that can be affected by the value of the variable.
In this paper, we are interested in forward slicing.

Program slicing is used in several software engineering
applications including, program debugging [8], regression
testing [9], maintenance [10], integration [11], and measuring
program cohesion and parallelization [12]. Some of these
applications such as program debugging, regression testing,
and measuring program cohesion and parallelization require
computing slices at different program points.

In program debugging, when an error is detected, it is
required to slice the statements that can affect the program
point at which the error is detected. In a typical programming,
several errors are detected in each module in the system.
Therefore, several slices at different points have to be
calculated.

In regression testing, it is required to check that the
modifications performed on the system have not caused
unintended effects. Each modification might require changes
at different program points and it is required to test the slices
computed at each of these program points.

Different algorithms that use program slicing are introduced
to measure the cohesion of a module in a program. Weiser [1]
suggests computing slices for each variable at all program
output statements. Longworth [13] suggests computing a slice
for each variable in the module. Finally, Ott and Thuss [12]
suggest computing a slice for each output variable in the
module. The computed slices are used to find different
metrics, including cohesion and parallelism. As a result, to
compute the cohesion and parallelism of a module, it is
required to compute several slices of the module.

The above program slicing applications are considered

Jehad Al Dallal

An Efficient Algorithm for Computing all
Program Forward Static Slices

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1328

important in the software development process, and therefore,
they need an efficient slicing algorithm to speed them up.
Unfortunately, no special algorithm has been introduced in the
literature to serve the above program slicing applications. In
this case, the same single-point-based slicing algorithms have
to be applied several times, and as a result, the dependency
graph has to be traversed several times. This introduces the
need for a slicing algorithm that computes all the required
slices in a more efficient way.

In this paper, an algorithm is introduced to compute all
possible static intra-procedural slices of a program. The
algorithm requires walking forward over the PDG only once.

The paper is organized as follows. Section II overviews the
program dependence graph. In Section III, the algorithm for
computing all static forward slices is introduced. Section IV
illustrates how to apply the algorithm using an example.
Finally, Section V provides conclusions and a discussion of
future work.

II. THE PROGRAM DEPENDENCE GRAPH
The program dependence graph (PDG) consists of nodes

and direct edges. Each program's simple statement and control
predicate is represented by a node. Simple statements include
assignment, read, and write statements. Compound statements
include conditional and loop statements and they are
represented by more than one node. There are two types of
edges in a PDG: data dependence edges and control
dependence edges. A data dependence edge between two
nodes implies that the computation performed at the node
pointed by the edge directly depends on the value computed at
the other node. This means that the pointed node has the
definition of the variable used in the other node. A control
dependence edge between two nodes implies that the result of
the predicate expression at the node pointed by the edge
decides whether to execute the other node or not. Fig 1 shows
a C function example. The function computes the sum,
average, and product of numbers from 1 to n where n is an
integer value greater than or equal to 1. Fig 2 shows the PDG
of the C function example given in Fig 1. The number
associated with each PDG node is called node identifier. For
the sake of simplicity, in this paper, the node identifier
indicates the line numbers of the statements that are
represented by the node. Solid and doted direct edges
represent the control and data dependency edges, respectively.

Fig. 1 C function example

Fig. 2 PDG of the C function example given in Fig. 1

Using the PDG shown in Fig. 2, we can obtain the forward

slices. For example, to obtain the forward slice of variable i at
line 5 of the C function given in Fig. 1, we first add the node
that represents line 5 to the slice. This implies adding lines 5
and 9 to the slice. Then, we traverse the outgoing edges from
node 5 forward and add lines represented by the nodes
attached to the outgoing edges to the slice. This results in
adding lines 6, 7, and 8 to the slice. The same process is
performed for the nodes that represent the added lines of code
until we reach nodes with no outgoing edges. As a result, the
forward slice calculated for variable i at line 5 contains the C
function lines of code numbered 5, 6, 7, 8, 9, and 10.

III. COMPUTING ALL FORWARD STATIC SLICES ALGORITHM
The algorithm for computing all intra-procedural static

slices of a module is given in Fig. 3 and named
ComputeAllForwardSlices algorithm. Each node in the PDG
is associated with an empty set before applying the algorithm.
After the algorithm is applied, the set associated with a node n
consists of the lines of code included in the slice computed at
node n. The algorithm builds the set associated with each node
in the PDG incrementally as the function called
ComputeAFSlice is applied recursively. The ComputeAFSlice

1 void NumberAttributes(int n, int &sum,
 double &avg, int &product) {
2 int i=1;
3 sum=0;
4 product=1;
5 while (i<=n) {
6 sum=sum+i;
7 product=product*i;
8 i=i+1;
9 }
10 avg=static_cast<double>(sum)/n;
11 }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1329

function takes a node n as an argument. If the node is not
visited yet, the node is marked visited, the node identifier is
added to the set associated with node n, and all outgoing
edges form node n are traversed forwards. If an outgoing edge
is attached to a visited node v, the node identifiers included in
the set associated with node v are added to the set associated
with node n. Otherwise, if the outgoing edge is attached to a
node m not yet visited, node m is passed as an argument to the
ComputeAFSlice function. The function finds the set of nodes
included in the forward slice computed at node m. After that,
the node identifiers included in the set associated with node m
are added to the set associated with node n.

The algorithm requires performing three necessary
preparations before applying the ComputeAFSlice function as
follows.

Fig. 3 The ComputeAllForwardSlices algorithm

1. Combining all nodes contained in each cycle in the PDG

in one node. Having a cycle between two or more nodes
in the PDG implies that each of the nodes depends
directly or indirectly on the other nodes in the cycle. This
results in having same slice contents for each of the nodes
in the cycle. Therefore, combining the nodes in a graph
cycle in one node does not change the slicing results.
However, having cycles in the graph leads to an infinite
recursion when ComputeAFSlice function is applied.
Combining nodes in a cycle is performed by replacing the
nodes by a new node. All incoming edges to each of the
combined nodes are redirected to be incoming edges to
the new node. Similarly, all outgoing edges from each of

the combined nodes are redirected to be outgoing edges
from the new node. Finally, any resulting self-loop edge
is removed because such an edge is not considered when
computing program slices. In the PDG given in Fig. 2, the
two nodes that represent lines 5, 8, and 9 are contained in
a cycle. Therefore, as shown in Fig. 4, the two nodes are
replaced by the node labeled 5,8,9. All incoming edges to
the nodes that represent lines 5, 8, and 9 are redirected to
be incoming edges to the new node. All outgoing edges
from the nodes that represent lines 5, 8, and 9 are
redirected to be outgoing edges from the new node. This
results in having two self-loop edges linked to the new
node, and these edges are removed.

2. Associating an empty set with each node in the PDG.
When the algorithm is applied, the set associated with
each node contains the identifiers of the nodes that
represent the program forward slice at the program point
represented by the node.

3. Marking all nodes in the PDG as not visited. After
applying the ComputeAllForwardSlices algorithm and
computing all forward slices, all nodes are marked
visited.

Fig. 4 The PDG prepared for applying the ComputeAllForwardSlices

algorithm. The PDG is derived from the PDG given in Fig. 2

ComputeAllForwardSlices algorithm ensures that each edge is
not traversed more than once by marking a traversed node as
visited. Nodes are initially marked as not visited. Whenever a
node is passed as an argument to ComputeAFSlice function, it
is checked whether it is marked previously as visited. If the
node is not previously marked as visited, ComputeAFSlice
function marks the node as visited and traverses all the
outgoing edges from the node. If the node is previously
marked as visited, the ComputeAFSlice function is terminates
without traversing the outgoing edges. As a result, the
outgoing edges of any node are traversed once when the node
is first passed as an argument to the ComputeAFSlice function.
Therefore, when the ComputeAllForwardSlices algorithm is
applied, no edges are traversed more than once.

Input: A PDG that has a single entry node, an
empty set of node identifiers associated with each
node, and all nodes contained in a cycle are
combined in one node.
Output: The PDG that each of its nodes is
associated with a set of identifiers of certain nodes.
These certain nodes represent the lines of code
contained in the computed forward slice.
Algorithm:

1. Mark all PDG nodes as not visited
2. ComputeAFSlice(entry node)

ComputeAFSlice(node n) {
 if node n is not visited
 Mark node n as visited

 Add the identifier of node n to the set
associated with node n

 for each node m that depends directly
 on node n do

ComputeAFSlice(m)
Add the contents of the set associated
with node m to the set associated with
node n

}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1330

IV. EXAMPLE
For example, a forward slice is to be computed at each line

in the C function given in Fig. 1. Fig. 4 shows the updated
PDG as discussed in Section III. To compute the forward
static slices, ComputeAllForwardSlices algorithm is applied
and node 1 is passed as an argument to CompueAFSlice
function. Since node 1 is initially marked as not visited, its
marked now as visited and the node identifier “1,11” is added
to the slice set of node 1. Nodes 2,3, 4, 10, and 5,8,9 are
linked by direct edges to node 1, and therefore,
ComputeAFSlice function is applied to each of these five
nodes. After computing their forward slices by recursively
applying ComputeAFSlice function, the set of identifiers
associated with each of the five nodes is added to the set of
identifiers associated with node 1. The resulting contents of
sets of identifiers associated with each of the PDG nodes are
listed in Table I. These contents are computed using the
ComputeAllForwardSlices function.

TABLE I

THE SLICE CONTENTS COMPUTED FOR EACH LINE OF CODE OF THE FUNCTION
GIVEN IN FIG. 1. THE CONTENTS OF THE SLICES ARE COMPUTED USING

COMPUTEALLFORWARDSLICES ALGORITHM

V. CONCLUSIONS AND FUTURE WORK
In this paper, an algorithm is introduced to compute all

static forward slices of a program by traversing the PDG that
represents the program once. The algorithm uses a recursive
function to incrementally compute the slices as the PDG is
traversed. The algorithm is useful for software engineering
applications that require computing slices at different program
points. In this case, the PDG is traversed once to find all slices
instead of traversing the graph several times using other
algorithms. This introduced algorithm is limited to compute
forward slices for intra-procedural programs only.

In future, we plan to extend the algorithm to compute all
forward slices for inter-procedural programs. In addition, we
plan to extend the algorithm to compute all slices for object-
oriented programs. Finally, we plan to develop a prototype
tool and use it to compare the efficiency of our algorithm with
the efficiency of applying the single-point-based slicing
algorithms.

ACKNOWLEDGMENT
The authors would like to acknowledge the support of this

work by Kuwait University Research Grant WI04/04.

REFERENCES
[1] M. Weiser, Program slicing, IEEE Transactions on Software

Engineering, 1984, 10(4), pp. 352-357.
[2] B. Korel and J. Laski, Dynamic slicing of computer programs, The

Journal of Systems and Software, 1990, 13(3), pp. 187-195.
[3] S. Horwitz, T. Reps, and D. Binkley, Interprocedural slicing using

dependence graphs, ACM Transactions on Programming Languages and
Systems, 1990, 12(1), pp. 26-60.

[4] P. Hausler, Denotational program slicing, In Proceedings of the 22nd
Hawaii International Conference on System Sciences, Hawaii, 1989, pp.
486-494.

[5] J. Bergstar and B. Carre, Information-flow and data flow analysis of
while-programs, ACM Transactions on Programming Languages and
Systems, 7(1), 1985, pp. 37-61.

[6] K. Ottenstein and L. Ottenstein, The program dependence graph in
software development environment, In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, SIGPLAN Notices 19(6), 1984,
pp. 177-184.

[7] F. Tip, A survey of program slicing techniques, Technical Report: CS-
R9438, CWI (Centre for Mathematics and Computer Science),
Amsterdam, The Netherlands, 1994.

[8] M. Weiser, Programmers use slices when debugging, Communications
of the ACM, 1982, 25, pp. 446-452.

[9] R. Gupta, M. Harrold, and M. Soffa, An approach to regression testing
using slicing, Proceedings of the International Conference on Software
Maintenance, 1992, pp. 299-308.

[10] K. Gallagher and J. Lyle, Using program slicing in software
maintenance, IEEE Transactions on Software Engineering, 1991, 17(8),
pp. 751 – 761.

[11] S. Horwitz, J. Prins, and T. Reps, Integrating non-interfering versions of
programs, ACM Transactions on Programming Languages and Systems,
1989, 11(3), pp. 345-387.

[12] L. Ott and J. Thuss, Slice based metrics for estimating cohesion,
Proceedings of the IEEE-CS International Metrics Symposium, 1993,
pp. 78-81.

[13] H. Longworth, Slice based program metrics, Master’s thesis, Michigan
Technological University, 1985.

Line of
code

Slice contents

1 1,2,3,4,5,6,7,8,9,10,11
2 2,5,6,7,8,9,10
3 3,6,10
4 4,7
5 5,6,7,8,9,10
6 6,10
7 7
8 5,6,7,8,9,10
9 5,6,7,8,9,10
10 10

