
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1114

Abstract—The job shop scheduling problem (JSSP) is well known

as one of the most difficult combinatorial optimization problems. This
paper presents a hybrid genetic algorithm for the JSSP with the
objective of minimizing makespan. The efficiency of the genetic
algorithm is enhanced by integrating it with a local search method.
The chromosome representation of the problem is based on operations.
Schedules are constructed using a procedure that generates full active
schedules. In each generation, a local search heuristic based on
Nowicki and Smutnicki’s neighborhood is applied to improve the
solutions. The approach is tested on a set of standard instances taken
from the literature and compared with other approaches. The
computation results validate the effectiveness of the proposed
algorithm.

Keywords—Genetic algorithm, Job shop scheduling problem,
Local search, Meta-heuristic algorithm

I. INTRODUCTION

HE job shop scheduling problem (JSSP) is one of the most
difficult problems in combinatorial optimization that has

garnered considerable attention due to both its practical
importance and its solution complexity. Efficient methods for
solving the JSSP have significant effects on profitability and
product quality. During the last three decades, many solution
methods have been proposed to solve the JSSP. Those
approaches can be divided into two categories: exact methods
and approximation algorithms. Exact methods, such as branch
and bound, linear programming and decomposition methods,
guarantee global convergence and have been successful in
solving small instances. In manufacturing systems, most
scheduling problems are very complex in nature and very
complicated to be solved by exact methods to obtain a global
optimal schedule. For the big instances there is a need for
approximation algorithms, which include priority dispatch,
shifting bottleneck approach, local search, and heuristic
methods. Recently, using a high-level strategy to guide other
heuristics, known as meta-heuristics, led to better and more
appreciated results in a relatively short period. Therefore, a
number of meta-heuristics were proposed in literature for the
past two decades to deal with the JSSP such as genetic

Bin Cai is with the School of Software Engineering, Chongqing University,

Chongqing, 400030, China (*Corresponding author, phone:+862365127222;
fax:+862365678333; e-mail: caibin@cqu.edu.cn).

Shilong Wang is with the State Key Laboratory of Mechanical Transmission,
Chongqing University, Chongqing, 400030, China. (e-mail: slwang@cqu.
edu.cn).

Haibo Hu is with the School of Software Engineering, Chongqing
University, Chongqing, 400030, China (e-mail: hbhu@cqu. edu.cn).

algorithm (GA) [1]-[4], simulated annealing (SA) [5], taboo
search (TS) [6], greedy randomized adaptive search procedure
(GRASP) [7] etc. A comprehensive survey of job shop
scheduling techniques has been done by Jain and Meeran [8].

Among the meta-heuristic algorithms, GA has been used
with increasing frequency to address scheduling problems. The
GA is based on the survival of the fittest and involves some
selection, crossover and mutation operations. GA exhibits
parallelism, contains certain redundancy and historical
information of past solutions, and is suitable for
implementation on massively parallel architecture. As GA
became popular in the mid 1980s, many researchers started to
apply this meta-heuristic method to the JSSP. Yamada and
Nakano [1] designed a GA for solving the classical JSSP.
Kobayashi, Ono and Yamamura [4] designed another GA for
the classic problem, and reached solution with high quality.
Cheng, Gen and Tsujimura [9]-[10] provided a tutorial survey
of works on solving the classical JSSP using GA. Wang and
Zheng [11] developed a hybrid optimization strategy for JSSP.
Ombuki and Ventresca [12] proposed a local search genetic
algorithm to solve JSSP. Goncalves, Mendes and Resende [13]
developed another hybrid genetic algorithm for JSSP.

In this paper, an effective hybrid intelligent algorithm for
JSSP based on genetic algorithm and local search is presented.
The remainder of the paper is organized as follows. An
introduction for the job shop scheduling problem is given in
Section II. Detailed description of the proposed job shop
scheduling algorithm is presented in Section III. Section IV
discusses the experimental results. Finally, we summarize the
paper and present our future work in Section V.

II. JOB SHOP SCHEDULING PROBLEM

The problem studied in the paper is a deterministic and static
n-job, m-machine JSSP. In this problem, n jobs are to be
processed by m machines. Each job consists of a predetermined
sequence of task operations, each of which needs to be
processed without preemption for a given period of time on a
given machine. Tasks of the same job cannot be processed
concurrently and each job must visit each machine exactly once.
Each operation cannot be commenced until the processing is
completed, if the precedent operation is still being processed. A
schedule is an assignment of operations to time slots on the
machines. The makespan is the maximum completion time of
the jobs. The objective of the JSSP is to find a schedule that
minimizes the makespan.

Explaining the problem more specifically, let J={1, 2,..., n}
denote the set of jobs, M={1,2,…,m} represent the set of

Bin Cai*, Shilong Wang, and Haibo Hu

An Effective Hybrid Genetic Algorithm for Job
Shop Scheduling Problem

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1115

machines, and O={0, 1, 2, …, n×m, n×m+1} be the set of
operations to be scheduled, where 0 and n×m+1 represent the
dummy initial and final operations, respectively. The
operations are interrelated by the precedence constraints, which
force each operation j to be scheduled after all predecessor
operations Pj are completed. Moreover, operation j can only be
scheduled if the required machine is idle. Furthermore, let Tj
and Fj denote the fixed processing time and the finish time of
operation j, respectively. Let A(t) be the set of operations being
processed at time t, and let ejm=1 if operation j is required to
process on machine m (ejm=0 otherwise).

The conceptual model of the JSSP can be stated as [13]

1min mnF (1)

..ts
jjk TFF , 1,,2,1 mnj ;

jPk (2)

)(

1
tAj

jme , Mm ; 0t (3)

0jF , 1,,2,1 mnj . (4)

The objective function (1) minimizes the finish time of the
last operation, namely, the makespan. Constraint (2) imposes
the precedence relations between operations. Constraint (3)
represents that one machine can only process one operation at a
time, and constraint (4) forces the finish times to be
nonnegative.

III. HYBRID GENETIC ALGORITHM FOR JSSP

The GA simulates the biological processes that allow the
consecutive generations in a population to adapt to their
environment. The adaptation process is mainly applied through
genetic inheritance from parents to children and through
survival of the fittest. The GA object determines which
individuals should survive, which should reproduce, and which
should die. To successfully apply a GA to solve a problem one
needs to determine the following [14]:

1) The representation of possible solutions, or the chromo-
somal encoding;

2) The fitness function which accurately represents the value
of the solution;

3) Genetic operators (selection, crossover and mutation)
have to employ and the parameter values (population size,
probability of applying operators, etc.) that are suitable.

A. Chromosome Representation

A proper chromosome representation has a great impact on
the success of the used GA. Cheng, Gen and Tsujimura [9] gave
a detailed tutorial survey on papers using different GA
chromosome representations to solve classical JSSP. In this
paper, an operation based representation is adopted, which uses
an unpartitioned permutation with m-repetitions of job numbers
for problems with n jobs and m machines. Within the
representation, each job number occurs m times in the
chromosome. By scanning the chromosome from left to right,
the k-th occurrence of a job number refers to the k-th operation
in the technological sequence of this job.

For example, suppose that a chromosome is given as [2 1 3 1
2 2 3 1 3] in a three jobs and three machines problem. Because
each job consists of three operations, the job number occurs
exactly three times in the chromosome. The fifth gene of the
permutation implies the second operation of job 2 because
number 2 has been repeated twice. Similarly, the sixth gene
represents the third operation of job 2, and so on. The
prominent advantage of operation based representation is that
the permutation is always feasible. Moreover, it eliminates the
deadlock schedules that are incompatible with the
technological constraints and can never be finished. However,
it will produce redundancy in the search space and will cause
the search-space size to expand to (n×m)!/(m!)n.

B. Chromosome Decoding

The solution of the JSSP can be represented as the operation
permutation of jobs on each machine. The total number of all
possible schedules (both feasible and infeasible) is (n!)m for
problems with n jobs and m machines. Obviously, it is
impossible to exhaust all the alternatives for finding the optimal
solution even if the values of n and m are small. For example,
for the Fisher-Thompson benchmark problem of ten jobs to ten
machines, it has a search space with a size at about 3.96 × 1065.
Thus, it is necessary to restrict the search space and to guide the
search process. The objective of the chromosome decoding
procedure is to transform the chromosomes to schedules and
obtain their makespans.

In general, schedules can be classified into three types:
semiactive schedule, active schedule and non-delay schedule
[15]. Semiactive schedules contain no excess idle time, but they
can be improved by shifting some operations to the front
without delaying others. Active schedules contain no idle time,
and no operation can be finished earlier without delaying other
operations. The set of non-delay schedules is a subset of active
schedules. In a non-delay schedule, no machine is kept idle at a
time when it could begin processing other operations. In order
to further reduce the solution space, Zhang, Rao and Li [16]
proposed a new type of schedule: full active schedule (FAS),
which can be defined as a schedule with no more permissible
left shifts and right shifts. Fig. 1 shows the relationships
between the classes of schedules. The optimal schedule is
guaranteed to be a full active schedule. Therefore, we only need
to find the optimum solution in the set of full active schedules.

Fig. 1 Classes of schedules

C. Crossover Operation

Crossover operator plays an important role in genetic

semiactive

active

full active

nodelay optimal

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1116

algorithm approach. It intends to inherit the properties of two
parent solutions to two offspring solutions. To apply crossover
operation successfully to the JSSP, we must satisfy the
following criteria: completeness, feasibility, non-redundancy
and characteristics preservation [4]. In this paper, we use the
set-partition crossover (SPX) [17] as crossover, which can
preserve characteristics properly between parents and their
children. Given chromosomes, parent1 and parent2, crossover
applied SPX generates the children, child1 and child2, by the
following procedure. Firstly, randomly divide the set of job
numbers as {1, 2, ..., n} into two nonempty exclusive subsets
as J1 and J2. Secondly, combine together those numbers of
parent1 in J1 and those numbers of parent2 in J2. The
combination order is in an interweaving way, i.e. one by one
from up-to-down and left-to-right. This part of procedure
creates one new string. Exchange the two parents parent1 and
parent2, and do the combination once again to yield another
new string. Fig. 2 shows an example of the three jobs and three
machines problem; chromosome of parent1 and parent2 is
{1 2 3 3 2 1 3 2 1} and {1 2 2 2 3 1 3 3 1} respectively. The
crossover generates two children chromosomes, child1
{1 2 2 3 1 3 2 3 1} and child2 {1 2 2 3 2 3 1 3 1}.

Fig. 2 Example of SPX crossover

D. Mutation Operation

Mutation is another important genetic operator that
randomly changes a chromosome. This is done to maintain the
diversity of the chromosomes and to introduce some extra
variability into the population. In this paper, two types of
mutation operators named forward insertion mutation (FIM)
and backward insertion mutation (BIM) are used. Fig. 3 shows
examples of the three jobs and three machines problem. In this
work, the two mutation operators alternate randomly with equal
probability. Two mutations are described as follows:

1) Forward insertion mutation selects two elements
randomly and inserts the back one before the front one.

2) Backward insertion mutation selects two elements
randomly and inserts the front one after the back one.

Fig. 3 Examples of the two mutation operators

E. Local Search Procedure

The use of local search techniques has been proven to be
useful in solving combinatorial problems. Local search
methods are applied to a neighborhood of a current solution. In
the case of JSSP, a neighborhood is achieved by moving and
inserting an operation in a machine sequence. In this paper, we
focus particularly on the approach of Nowicki and Smutnicki
[6], which is noted for proposing and implementing the most
restrictive neighborhood in the literature. According to
Nowicki and Smutnicki’s work, a critical path in the solution is
identified first. Then the operations on the critical path are
called critical operations and the maximal sequence of adjacent
critical operations that are processed on the same machine can
be defined as blocks. The neighborhood is defined as
interchanges of the last two or the first two critical operations of
the blocks if the blocks are neither the first block nor the last
block. In the first block only the last two operations and
symmetrically in the last black of the critical path only the first
two operations are swapped. If a block contains only one
operation no swap is made. The Nowicki and Smutnicki’s
neighborhood is illustrated in Fig. 4.

Fig. 4 The Nowicki and Smutnicki’s neighborhood

The proposed local search starts with a feasible schedule S as

an input. The input schedule is set to Sbest which stands for the
best found solution. Then, a single arbitrary critical path is
generated and a neighborhood of schedule Sbest is constructed.
Randomly select a schedule Snew from the neighborhood. If Snew
is better (i.e. has a lower makespan) than Sbest, the Sbest is
replaced by Snew. The procedure is repeated until a maximum
number of iterations (LOC_ITER) without improving the best
found solution is reached. The pseudo-code of the local search
heuristic is shown in Algorithm LS.

Algorithm LS(local search)
1. Calculate the makespan Cmax(Sbest) of the
1. current schedul S. Set iteration counter
1. count to 1
2. While(count < LOC_ITER)do
3. Randomly selected a schedule Snew
3. from the neighborhood of Sbest
4. If Cmax(Snew) < Cmax(Sbest)Then
5. Update Sbest by setting Sbest = Snew
6. Set count to 1
7. Else
8. count++
9. End If
10. End While 1 2 2 ② 3 1 3 3 ① 1 2 2 3 1 3 3 ① ②

parent2 child2
BIM

1 2 3 ③ 2 1 3 2 ① 1 2 3 ① ③ 2 1 3 2

parent1 child1
FIM

①②③③②①③②① 1 ② ② 3 1 3 ② 3 1

1 2 2 2 3 1 3 3 1 ① 2 2 ③ 2 ③①③①

SPX

parent1 child1

parent2 child2

J1={2}
J2={1, 3}

swapping the first two operations

swapping the last two operations

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1117

F. Designing a hybrid genetic algorithm for JSSP

In contrast to a simple genetic algorithm, a new generation
alternation model is introduced for the proposed hybrid GA in
this paper. Every pair of randomly selected distinct mates must
pass either crossover or mutation, which are deployed in
parallel. The crossover is performed with a probability Pc.
When the mating process is carried out, crossover operator is
applied to the two parents N times and 2N offspring are
generated; the best individual in those offspring is selected to
the next generation. Otherwise, implements the mutation
operator to the two parents N times respectively and 2N
offspring are generated too; the best individual is selected to the
next generation. The crossover rate Pc is decreased linearly
from 0.9 to 0.5 according to (5), where g represents the iterative
number; MAX_GEN is the maximum number of iterations.

Such a mechanism can improve the exploration ability of GA.
For example, at the beginning of the evolution period, the
crossover rate is big; whereas at the end of the convergence
period, the crossover rate decreases and the mutation rate
becomes big; this characteristic of the new crossover rate can
avoid premature convergence better.

4.0_/9.0 GENMAXgPc
 (5)

The brief outline of the proposed algorithm can be described
as follows.

Step 1) Set values of pop_size, N, MAX_GEN, LOC_ITER.
Step 2) Generate a population P0 with pop_size individuals

randomly and evaluate the individuals with the decoding
procedure; set generation counter g = 1 and the current
population Pold = P0.

Step 3) Repeat Step 4) – 11) until g > MAX_GEN.

TABLE I
COMPUTATIONAL RESULTS OF FT AND LA TEST INSTANCES

Instance Size BKS our HGA
HGA
param

LSGA GRASP GP+PR TSAB
Beam
Search

RCS SBII

ft06 6×6 55 55 55 55 55 55 55 - 55 55
ft10 10×10 930 930 930 976 938 930 930 1016 930 930
ft20 20×5 1165 1165 1165 1209 1169 1165 1165 - 1165 1178
la01 10×5 666 666 666 - 666 666 666 666 666 666
la02 10×5 655 655 655 - 655 655 655 704 655 669
la03 10×5 597 597 597 - 604 597 597 650 597 605
la04 10×5 590 590 590 - 590 590 590 620 590 593
la05 10×5 593 593 593 - 593 593 593 593 593 593
la06 15×5 926 926 926 - 926 926 926 926 926 926
la07 15×5 890 890 890 - 890 890 890 890 890 890
la08 15×5 863 863 863 - 863 863 863 863 863 863
la09 15×5 951 951 951 - 951 951 951 951 951 951
la10 15×5 958 958 958 - 958 958 958 958 958 959
la11 20×5 1222 1222 1222 - 1222 1222 1222 1222 1222 1222
la12 20×5 1039 1039 1039 - 1039 1039 1039 1039 1039 1039
la13 20×5 1150 1150 1150 - 1150 1150 1150 1150 1150 1150
la14 20×5 1292 1292 1292 - 1292 1292 1292 1292 1292 1292
la15 20×5 1207 1207 1207 - 1207 1207 1207 1207 1207 1207
la16 10×10 945 945 945 959 946 945 945 988 945 978
la17 10×10 784 784 784 792 784 784 784 827 784 787
la18 10×10 848 848 848 857 848 848 848 881 848 859
la19 10×10 842 842 842 860 842 842 842 882 848 860
la20 10×10 902 907 907 907 907 902 902 948 907 914
la21 15×10 1046 1047 1046 1114 1091 1057 1047 1154 1069 1084
la22 15×10 927 930 935 989 960 927 927 985 937 944
la23 15×10 1032 1032 1032 1035 1032 1032 1032 1051 1032 1032
la24 15×10 935 941 953 1032 978 954 939 992 942 976
la25 15×10 977 979 986 1047 1028 984 977 1073 981 1017
la26 20×10 1218 1218 1218 1307 1271 1218 1218 1269 1218 1224
la27 20×10 1235 1240 1256 1350 1320 1269 1236 1316 1285 1291
la28 20×10 1216 1216 1232 1312 1293 1225 1216 1373 1216 1250
la29 20×10 1152 1167 1196 1311 1293 1203 1160 1252 1208 1239
la30 20×10 1355 1355 1355 1451 1368 1355 1355 1435 1355 1355
la31 30×10 1784 1784 1784 1784 1784 1784 1784 1784 1784 1784
la32 30×10 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850
la33 30×10 1719 1719 1719 1745 1719 1719 1719 1719 1719 1719
la34 30×10 1721 1721 1721 1784 1753 1721 1721 1780 1721 1721
la35 30×10 1888 1888 1888 1958 1888 1888 1888 1888 1888 1888
la36 15×15 1268 1278 1279 1358 1334 1287 1268 1401 1292 1305
la37 15×15 1397 1397 1408 1517 1457 1410 1407 1503 1411 1423
la38 15×15 1196 1202 1219 1362 1267 1218 1196 1297 1278 1255
la39 15×15 1233 1238 1246 1391 1290 1248 1233 1369 1233 1273
la40 15×15 1222 1228 1241 1323 1259 1244 1229 1347 1247 1269

Average gap(%) 0.14 0.40 5.39 1.78 0.44 0.06 4.35 0.61 1.39

No. of instance 43 43 28 43 43 43 41 43 43

No. of BKS obtained 32 31 3 23 32 37 18 31 20

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1118

Step 4) Copy the elite individual from Pold to the new
population Pnew. Set the new population size n = 1.

Step 5) Repeat Step 6) – 9) until n > pop_size.
Step 6) Select a pair of individuals p1, p2 from the Pold
Step 7) Generate a random float rand_num ∈ (0,1) , if

rand_num < Pc go to Step 8), else go to Step 9).
Step 8) Implement crossover on p1 and p2 for N times and

generate 2N offspring, select the best individual in the 2N
offspring to the next generation. Set n = n + 1.

Step 9) Implement mutation on p1 and p2 N times
respectively and generate 2N offspring, select the best
individual to the next generation. Set n = n + 1.

Step 10) Implement local search on every individual in Pnew.
Step 11) Set Pold = Pnew

IV. COMPUTATIONAL RESULTS

To illustrate the effectiveness and performance, we use 43
instances that are taken from the ORLibrary [18] as test
benchmarks to test our new proposed hybrid GA. In the 43
instances, FT06, FT10 and FT20 were designed by Fisher and
Thompson in 1963 and instances LA01–LA40 that were
designed by Lawerence in 1984. The algorithm was
implemented in Visual C++ and the tests were run on a
computer with Pentium IV2.4G and 1GB RAM. In our
experiments, population size pop_size = 100, N = 5, LOC_ITER
is the smallest integer number not less than n/2, and Pc is
decreased linearly from 0.9 to 0.5. The algorithm was
terminated when after MAX_GEN = n×m generations of the
algorithm, and each instance is randomly run 20 times.
Numerical results are compared with those reported in some
existing literature works using some heuristic and
meta-heuristic algorithms, including HGA-param [13], LSGA
[12], GRASP [7], GP+PR [19], TSAB [6], Beam Search [20],
RCS [21], and SBII [22].

Table I summarizes the results of the experiments. The
contents of the table include the name of each test problem
(Instance), the scale of the problem (Size), the value of the best
known solution for each problem (BKS), the value of the best
solution found by using the proposed algorithm (our HGA) and
the best results reported in other research works.

It can be seen from Table I that the proposed algorithm is

able to find the best known solution for 32 instances, i.e. in
about 75% of the instances, and the deviation of the minimum
found makespan from the best known solution is only on
average 0.14%. The proposed algorithm yields a significant
improvement in solution quality with respect to almost all other
algorithms, expected for the approach proposed by Nowicki
and Smutnicki that has a better performance in the 15 × 15
problems mainly. The superior results indicate the successful
incorporation of the improved GA and LS, which facilitates the
escape from local minimum points and increases the possibility
of finding a better solution. Therefore, it can be concluded that
the proposed hybrid GA solves the JSSP fairly efficiently.

As mentioned above, the algorithm is performed 20 times for
each instance. Table II lists the best solution (Best), the relative
deviation of the best solution (BRD), the mean solutions
(Mean), the relative deviation of the mean solution (MRD), and
the average computing time (t-avg) of some typical instances
with different size. The MRD is commonly zero for small-size
problem and is not more than 1.5% for most other problems.

To illustrate the simulated results more intuitively, the
problem la37 that is one of the hardest problems is specially
described as an example. Fig. 5 plots the representative
convergence curve finding best solution. Fig. 6 shows a Gantt
chart of a best solution.

Fig. 5 Representative convergence curve for la37

TABLE II

SUMMARY OF RESULTS FOR TYPICAL INSTANCES

Insta
nce

Size BKS Best
BRD
(%)

Mean
MRD
(%)

t-avg
(s)

ft06 6×6 55 55 0.00 55 0.00 0.62
ft10 10×10 930 930 0.00 936.85 0.74 8.21
ft20 20×5 1165 1165 0.00 1171.9 0.59 16.37
la01 10×5 666 666 0.00 666 0.00 1.90
la06 15×5 926 926 0.00 926 0.00 5.42
la11 20×5 1222 1222 0.00 1222 0.00 14.63
la16 10×10 945 945 0.00 947.15 0.23 7.65
la21 15×10 1046 1047 0.10 1057.15 1.07 24.49
la26 20×10 1218 1218 0.00 1218 0.00 62.48
la31 30×10 1784 1784 0.00 1784 0.00 202.81
la36 15×15 1268 1278 0.79 1286.55 1.46 56.20

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1119

Fig. 6 Gantt chart of an optimal schedule for la37

V. CONCLUSION AND PERSPECTIVES

This paper presents a hybrid algorithm combining genetic
algorithm with local search for the JSSP. In the algorithm a new
generation alternation model of genetic algorithm for JSSP is
designed and a Nowicki and Smutnicki’s neighborhood based
local search algorithm is incorporated. This allows the GA to
explore more solution space whereas LS does the exploitation
part. The approach is tested on a set of 43 standard instances
taken from the literature and compared with other approaches.
The computational results show that the algorithm produced
optimal or near-optimal solutions on all instances tested.
Overall, the algorithm produced solutions with an average
relative deviation of 0.14% to the best known solution. In our
future work we aim to extend the proposed algorithm in order
that it can be applied to more practical and integrated
manufacturing problems such as dynamic arrivals, machine
breakdown, or other factors that affect job status over time.

REFERENCES
[1] T. Yamada and R. Nakano, “A genetic algorithm applicable to large-scale

job-shop problems,” in Proc. PPSN, Amsterdam, 1992, pp.283-292.
[2] C. Bierwirth, “A generalized permutation approach for job shop

scheduling with genetic algorithms,” OR Spektrum. Vol. 17, Issue 2-3, pp.
87-92. 1995.

[3] F. D. Croce, R. Tadei, and G. Volta, “A genetic algorithm for the job shop
problem,” Comput Oper Res, vol. 22, pp. 15-24, 1995.

[4] S. Kobayashi, I. Ono, and M. Yamamura, “An efficient genetic algorithm
for job shop scheduling problems,” in Proc. ICGA, 1995, pp.506-511.

[5] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, “Job shop
scheduling by simulated annealing,” Operations Res., vol. 40, pp.113-125,
1992.

[6] E. Nowicki, C. Smutnicki C, “A fast taboo search algorithm for the job
shop problem,” Management Science, Vol. 42, pp.797–813, 1996.

[7] S. Binato, W. J. Hery, D. M. Loewenstern, and M. G. C. Resende, “A
GRASP for job shop scheduling,” in Essays and Surveys in
Metaheuristics. Boston, MA: Kluwer, 2001, pp. 59–80.

[8] A. S. Jain and S. Meeran “Deterministic job-shop scheduling: past,
present and future,” European Journal of Operational Research, vol. 113,
pp.390–434, 1999.

[9] R. Cheng, M. Gen and Y. Tsujimura, “A tutorial survey of job-shop
scheduling problems using genetic algorithms-I. representation,” Comput
Ind Eng, Vol. 30, No. 4, pp. 983-997, 1996.

[10] R. Cheng, M. Gen and Y. Tsujimura, “A tutorial survey of job-shop
scheduling problems using genetic algorithms - Part II: hybrid genetic
search strategies,” Comput Ind Eng, vol. 36, no. 2, pp. 343-364, 1999.

[11] L. Wang and D. Z. Zheng. “A modified genetic algorithm for job shop
scheduling,” Int. J. Adv. Manuf. Technol., vol. 20, pp.72-76, 2002.

[12] B. M. Ombuki and M. Ventresca. “Local search genetic algorithms for the
job shop scheduling problem,” Appl. Intell., vol. 21, pp.99-109, 2004.

[13] J. F. Goncalves , J. J. D. M. Mendes and M. G. C. Resende. “A hybrid
genetic algorithm for the job shop scheduling problem,” Eur. J. Oper. Res.,
Vol. 167, p77-95, 2005.

[14] K. Premalatha. and A.M. Natarajan. “Hybrid PSO and GA for global
maximization,” Int J Open Probl Comput Sci Math, Vol. 2, No. 4. pp.
597-608, 2010.

[15] M. Pinedo, “Scheduling theory, algorithms, and system,” 2nd ed. Prentice
Hall, Upper Saddle River, New Jersey, 2002, pp. 21-25.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1120

[16] C.Y. Zhang, Y.Q. Rao and P.G Li, “An effective hybrid genetic algorithm
for the job shop scheduling problem,” Int J Adv Manuf Technol, Vol.39,
pp965-974, 2008.

[17] G. Shi, “A genetic algorithm applied to a classic job-shop scheduling
problem,” Int J Syst Sci, vol. 28, no. 1, pp. 25-32, 1997.

[18] J. E. Beasley, “OR-Library: Distributing test problems by electronic
mail,” J. Oper. Res. Soc., vol. 41, no. 11, pp. 1069–1072, 1990.

[19] R. M. Aiex, S. Binato, and M. G. C. Resende, “Parallel GRASP with
path-relinking for job shop scheduling,” Parallel Comput., vol. 29, no. 4,
pp. 393–430, Apr. 2003.

[20] I. Sabuncuoglu and M. Bayiz, “Job shop scheduling with beam search,”
Eur. J. Oper. Res., vol. 118, no. 2, pp. 390–412, Oct. 1999.

[21] W. P. W. Nuijten and E. H. L. Aarts, “Computational study of constraint
satisfaction for multiple capacitated job shop scheduling,” Eur. J. Oper.
Res., vol. 90, no. 2, pp. 269–284, Apr. 1996.

[22] J. Adams, E. Balas, D. Zawack, “The shifting bottleneck procedure for job
shop scheduling,” Manag Sci, Vol.34, pp391-401, 1988.

