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An Earth Mover’s Distance Algorithm Based DDoS
Detection Mechanism in SDN

Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract—Software-defined networking (SDN) provides a solution
for scalable network framework with decoupled control and data
plane. However, this architecture also induces a particular distributed
denial-of-service (DDoS) attack that can affect or even overwhelm
the SDN network. DDoS attack detection problem has to date been
mostly researched as entropy comparison problem. However, this
problem lacks the utilization of SDN, and the results are not accurate.
In this paper, we propose a DDoS attack detection method, which
interprets DDoS detection as a signature matching problem and is
formulated as Earth Mover’s Distance (EMD) model. Considering
the feasibility and accuracy, we further propose to define the cost
function of EMD to be a generalized Kullback-Leibler divergence.
Simulation results show that our proposed method can detect DDoS
attacks by comparing EMD values with the ones computed in the case
without attacks. Moreover, our method can significantly increase the
true positive rate of detection.

Keywords—DDoS detection, EMD, relative entropy, SDN.

I. INTRODUCTION

D ISTRIBUTED denial of service (DDoS) attack severely

threatens the security of large data networks, especially

the emerging network architecture Software-Defined

Networking (SDN) [1]. The DDoS attack detection methods

are promising techniques that attract many researchers

attentions. However, it lacks efficient and accurate solutions

to detect DDoS attacks which aim at saturating the particularly

crucial controller-switch channels and controllers in SDN.

In general, DDoS attacks are generated by injecting

significant amount of packets with forged fields to the

designated targets in the network. As a result, the detection

methods have been mostly concentrated on studying the

statistical features of packets. Entropy is popular in analyzing

the randomness of the probability distributions of packets.In

SDN, the DDoS attack can be easily launched by sending

new packets to saturate the controller or the controller-switch

channel [1]. In this case, the entropy of the corresponding

field, such as destination IP address, becomes smaller than

the one without attacks [2]. However, the entropy metric only
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focuses on analyzing one feature, which lacks the ability of

comprehensive analysis and the result is not accurate enough.

Other methods have also been extensively studied, such as the

machine learning method [3]. But it usually spends time on

training network traffic, which decreases the time efficiency

of detection.

In this paper, we propose a DDoS detection method based

on Earth Mover’s Distance (EMD) algorithm, of which the cost

function is defined as an extended Kullback-Leibler divergence

(also called relative entropy). The key idea is to interpret DDoS

detection as a signature matching problem and develop a new

distance metric based on relative entropy. Another important

aspect of our algorithm is that we collaboratively analyze the

features of IP address and the number of OpenFlow packets

in SDN, and increase the difference between the values of

normal traffic and attack traffic. Simulation results show that

our methods can early detect DDoS attacks in SDN with high

accuracy.

The rest of paper is organized as follows. Section II presents

related work. In Section III, we discuss the detail of designed

algorithm. Section IV evaluates the experiment results and

performance of our algorithm. In Section V, we conclude the

paper.

II. RELATED WORK

DDoS attack takes place dispersedly on multiple end-hosts

and is usually powered by botnets, to affect or even overwhelm

the target network infrastructures. As a measure of disorder or

randomness of a system, entropy has been applied in many

researches to detect the DDoS attack. In [4], a distributed

method was proposed to analyze the entropy of flows in

each ISP domain. To improve the accuracy of detection, [5]

developed a method based on chaos theory to analyze the

variation of network traffic between realistic and predicted

ones. They utilize the Lyapunov exponent to measure the

degree of separation between source IPs and destination

IPs. However, the results were affected by the accuracy of

prediction algorithms. A metric of symmetric Rényi entropy

was proposed in [6] to detect low-rate DDoS attacks. The

detection modules were implemented on routers and this

method was designed for traditional networks.

Exploiting the decoupled data plane and control plane of

SDN, attackers usually carry out DDoS attack by injecting

a surge of spoofed packets into network [7]. Reference [2]

firstly proposed a lightweight method to detect DDoS attacks

in SDN, by comparing the entropy of destination IP addresses

with the threshold. However, it was difficult to detect
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accurately when attack traffic was similar to the normal

traffic. Different machine learning methods, including Naive

Bayes, K-nearest neighbor, K-means, and K-medoids, were

introduced in [8] to classify the anomaly and normal traffic

in SDN. Reference [9] developed a statistical method by

comparing the counting number of source IP addresses with

the pre-set threshold, to decrease the bandwidth occupation

in the controller-switch channel. Reference [10] designed a

hybrid approach that combined with time series prediction and

entropy comparison to detect DDoS attacks in SDN. However,

the results were mostly related to the accuracy of the prediction

method.

III. PROPOSED ALGORITHM

We present our algorithm together with a pre-introduction

of EMD in the following sections.

A. Background of EMD

EMD [11] is a well-known algorithm that is widely used to

measure the difference of two images [12]. The computation

of EMD is based on linear transportation problem, with an

objective of minimizing transmission cost. The cost is defined

as the amount of earth transported by the distance.

In image applications, pixels are quantified as coordinates

for convenience of calculations. Suppose that figure P is

composed of m clusters, and P = {(p1, ωp1
), · · · , (pm, ωpm

)}
is the signature of P . pi represents cluster i, ωpi

is the weight

of cluster i. Q = {(q1, ωq1), · · · , (qn, ωqn)} is the signature

of figure Q having n clusters. Moreover, dij is the ground

distance between pi and qj , which can be defined as the

Euclidean distance, or other distance measures. The objective

is to find out the optimal flow F = [fij ], of which fij denotes

the flow from pi to qj , making sure that the overall moving

cost is minimized, which is presented as follows,

min

m∑
i=1

n∑
j=1

dijfij (1)

The moving process should satisfy following constraints,

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (2a)
n∑

j=1

fij ≤ ωpi
, 1 ≤ i ≤ m (2b)

m∑
i=1

fij ≤ ωqj , 1 ≤ j ≤ n (2c)

m∑
i=1

n∑
j=1

dijfij = min

⎛
⎝ m∑

i=1

ωpi
,

n∑
j=1

ωqj

⎞
⎠ (2d)

where (2a) restricts that the flows can only move from P to Q
and not vice versa. Equation (2b) restrains that the amount of

earth that can move out from pi should not exceed its weight

ωpi . Also qj cannot receive more earth than its weight ωqj ,

as shown in (2c). Equation (2d) forces to move the amount of

earth as much as possible.

    

 

Fig. 1 An illustration of SDN topology

In this context, the EMD is defined as the overall moving

work normalized by the total amount of earth moved, as

specified by,

EMD(P, Q) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

(3)

In our previous works, EMD was leveraged to solve the

routes mutation [17] and switches assignment problems [18].

Route mutation problem modeled with EMD was introduced

to instantly mutate routes and disguise strategically important

nodes in large-scale SDN. Moreover, an elastic switch

migration method was designed to balance the loads of

controllers by using EMD, to protect the important controllers

in SDN. In this paper, we propose to utilize EMD with an

extended definition of cost to detect DDoS attacks in SDN.

B. Detection Algorithm

In our paper, we focus on a DDoS attack, where adversaries

exploit the vulnerability of OpenFlow protocol and keep

sending forged or spoofed packets that switches cannot match

according to their current flow tables [1], [13]. As a result,

switches send corresponding OpenFlow packet in packets to

controllers to request for rules that determine how to forward

flows. This case can significantly impact the performance of

the controller and the bandwidth of links between controllers

and switches in SDN.

Fig. 1 illustrates the simplified SDN topology under

consideration, where switches are controlled by the controller

and end hosts send and receive packets. We assume that the

controller has the central view of the whole network, and are

also responsible for detecting traffic anomaly.

In detail, host 4, 8 and 11 are these attackers, sending forged

packets and aiming at overwhelming the SDN controller.

Our proposed algorithm attempts to leverage EMD to

measure the difference between two distributions of traffic

features. We construct signatures P and Q as one-dimensional

distributions of the probabilities of traffic features. Let m
and n represent the number of clusters for P and Q,

respectively. Each cluster represents one feature, such as

cluster 1 denotes the distribution of source IP address,
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cluster 2 denotes the destination IP address distribution. The

first signature P = {(P1, ωP1), (P2, ωP2), · · · , (Pm, ωPm)}
represents the distributions in the last time interval. To

be specific, for any cluster i, Pi = {pi1, pi2, · · · , pik},

where pil, ∀l ∈ [1, k] denotes the probability of IP address

l appearing with feature i, k denotes the total number

of different IPs appear in this interval; ωPi
denotes the

accumulative number of OpenFlow packets with feature

i received by controller during the interval. Similarly,

Q = {(Q1, ωQ1
), (Q2, ωQ2

), · · · , (Qn, ωQn
)} represents the

IP addresses distribution in the current time interval. Qj =
{qj1, qj2, · · · , qjk}. In our paper, we define P and Q to

be the sets of IP addresses, thus m = n = 2. P =
{(P1, ωP1), (P2, ωP2)} represents the distributions of source

IP and destination IP, respectively, in the last time interval.

Q = {(Q1, ωQ1
), (Q2, ωQ2

)} denotes the distributions in

current time interval. Given P and Q, the EMD can be defined

to measure the difference between these two signatures, as

shown in (3).
In image applications, the dij defined in (1) usually goes

to the Euclidean distance to measure the difference between

two pixels. We propose an extended relative entropy of order

α to be the cost function in our paper. The relative entropy of

order α between Pi and Qj is shown below,

Dα(Pi‖Qj) =
1

α− 1
log

(
k∑

z=1

pαizq
1−α
jz

)
(4)

where 0 < α < ∞ and α �= 1. When α → 1, (4) defines

the Kullback-Leibler divergence, i.e., the relative entropy, as

follows,

D1(Pi‖Qj) =
k∑

z=1

(
piz log

piz
qjz

)
(5)

We note that Dα(Pi‖Qj) �= Dα(Qj‖Pi). The cost, i.e.,

dij in (3), requires to be symmetric if (3) is a true metric.

Therefore, we proceed to define the cost to be an expanded

form of relative entropy of order α between Pi and Qj , as

specified by,

dα(i, j) = Dα(Pi‖Qj) +D(Qj‖Pi)

=
1

α− 1
log

(
k∑

z=1

pαizq
1−α
jz

)
+

1

α− 1
log

(
k∑

z=1

qαjzp
1−α
iz

)

=
1

α− 1
log

(
k∑

z=1

pαizq
1−α
jz ∗

k∑
z=1

qαjzp
1−α
iz

)
(6)

In this context, our EMD is defined as the metric of the

minimized amount of work to turn Q into P , where the

distance of moving each unit of work is set to be the symmetric

relative entropy of order α between Pi and Qj . We summarize

our detection algorithm in Algorithm 1.

IV. SIMULATION AND EVALUATION

In this section, we carry out simulations to evaluate the

feasibility and effectiveness of our proposed method.

Algorithm 1 DDoS Detection Algorithm Based on EMD Model

Input: Time interval T ; the signature P in the last time interval; the
signature Q in current time interval; threshold σ.

Output: EMD(P,Q)
1: repeat
2: update Q1, the probability distribution of source IP addresses

in current interval; ωQ1 , the total number of OpenFlow packets
that controller receives with source IP {q11, q12, · · · , q1k};

3: similarly, update Q2 and ωQ2 for destination IP;
4: calculate dα(i, j) using (6), for i ∈ [1, 2], j ∈ [1, 2];
5: substitute dα(i, j), ωP1 , ωP2 , ωQ1 and ωQ2 into the linear

transportation problem (2), and solve it optimally using
simplex method to obtain solution set F = {fij , ∀i ∈
[1, 2] , j ∈ [1, 2]};

6: calculate EMD(P,Q) with F and dα(i, j) using (3)
7: compare EMD(P,Q) with threshold σ
8: if EMD(P,Q) ≥ σ then
9: alert attacks

10: else
11: no attacks, wait until next time instant
12: end if
13: until next time instant.
14: update P ← Q

TABLE I
DIFFERENT ATTACK INTENSITIES ON HOSTS

Hosts Roles Sending Intervals Rate Attack intensity
(s/packet) (packets/s)

Normal Hosts 0.1 10 \
0.05 20 2

0.033 30 3
0.025 40 4
0.02 50 5

Attack Hosts 0.0199 60 6
0.0125 80 8

0.01 100 10
0.0083 120 12
0.00625 160 16

A. Experiments Setup

We choose Mininet [14], which is widely used to simulate

SDN network, to perform the data plane of the experimental

network as Fig. 1 shown. The topology is composed of

sixteen end-hosts, four switches, and one SDN controller.

The controller is built upon a 64-bit Ubuntu system with

Floodlight [15], which is physically separated but logically

connected with Mininet.

In our experiment, the traffic in the network is composed

of two parts, the background traffic, and the attack traffic. We

generate network traffic by using Scapy [16] and constructing

UDP packets on each end-host. The background traffic is

generated on hosts at a rate of 10 packets per second. To

reproduce the scenario of real DDoS attacks, we inject packets

on host 4, 8 and 11, respectively, which play roles as attackers.

As mentioned in Sections I and II, we launch DDoS attacks

by sending packets with randomized source IP address field.

We introduce attack intensity as the times of attack traffic

injecting speed to the normal traffic sending speed. To explain

it clearly, we list different cases of the attack intensities as

shown in Table I.

Firstly, we evaluate the effects of our attacks by measuring

the bandwidth of the link between controller and switches, i.e.,

the southbound link. In Fig. 2, each line represents the average
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Fig. 3 Controller CPU utilization with different rates of packets injection

bandwidth of southbound link under different restrictions of

attack intensity. We can conclude from Fig. 2 that with the

increasing of attack intensity, the southbound link utilization

rate decreases drastically.

To clearly explain the impacts of DDoS attack, we proceed

to evaluate the CPU utilization of the controller as Fig. 3

shown. The scenarios of attacks are the same as the ones

displayed in Fig. 2. When the attack intensity achieves sixteen,

it occupies nearly fifty percent of controller’s CPU. Therefore,

the controller is severely affected by our DDoS attack. In

this context, we can conclude from Figs. 2 and 3 that our

simulations of DDoS attacks are rational and effective.

B. Results and Evaluation

For comparison purpose, we simulate our proposed method

together with the Shannon entropy metric (SHA) proposed

Attack Intensity
0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 E
M

D
 v

al
ue

s

0

10

20

30

40

50

60

70

80

90

Without alpha
alpha = 0.9
alpha = 1.1
alpha = 1.2
alpha = 10

Fig. 4 Values of EMD under different rates of attacks

in [2], the Lyapunov metric (LYP) proposed in [5] and the

information distance metric (IDM) in [6].

Firstly, we illustrate the average values of our method during

attack intervals in Fig. 4. The x-axis of Fig. 4 represents the

attack intensity. In Fig. 4, we denote the results of our method

when there is no attack in the network as the ones with x

equaling to zero. Each line in Fig. 4 corresponds to a different

value of α, which is a parameter defined in (4) and (6). We can

see from Fig. 4 that with the increase of α, the average value

of our method during attacks also increase. For a certain α, our

EMD values are increasing when attack intensity increases. We

can also conclude from Fig. 4 that the EMD value suddenly

increase when the DDoS attack happens.

Fig. 5 compares the spaces between network traffic with

and without attacks of different detection methods. We see

that our method outperforms other metrics, i.e., IDM, LYP,

and SHA, as it has larger spacings. A larger spacing denotes

a more significant difference between normal and abnormal

network traffic, which makes it easier to distinguish and

identify attacks. We can also conclude from this figure that

for our method and IDM, the spacings are getting larger when

α grows. However, a bigger α doesn’t always represent a better

result. This is because when α changes, the detection results

of both the normal traffic and abnormal traffic vary. The values

of normal traffic are also increasing, and the variances of this

distribution become greater. Therefore, the chance of normal

traffic being estimated as abnormal traffic is getting bigger.

To further illustrate the detection accuracy, we introduce

false positive rate (FPR) and true positive rate (TPR), as given

by,

FPR =
F

FD
(7)

TPR =
T

TD
(8)

Here, F represents the number of normal packets that

are detected as attack packets, FD is the total number of
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TABLE II
COMPARISON OF FPR AND TPR FOR DIFFERENT METHODS

Methods Attack Intensity α FPR(%) TPR(%)

IDM Method

\ 0 86.96
2 0.9 0 80.43

1.1 0.24 91.30
\ 0 83.64

4 0.9 0 76.36
1.1 0.24 92.73
\ 0 85.71

8 0.9 0 76.62
1.1 0.24 92.21
\ 0 89.72

16 0.9 0 80.37
1.1 0.24 94.39

Proposed Method

\ 0 89.13
2 0.9 0 89.13

1.1 3.4 93.48
\ 0 90.91

4 0.9 0 85.45
1.1 1.46 98.18
\ 0 90.91

8 0.9 0 81.82
1.1 0.73 98.70
\ 0 93.46

16 0.9 0 87.85
1.1 0.49 99.07

non-attack packets, T denotes the attack packets that are

correctly identified, TD represents all of the truly attack

packets. Therefore, FPR indicates the degree of false

detection and TPR shows the accuracy of correct detection.

Table II shows the details of FPR and TPR of our method

and the information distance metric, i.e., IDM. In this table, the

TPR of our method is higher than the IDM’s under the same

conditions, that is to say, our method is more accurate than

IDM. Furthermore, for the case of sixteen times attacks, our

method can achieve the detection accuracy of 99.07%. We can

also conclude from Table II that FPR increases along with

the growing of α. With the increasing of attack intensity, the

FPR of our method also decreases.

V. CONCLUSION

In this paper, we propose a DDoS attack detection method

based on the algorithm developed in image retrieval area,

i.e., the earth mover’s distance algorithm. Furthermore, to

improve the accuracy of detection, we propose to define

an expanded relative entropy to be the distance metric in

EMD. Simulation results show that our proposed method

can significantly increase the difference between values of

normal traffic and attack traffic. Detection accuracy can also

be greatly improved, as a large difference always indicates a

straightforward recognition of attack traffic.
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