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Abstract—In the past decade, artificial neural networks (ANNs) 

have been regarded as an instrument for problem-solving and 

decision-making; indeed, they have already done with a substantial 

efficiency and effectiveness improvement in industries and businesses. 

In this paper, the Back-Propagation neural Networks (BPNs) will be 

modulated to demonstrate the performance of the collaborative 

forecasting (CF) function of a Collaborative Planning, Forecasting and 

Replenishment (CPFR®) system. CPFR functions the balance between 

the sufficient product supply and the necessary customer demand in a 

Supply and Demand Chain (SDC). Several classical standard BPN will 

be grouped, collaborated and exploited for the easy implementation of 

the proposed modular ANN framework based on the topology of a 

SDC. Each individual BPN is applied as a modular tool to perform the 

task of forecasting SKUs (Stock-Keeping Units) levels that are 

managed and supervised at a POS (point of sale), a wholesaler, and a 

manufacturer in an SDC. The proposed modular BPN-based CF 

system will be exemplified and experimentally verified using lots of 

datasets of the simulated SDC. The experimental results showed that a 

complex CF problem can be divided into a group of simpler 

sub-problems based on the single independent trading partners 

distributed over SDC, and its SKU forecasting accuracy was satisfied 

when the system forecasted values compared to the original simulated 

SDC data. The primary task of implementing an autonomous CF 

involves the study of supervised ANN learning methodology which 

aims at making “knowledgeable” decision for the best SKU sales plan 

and stocks management.    

 

Keywords—CPFR, artificial neural networks, global logistics, 

supply and demand chain.    

I. INTRODUCTION  

N SDC, the three parties, as shown in Fig. 1, vendors, 

manufacturers, and distributors (buyers), characterize 

interactive tasks to produce and deliver commodities, and 

meanwhile to satisfy consumer demands for the commodities; 

this interactive process with both (bottom-up) demand 

information and (top-down) supply material flows has inherent 

opportunities for the efficiency and effectiveness improvement 

of SDC. They can be discovered by integrating SDC flows, 
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sharing flow information, communicating task interactions and 

supervising goods transactions, collaboratively. The 

collaborations result the above three parties into a single 

“virtual” unified enterprise in which its management 

information can be shared and then the loading of each SDC 

task can be levered.  

 
Fig. 1 The three parties of SDC  

 

One way to achieve this SDC leverage process or to 

streamline the SDC pipeline (or network) shown in Fig. 1 is to 

implement a CPFR
®
 system. (CPFR

®
 is a Registered Trademark 

of the Voluntary Inter-industry Commerce Standards (VICS) 

Association, a retailer trade association, responsible for 

promoting common standards and business processes used to 

the continuous pursuit of improving both the customer 

satisfaction and the efficiency of business trade relationships, 

e.g., the speed and accuracy by which goods can be 

manufactured, distributed, and sold to consumers [1].) The 

overall goal of CPFR is the minimization of total cost or the 

maximization of total profit of the SDC operations. This goal 

can be accomplished by balancing the sufficiency of products 

supply and the necessity of customer demands in analyzing a 

CPFR process. Why and how?   

CPFR, as its name implies, responds to the conduct of an 

enterprise’s planning, forecasting and replenishment by 

drawing its supplying products with collaborative operations of 

all trading partners through the distributed channels in an SDC. 

This collaborative environment makes CPFR form a group of 

trading partners who consent to mutually perform and update 

the business conducts and operations, such as the joint sales and 

operational plans, the unified order and sales forecasting and the 

accurate time-based replenishment plans, etc., and also lets 

these partners be aware of their operations information one 

another so that SKU exceptions or changes occurred in the 

events, such as calendar displays, market demand, on-sales 

promotions or business policies, can be jointly and timely 

managed and corrected for keeping the SDC balance all the 

time; furthermore, the costly after-the-fact adjustments for the 

operation corrections can be avoided or reduced. To this end, a 

prediction mechanism for the advanced adjustments of the 
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CPFR operations is necessary. Collaborative forecasting (CF) 

of CPFR exactly plays the key role for this necessity.  

CF is the SKU sales prediction for distributed partner 

demands characterized by SKU inventory, promotion, season, 

cycle, trend, irregularity, and time period, which they also are 

the factors associated with the SDC balance. Once the factors 

can be monitored, CF can be modeled and help trading partners 

to mutually generate the most accurate forecasts so that the 

whole enterprise production conducts and material 

replenishments can be controllable and stable. Stable SKU 

positions lead to a controllable bullwhip effect [2]. Yet, since 

the SKU levels greatly count on time, and other marketing 

factors, a conventional forecasting method may not be good 

enough for implementing a practical CF system that meets the 

dynamic behavior of SDC.  

Caro and Gallian [3] considered using demand learning with 

Bayesian theory and dynamic programming (DP) technique to 

investigate the dynamic SDC process, but the sophisticated 

mathematic development causes to the difficulty of practical 

application and implementation. Seifert [4] and Caridi, et al. [5] 

presented that those dynamic (time-based) SDC factors had 

better be modeled and operated with autonomy for the easy and 

correct on-line supervision of the SDC balance. This paper will 

present such an autonomous CF system, which is an extensible 

architecture based on ANNs that were implemented in authors’ 

previous work [6], to perform the prediction for the real-time 

supervision of SKU inventory and sales status in the 

collaborative trading circumstance. The leaning ability of ANN 

conducts the autonomy of the CF.  

ANN is a computational model constructed by mimicking the 

brain learning process to solve miscellaneous problems just like 

human do. A unique virtue of ANN is its ability to learn the 

relationship between input examples (feature vectors) and 

output information (solution) by means of repeatedly presenting 

examples to it. This relationship learning process is performed 

through the adaptation of the strengths (weights) connected 

between neurons of each layer within ANN. Mathematical 

optimization calculations and calculus derivatives for the 

weight adaptation cause ANN to learn (memorize) the examples 

presented. This learnability is one of ANN research area and 

will be introduced in latter section.  

In this paper, the CF function of CPFR will be implemented 

with a group of modularized BPNs in which one BPN module 

accounts for the forecast and supervision of the SKU 

inventories at a POS or at any trading partner location. The 

number of the modular BPN needed for the CF fulfillment is 

equal to participating partners in the same CF system. The 

presented BPN-based autonomous CF system is an 

experimented one but with prospective substance. With regard 

to other two functions, collaborative planning (CP) and 

collaborative replenishment (CR), they will be further evolved 

with the current autonomous CF system to become a complete 

CPFR system in the future.  

Toward the end of an autonomous CF system 

implementation, the remainder of this paper is organized as 

follows. First, an introduction to CPFR is presented, then the 

BPN learning procedure is addressed; third, the reasons why 

using BPN to implement the autonomy of the CF are explained 

and then the relative literature is reviewed; fifth, the method 

used to implement the BPN-based CF system is developed; 

sixth, the simulated data and experimental results are presented; 

final, the conclusions and directions for further research are 

outlined.   

II. INTRODUCTION TO CPFR     

This section offers a bird’s-eye view of a CPFR system 

formed from individual buyer to vendors through the relative 

manufacturers. As aforementioned, CPFR is performed by the 

mutual cooperation that functions as the improvement of the 

accuracy of the marketing demand forecasts and the further 

maintenance of SKU inventory positions and replenishments. 

The reciprocity collaboration aims at the balance of the SDC 

leverage. To balance the SDC leverage, which is generated by 

the information flow pulled from customers and by the materials 

flow pushed to customers, CPFR, unlike other traditional 

logistics forecasting models, employees the idea of CF to fulfill 

relative SKU replenishment and vendor-managed inventory 

(VMI) policy, including SKU sales and inventories at POSs, 

SKU orders of the outlets to distributors, SKU orders of the 

distribution centers (wholesales) to the manufactures and SKU 

orders of the manufactures to the suppliers, by doing so to meet 

the requirements of eventual customers [7].  

 

 

Fig. 2 The standard CPFR model  

 

Traditionally, an individual trading partner takes charge of 

his own forecasting numbers that are analyzed independent of 

one another, thus there is no surprise to find that the trading 

partners do not have much in common. Call this inconsistent 

situation the bullwhip effect of which the result is that a minor 

discrepancy occurred at any stage of the business running cycle 

will balloon into a formidable misstep over time [2] [8]. 

Besides, the managerial reconciliation of time lags in traditional 

logistics forecasting methods involves a difficult 

communication problem. When demand is concentrated on a 

short selling season, the three parties of SDC will be impelled to 

take an inventory level far in advance of the peak selling period. 

This advanced inventory is with highly risky. By taking 

advantage of the on-line visible and sharable CPFR data, the 

bullwhip effect can be smoothed or even vanished [9].  
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The mechanism that performs the above bullwhipped 

inventory smoothing process in SDC is first to accomplish the 

most accurate CF for SKUs needed by trading partners, and then 

to set the efficient replenishment processes according to the 

information generated by the CF. Finally, it will be timely to ask 

suppliers for the acquisition of their products sufficient for 

matching the marketing necessity (requirements) the CF 

forecasted. In other words, a CPFR model cares elapsed time 

between consumption and production, and meanwhile 

reconciles supply availability with demand [10]. If how much 

inventory should be stockpiled can be properly planned and 

determined by this CPFR mechanism, the maximum sales while 

minimizing the risk of carryover can be obtained.  

The standard CPFR model is shown in Fig. 2 that was copied 

from the website of the VICS Association [1]. The model is 

quaternary, including the four constitutes, strategy and 

planning, demand and supply management, execution and 

analysis. The core element is customer; the interactive missions 

are radiated from this core outside to business strategic planning 

based on a clockwise cycle. The following 9 steps used to 

perform the CPFR cycle was presented by Harrington [11]:   
 

Step 1 - Develop Front-End Agreement   

Step 2 - Create Joint Business Plan   

Step 3 - Create Sales Forecast   

Step 4 - Identify Exceptions for Sales Forecast   

Step 5 - Resolve/Collaborate on Exception Items   

Step 6 - Create Order Forecast   

Step 7 - Identify Exceptions for Order Forecast   

Step 8 - Resolve/Collaborate on Exception Items   

Step 9 - Order Generation.   
 

These general 9 steps can be iteratively performed and 

revised according to the factual status of executing the CPFR 

process.   

Eventually, it should be mentioned that there is rarely an 

intact or optimal CPFR that stands for the best leverage balance 

of responsiveness to the forecasted customer needs and the 

productive SKU supplies. Although there is no exact CPFR 

method, some methods are distinctly better than others, and 

some are so competitive that when one weighs pros and cons 

[9]. For these reasons, CPFR is both frustrating and highly 

rewarding. More detailed CPFR discussion can be read in [4] 

[7] [12] and [13].       

III. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS    

As the description in Section 1, ANN learning is a type of 

learning from examples. The examples input to an ANN will be 

learned or memorized, and then transformed to become the 

connected strength in terms of weight values; after the 

transformation, the weighted memorization will be utilized to 

recall, infer or generalize the solution to the new problem that 

was unlearned or unseen before. Two major sorts of typical 

ANN learning algorithm are supervised and unsupervised. The 

following introduction to ANN learning algorithms was 

summarized from [14] [15] and [16].  

A supervised ANN learning is performed by an optimization 

technique to minimize the differences between the paired 

relationships of the input examples to the corresponding desired 

target vectors. Once this “difference-minimization” learning 

completed appropriately, the learned ANN is able to distinguish 

or generalize different input feature vectors unseen or seen 

before. In contrast, an unsupervised ANN learning algorithm 

does not consider target output vectors as a supervisor used to 

conduct the minimization of differences, but generally takes an 

internal weight adaptive mechanism that is able to iteratively 

“self-minimize” the differences between the output information 

and the connection weights for discovering emergent output 

characteristics. Fig. 3 shows a general ANN structure, which is 

called Back-Propagation Network (BPN). If the desired target 

vector D
P
(t) is considered, the ANN is supervised; if not, it 

becomes an unsupervised ANN. In this paper, the supervised 

BPN is used as a module to construct the proposed modular CF 

architecture based on the topology of a SDC network. In what 

follows, BPN is introduced.   
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Fig. 3 A general BPN structure  

 

A standard BPN is a fully connected network made up of 

input, hidden and output layers, as shown in Fig. 3. It is a typical 

three-layered BPN. Mathematically, the matrix input to hidden 

layer J from input layer I is formulated as:  

 

NETJ V X= ×                  (1)  

( )
1

( ) , 1,2, , ;  time step.
1 exp ( )

j j

j

a t j n t
net t

= = =
+ −

K
    (2)  

hidden layerNETK W A= ×                (3)  

( )
1

( ) , 1,2, , ; time step.
1 exp ( )

k k

k

a t k n t
net t

= = =
+ −

K
   (4)  

output layerY A=                        (5)  

where  
NniRX

×∈ : input vector matrix of the BPN 

j in n
V R

×∈ : weight matrix between the input layer I and the 

hidden layer J  



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:11, 2008

1228

 

 

jn N
NETJ R

×∈ : vector matrix input to sigmoid activation 

function of the hidden layer J 

hidden layer
jn N

A R
×∈ : activated vector matrix output from the 

hidden layer J 

jk nn
RW

×∈ : weight matrix between the hidden layer J and the 

output layer K  

kn N
NETK R

×∈ : vector matrix input to sigmoid activation 

function of the output layer K 

output layer
kn N

A R
×∈ : activated vector matrix output from the 

output layer K  

output layer
kn N

Y A R
×= ∈  : output vector matrix of the BPN  

N : the number of input vectors, p = 1, 2, .., N.  

In , Jn , Kn : the number of neurons of input, hidden and 

output layers, respectively;  

( )ja t  : sigmoid activated output of the jth hidden neuron,  

( )ka t  : sigmoid activated output of the k
th

 hidden neuron,  

( )ky t : output of the k
th

 output neuron, 

 ( ) ( )k ky t a t= , t = time step.  

In detail, the matrices X, NET, A and Y are the respective vector 

matrixes as follows:  

( ) ( ) ( ) ( )1 2, , ,
i

p p p p T

nX t x t x t x t =  K             (6)  

( ) ( ) ( )1 2( ) , , , NX t X t X t X t =  K          (7)  

( ) ( ) ( ) ( )1 2, , ,
j

T

nNETJ t net t net t net t =  K      (8)  

( ) ( ) ( ) ( )1 2, , ,
j

T

j nA t a t a t a t =  K          (9)  

( ) ( ) ( ) ( )1 2, , ,
k

T

nNETK t net t net t net t =  K    (10)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

1 2

, , ,

, , ,

k

k

T

n

T

k n

Y t y t y t y t

A t a t a t a t

 =  

 = =  

K

K

                (11)  

where   

( )p

ix t : the i
th

 feature of the vector p input to the input layer,  

( )jnet t : the j
th

 activation neuron of the hidden layer at time t, 

( )knet t : the k
th

 activation neuron of the hidden layer at time t. 

The BPN training rule is to minimize the energy function 

( )WVE ,  defined by the difference between the output 
pY and 

its target
pD as follows:   

 

( ) ( ) ( ) ( ) ( )
, 

1

1
min ,

2

N
T

p p p p

V W
p

E V W D t Y t D t Y t
=

 
   = − −    

 
∑      (12) 

subject to (1) - (5),  

where ( ) ( ) ( )1 , ,
k

T
p p p

nD t d t d t =  K

and ( ) ( ) ( )1 , ,
k

p p p T

nY t y t y t =  K

 

The training set of the BPN contains the pairs in the form 

of ( , )p p

i kx d , where
pX and

pD can have the same or different 

dimensional number of the vector space. Traditionally, an 

optimal gradient steepest descent algorithm has been used to 

minimize the energy function ( )WVE , , i.e.,  

( ) ( ) ( ) ( ), ,

( ) ( ) ( ) ( )

j j

ji j j ji

a t net tE V W E V W

v t a t net t v t

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
    (13)  

( ) ( ), , ( ) ( )

( ) ( ) ( ) ( )

p

k k

p

kj k k kj

E V W E V W d t net t

w t d t net t w t

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
    (14)  

For obtaining optimal weights V and W, the following adapted 

weight rules are used.   

( ),
( 1) ( )

( )
ji ji

ji

E V W
v t v t

v t
η

∂
+ = −

∂
                  (15)  

( ),
( 1) ( )

( )
kj kj

kj

E V W
w t w t

w t
η

∂
+ = −

∂
            (16)  

whereη is the learning rate, a term that has an important effect 

on the convergence time. Ifη is too small, the learning time may 

be too long to get a minimal solution of the energy function (12); 

a large η , on the other hand, may cause to convergence 

oscillations that may lead the energy minimization process to 

reach at a sub-optimal or infeasible point. The range of an 

adequateη value, generally, is set between 0.2 and 0.3, or the 

value can be adjusted according to the convergence progress 

situation during the learning process. Another additional factor 

called monument rate µ, as in (22) and (23) latter, is set a 

smaller value thanη , normally from 0.05 to 0.15, and functions 

to “perturb” the current arriving point for “jumping” to another 

better solution point in the learning process.  

Although the iterative gradients derive the learning vectors to 

form the memorization of ANN, this memorization could not be 

globalized in the weight space since the character of the gradient 

convergence itself; nevertheless, a global memorization perhaps 

also generalizes an unsatisfied solution due to the fact that the 

learned (global or local) weights are not the true solution to an 

original problem but are a kind of metaphor used to get the 

approximated solution to the problem. A global metaphor may 

not always approximate a global solution. Thus, how to find an 

appropriate metaphor for the best solution acquisition still is an 

opened question in the ANN research field. Establishing the 

relation between the metaphor and the current generalizing 

solutions during the learning process may be the one of 

directions to find the metaphor used for generalizing the best 

approximated solution [17].  

The determination of the initial weights is another 

investigating problem in the ANN learning process. Different 

initialized weights perhaps cause to different solutions. In 

general, however, random starting weights are initiated the 

gradient search to find the optimal point in the weight space; 

besides, a different number of hidden layers also determine a 

different weight space. One hidden layer with moderate neurons 

may be enough for generalizing an approximated solution to a 

general problem. On the other hand, ANN may also suffer from 
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the drawbacks of the slow learning and the over fitting, if its 

network size is too large, particularly, when it is used for a large 

volume of high dimensional training data, such as the CPFR 

data that will be simulated in the later section. The drawbacks 

may be conquered by the popular cross-validation method, 

which will be used in the proposed autonomous system 

implementation and introduced in the Experiments Section 

latter.  

Furthermore, there an activation function, i.e., (2) and (4), 

called sigmoid function, is hided in each of hidden and output 

neurons and functions to fire the matrix product values, i.e., 

NETJ and NETK, for determining the output values from the 

layers. Normally, an activation function should be a continuous 

differentiable function so as to deal with the continuous weight 

values. In what follows, the standard BPN learning steps are 

written.  

Step 1. (a) Set the initial values of all weights to small real 

numbers.   

(b) Input the values of learning rate η, momentum rate 

µ, and error tolerance ε.  

Step 2. Present learning matrix X to the input layer and specify 

the desired target output matrix D. The paired vector (X, 

D) is used to describe the learning examples.  

Step 3. Calculate  

0

,   1/[1 exp( )],  

0,1,  2, ..., ; 1, 2,..., N,

in
p

j ji i j j

i

j

net v x a net

j n p

=

= = + −

= =

∑
     (17)  

and  

0

,   1/[1 exp( )],  

1,  2, ..., .

jn

k kj j k k

j

k

net w a a net

k n

=

= = + −

=

∑        (18)  

 The calculation involves the inputs from the bias 

neurons indicated by the subscript 0. The activation 

value of a bias neuron is 1.  

Step 4.  Set k ky a=   

   Calculate 

1

( , ) ( ) (1 )
kn

k k k k

k

E V W d y y y
=

= − −∑   (19)  

(a) If ( , )E V W is less than ε, then stop;  

(b) otherwise, continue the learning, i.e., calculate  

hidden layer

0 1

(1 ) ( , )
j k

n n

j j jk

j k

E a a w E V W
= =

= −∑ ∑   (20)  

Step 5. Calculate the weight adjustments  

,   
i

p

k j ji jwkj E a w E xη η∆ = ∆ =       (21) 

Step 6. Repeat steps 2-5 for each learning pair ( , )
p p

i kx d .  

Step 7. Calculate new weights  

( 1) ( ) ( ) ( 1)kj kj kj kjw t w t w t w tµ+ = + ∆ + ∆ −  (22)  

and ( 1) ( ) ( ) ( 1)ji ji ji jiw t w t w t w tµ+ = + ∆ + ∆ −      (23) 

where t is a time step.  

Step 8. Repeat Step 7 until the network finish learning 

all ( , )p p

i kx d .  

         Go back to Step 3..            

IV. WHY BPN FOR CPFR    

During the past two decades, conventional forecasting 

techniques on account of the statistic and analytic capabilities 

have become increasingly sophisticate. The general 

development supposes that greater sophistication or combined 

forecasting causes to increase forecast accuracy; while this 

could be true, considerable research has pointed out that simpler 

is sometime better! A more complex statistic or analytic 

technique does not mean to always provide significantly better 

results, particularly where the situations involve the resource 

information constraints in terms of both experienced 

quantitative information and empirical qualitative expertise [14] 

[18] [19] [20].  

Another argument on conventional statistic forecasting 

method is that it could analyze a statistic result about what 

predicted value is being viewed prior to building the 

application. Although the statistic method can be developed and 

run to learn how to predict a future value based on known 

features of each forecasting factor, there are several problems 

with it, which are why progress in the field of forecasting was so 

slow prior to the advent of applied ANNs. One of the problems 

is that the statistic distribution of data should be determined. 

Incorrect distribution may result to a wrong statistic forecasting 

solution. Another problem is that a conventional statistic 

forecasting is hard to deal with the situations of outliers, missed 

or incomplete data, and thus a particular analytic procedure is 

needed to treat them. This additional therapy must cause a more 

complex statistic solution procedure. Instead, the above 

problems of conventional statistic forecasting can be simply, 

readily and simultaneously solved by BPN owing to its own 

inherent capabilities of fault tolerance, semantic structure and 

generalization [15] [19] [20]. These three virtues are explained 

below.  

Because of an abundance of input neurons, the input faults 

can be limitedly tolerated by BPN. If the input data is imprecise, 

missed or incomplete, BPN can also output an approximate or 

exact solution, without knowing the priori statistic distribution 

but depending on the level of the data fault. The higher fault 

level, the more incorrect solution is. An acceptable tolerance of 

the data fault is asked for the correct solution. “GIGO (garbage 

in garbage out)” could occur in the BPN processing. Semantic 

discrimination is another BPN ability of handling symbolic 

data. The semantics in terms of rules and facts can be mapped or 

made onto the structure of the network [19] [20]. After learning 

the semantic rules and facts, the trained BPN can produce the 

new rules and facts and infer the solution. Other symbolic data 

can be binary, integer or discrete data.  

Generalization is the solution process based on the trained 

BPN. The trained BPN is able to interpolate or extrapolate its 

learned data to produce the solution to new input data. The 

generalization may be regarded as the inference contrivance in 

the symbolic condition. It also can produce an approximate 

solution with a plausible data fault. This approximated solution 

can also be thought of as an answer to the problem of recovering 

nonlinear characteristics of physical phenomena from the 

unseen or imprecise measurement data [15] [16].  
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The most significant born ability of BPN is to deal with 

binary, continuous, discrete, range number and symbolic data at 

the same time. This is the major reason why BPN has a more 

suitable acceptability than conventional statistic analysis 

methods. For example, BPN can be presented with data of 

continuous valued function and meanwhile be updated after 

each learning data. Few if any conventional statistic forecasting 

methods are able to meet both of the data presentation and 

updating. Also, the spatial and temporal predictions can be 

simultaneously performed by taking advantage of the 

presentation of distinct data types to BPN. Again, there no 

conventional statistic forecasting approach has this kind of the 

“versatile” data representational ability [20].  

In the proposed autonomous CF system with learnability for 

distributed sales and SKU stock data, BPN is taken as the 

learning method for the system implementation not because of 

its capability of dealing with different data types, but simply 

because its generalized solution is generally better than 

conventional statistic forecasting solutions. Several empirical 

studies have pointed out that there are certain problem domains 

where a BPN provides superior predictive accuracy to 

commonly used statistic formulation methods [14] [18] [20].  

Moreover, the interest of using a BPN as a modular 

contrivance respectively to forecast the sales and stocks at 

various trading partners is caused by the facts that a truly fast 

modeling tool reflecting physical situations that frequently 

occur in CF is required, and an online solution to the CF 

problem is often desired. In a practical CF situation, a prior 

knowledge of a possibly nonlinear is poor and no well-grounded 

assumptions about the collected statistic data can be formulated; 

therefore, a kind of generalization tool like BPN is required.   

V. LITERATURE REVIEW     

There are literally hundreds of papers addressing methods 

and performance for forecasting, estimation or prediction using 

ANNs; however, it is still few publications in discussing the 

architecture and implementation of the autonomous CF with 

ANNs in CPFR. Caridi, et al., [5] [21] separately presented the 

same two-agent system for the automation and optimization of 

the negotiation process in CPFR. One agent called Advanced 

Model was in charge of solving the SKU exception situations 

based on the trading partners’ predetermination of stock 

threshold values; another agent named Learning Model 

functioned as the re-determination of the current SKU stock 

thresholds according to the past SKU sales records. Their 

papers focused only on the SKU exceptions handling occurred 

in the CF process, and the threshold was not autonomously or 

intelligently re-determined but was time-consumptively 

recalculated and reworked with all of updated historic SKU 

data.  

Gaur [22] addressed a two-stage supply chain model 

consisted of an ARMA demand model for a retailer serves and a 

manufacturer’s fulfillment of the retailer’s orders. The ARMA 

structure of the retailer demand process determined how the 

value of sharing demand information in SDC was. Three 

different conditions were assumed to conduct whether the 

manufacturer was necessary for acquiring the SKU sales 

information from its retailers and when there is value to sharing 

demand information, inferring demand information, or treating 

the order process as an independent noninvertible ARMA 

time-series for the manufacturer. The classic statistic ARMA 

time series, however, is with complex mathematics and without 

non-autonomous mechanism for the implementation of a 

practical CPFR system.  

Danese [7] classified and organized CPFR structures into 

seven sorts based on certain contingency factors like CPFR 

goals and developments, characteristics of SKUs, market 

segments and SDC structure. The findings of this paper, such as 

the influence of SDC’s relational structure on the number of 

potential CPFR partners that were affected with the CPFR 

development stage, and others, were proclaimed to offer an 

original contribution to the discussions on CPFR from both 

academic and managerial perspectives.  

Caro [3] considered using demand learning with Bayesian 

theory and dynamic programming (DP) technique with a finite 

horizon multi-armed bandit model with several plays per stage 

to investigate the dynamic behavior of the SKU assortments of 

fast-fashion retailers. How such retailers to improve their SKU 

assortment over time for the maximization of overall profits 

during a given selling season was the subjective of the paper. 

The profound statistic parameters and DP methods accounting 

for implementation delays, switching costs, and demand 

substitution effects caused the mathematic formulation of the 

dynamic product assortment to be complicated.  

Pramatari [23] studied the impact that their proposed SKU 

stock replenishment and ordering practice has on shelf 

availability. The practice was performed by information sharing 

and daily collaboration based on the concept of safety stock 

level determination implemented on the WWW-based SDC 

platform so as to increase order accuracy and to improve shelf 

availability. The safety stock simplicity and internet platform 

implementation make the system work efficient, but the 

calculation is not with learnability of the updated SKU stock 

data and cost.  

The idea of Aviv [24] is one of the motivations to develop the 

proposed autonomous CF system proposed in this paper. He 

introduced the role of CF in SDC and proposed an 

autoregressive demand model used to reflect the reality in SDC 

environments and meanwhile utilized a scorecard to capture 

inventory considerations, make production smoothing, and 

update adherence-to-plans for the improvement of the SDC 

environment. An adaptive production planning process for the 

manufacturer established an appropriate balance between the 

various metrics of CF concern. The experimental results showed 

that a successful CF system can bring better partnerships 

information, improve decision supportability, correct SDC 

process for trading partners and then the SDC agility can be 

improved and maintained.  

Chandra [8] provides another motivation to conceive the 

proposed CF architecture. A good CF technology can reduce the 

bullwhip effect with variability of inventory replenishment 

orders and then increase SDC efficiency. He also proposed an 
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autoregressive time series applied to obtain multiple step-ahead 

demand forecasts for the serially correlated external demand 

consideration. The simulation results showed that the 

autoregressive multi-step forecasting model leaded to higher 

inventory performance for the downstream SKUs measured by 

the average inventory size at the fixed service level, compared 

to other forecasting methods considered. The SDC performance 

could be much higher, if the inventory status generated from 

MRP (materials requirement planning) was combined with the 

multiple step forecasting technique.  

VI. THE LOGIC OF BPN-BASED CF SYSTEM  

An accurate collaborative sales and SKU inventory forecast 

is a key for implementing a successful CPFR system. This 

section presents the development of the proposed autonomous 

CF system. The proposed architecture is composed of modules 

in the form of BPN, and such a modular BPN can be operated as 

a CF platform run at a trading partner location connected to 

other locations. At present, the proposed CF system has been 

experimented and developed by MATLAB neural networks tool 

box. At this moment, although it is not a web developed one, 

conceivably and expectably the idea and logic of programming 

modules and their uniform interfaces providing a consistent and 

platform-independent baseline CF mechanism are still suitable 

for developing a CPFR system on WWW. In the future, the 

modular BPN allows for the flexible and convenient extension 

to new autonomous collaborative SDC tasks.  

 

Fig. 4 CF features input to an autonomous modular  

BPN-based SKU predictor   

 

Fig. 4 illustrates an example of an autonomous modular BPN 

used to forecast the future situation of several SKU sales 

transacted by a trading partner. The key factors affecting the 

SDC balance, such as historical sale trend, tracing SKU 

inventory position and variability, promotion and seasonality, 

goods transaction and certain economic factors can be taken 

into account since the modular BPN can deal with the mixed 

data with different types. The conventional statistic CPFR 

process, however, is difficult to answer all SDC factors with 

diverse measure units and assortment of all SKUs. The factor 

values of the factors vary from partner to partner.  

Fig. 5 shows architecture of the proposed autonomous CF 

system, which introduces a modular, hierarchical framework 

consisted of a local level at the bottom and a global level at the 

top. The similar framework can be found in [25] and [26]. The 

modularity of the system introduces parallelism naturally. 

Modularized BPN predictors can run at the same time, and their 

outcomes are aggregated to become the data input to the 

manufacturer’s BPN prediction module for getting and sharing 

the sales information in the global SDC. Fig. 6 shows a numeric 

example of the aggregated data from local trading partners to 

their manufacturing supplier for its global SDC prediction. The 

data values were scaled between 0.1 and 0.9 for meeting the 

requirement of activation task during the BPN training and 

solution processing.  

 

 

Fig. 5 Structure of the proposed autonomous modular BPN-based CF 

system  

 

The proposed logic of performing CF tasks is according to 

the combination of local BPN predictors. The local BPN 

prediction module is trained by the sales and SKU data of the 

corresponding trading partner and is adaptively updated online, 

based on the previous and current data. The logic is hierarchical 

and allows complex learning problems to be solved by dividing 

the problems into a set of sub-problems. It can be modified or 

extended for matching the structure of the applied SDC 

problem.  

VII. DATA GENERATION AND EXPERIMENTAL RESULTS    

Based on the computer implementation and experiment 

experiences of authors’ previous works [6] and [17], the 

proposed autonomous CF system was experimentally evaluated 

using simulated data sets in this section. The experiments of 

forecasting the SKU situations for a future target period are 

depicted as follows.  

Given past experienced target SKU records as the target 

values of a modular BPN for a trading partner, they were paired 

with the corresponding input vectors that were formed by 

marketing factors shown in Fig. 4 to generate the learning set of 
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the paired vectors. The marketing factors considered includes 

the following 25 forecast features: SKU price, SKU change, gas 

price, inflation rate, marketing interest rate and current month 

index for the same month of both last year and current year and 

for the previous two successive months of current month, in 

addition to promotion, season, regional demography and media 

impact; therefore, the number of input neurons in a module BPN 

is 25. The output neurons are 5 if 5 assorted SKU sale trends are 

considered for a trading partner (see Fig. 4). 5 time series data 

respective to these 5 SKUs were randomly generated based on 

the statistic normal distribution. Suppose 4 trading partners (3 

local partners and one manufacturer) were in the simulated 

SDC, the total of random time series generated was 20 in which 

the 5 SKU series of data for the manufacturer were the 

combined ones from other three local partners (see Fig. 6). 

Besides, a window of successive 10 values for each series data 

was sampled with the scaled bounds of data magnitudes for the 

generation of diverse series that were needed to represent 

varying degrees of the forecast factors’ situations; therefore, the 

simulated 20 SKU sales time series data were randomly tuned 

by a perturbation operation with three sigma variance (±3σ ). 
This perturbation made each input vector a number of operating 

levels as well as the corresponding target data can represent the 

full range of the simulated system behavior.   
  

 
Fig. 6 The aggregated data from trading partners to their supplier 

 

After a number of the perturbation operations, a wide variety 

of the 20 sets of the simulated historical SKU sale trends with 

the 25 CF factors was generated and used as the training sets of 

the proposed modular BPN-based CF system. The generation of 

all of the 20 time series data were performed with MS Execl and 

sent to the proposed system made by MATLAB utilization tool 

box. An example of generating a SKU historical sale tread with 

the 25 CF factors for a modular BPN is described below.   

Given a time series ( ) ( ) ( )1 2, , ,
i

p p p

nx t x t x tK  as an input 

vector ( )pX t and the associated desired target ( )pd t , where p 

is an index of sampling window, and 25in = = the number of 

CF factors, the value of target ( )pd t was paired with its 

relative input vector ( )pX t for the modular BPN training. A 

modular BPN was trained by off-line and on-line phases.   

In the off-line phase, the weights W and V of a module BPN 

were adapted by minimizing the energy function (12). 

As ( )D t was known, simulated data vector were consecutively 

fed into the 25 input neurons and intermediate activated 

information was propagated forwards to the output layer. 

Comparing ( )Y t to ( )D t , all connection weights were updated 

by (22) to (23) of the BPN training algorithm depicted in the 

former section.  

In the on-line phase, the observed output data 

vector ( )Y t with respect to ( )X t were obtained after each one 

time lag, namely, the output data ( )1py t + was turned back to 

be the vector re-input to the module shown in Fig. 4. When the 

module got the fed-back output data vector, it produced a 

corresponding prediction, and the desired vector corresponding 

to this predicted value was the newest re-sending data vector. 

However, the weights were kept unchanged. The same 

procedure repeated for the following fed-back data vectors. For 

instance, the coming data vector ( )X t was the desired value 

of ( 1)Y t + . Since then, the weights of the module could be 

updated on-line by the same BPN training algorithm. The 

autonomy of the proposed CF system was performed by this 

on-line training and forecasting.  

Yet, it should be known that the BPN learning is often faced 

with the problem of deciding which learning vectors should be 

memorized for the future generalization of solution. Learning 

too many data may result in mixed and confused memorization 

(improper weights), which is called over-fitting result, and long 

learning time, which is called over-learning process. These two 

abnormal conditions may cause oversensitivity to noise, which 

means that a genuine solution may be incorrectly generalized. 

The conventional method used to overcome these two 

abnormalities, and will be used in the following experiment, is 

called cross-validation [27]. This validation procedure is 

performed by perturbing (described in the former section) the 

data in learning set for the prevention of learning similar feature 

vectors, and by partitioning the learning set into several (S) 

subsets in which some of them are for learning and the 

remaining subsets for testing. This data division process is 

repeated (“crossed”) S times by changing the test segments, and 

the performance is measured by the validation error between the 

BPN predicted and original data in test subsets.  

To do the experiment of the proposed autonomous CF 

system, the system was trained by 1700 data vectors and tested 

by the remaindering 300 data vectors, which were extracted 

from the 4 simulated trading partners. Table I gives the partial 

training data simulated by the Execl software. It contains the 

time, order code and SKU type and its current quantity, and 

other factors are not shown because of the limited size of the 

paper. One data vector representing a SKU transaction situation 

was generated at the end of a random time. In this experiment, 

the training of the proposed autonomous CF system was 

performed by its four modular BPNs, simultaneously.  
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The aim of the system is to predict the l
th
 sample 

ahead, ( )py t l+ , where l = 1 means for single-step ahead 

forecasting and l = 10 for 10-step ahead forecasting. The 

experimented scheme is based on the following five steps:  

(1) Each of the 20 time series was decomposed into training and 

testing subsets for the cross-validation of the system.  

(2) Each of 5 SKU records simulated for a trading partner was 

trained by the partner’s modular BPN.  

(3) The different training results of the “crossed subsets” of a 

SKU were validated respectively with its “test subsets” for 

determining the best trained BPN module; meanwhile, the 

autonomous CF system was established as the best 4 trained 

BPNs was had been determined completely.  

(4) Using the completed autonomous CF system to perform the 

single-step ahead forecasting for each SKU of the 4 trading 

partners. The different forecasting outcomes of the BPN 

modules were regarded as the targeted SKU situations that 

were the next on-line training samples for the new simulated 

SKU sale trend prediction.  

(5) Forecasting l-step ahead of one or more SKU stock levels, if 

necessary.  

 
TABLE I 

THE PARTIAL TRAINING DATA GENERATED BY THE EXCEL SOFTWARE 

Time Order 

Code 

SKU Quantity Time Order 

 Code 

SKU Quantity 

0 001 C 245 80.0 051 A 155 

0.4 002 B 202 82.2 052 B 204 

1.1 003 C 246 82.9 053 A 160 

1.3 004 C 231 84.6 054 A 141 

3.5 005 B 204 86.6 055 C 239 

4.4 006 C 258 87.9 056 A 152 

6.6 007 B 213 88.7 057 A 144 

7.2 008 B 191 90.9 058 B 201 

8.7 009 A 150 91.9 059 A 136 

10. 010 B 214 93.9 060 A 150 

12.4 011 C 240 95.0 061 C 225 

13.7 012 A 139 96.0 062 C 256 

16.0 013 C 229 97.0 063 B 207 

17.7 014 C 229 100.0 064 A 151 

20.1 015 B 214 103.0 065 C 259 

22.1 016 C 262 104.6 066 C 264 

 

Fig. 7 shows the four training curves of the same kind of SKU 

for the four simulated trading partners. It can be seen that all of 

the 4 convergence speeds were slow and the curves were 

“flatten” since the sizes of the training vectors were very large. 

Fig. 8 illustrates the prediction accuracy in terms of the 

differences between the original and predicted values of the two 

SKUs considered for the simulated manufacturer. It can be seen 

that the forecast accuracy of testing subsets of the two SKUs 

seemed not like to that of the training subsets which met the 

expected results. The reasons for the larger forecasting errors 

for the testing subsets may include (1) the improper number of 

hidden neurons and (2) the lake of better BPN learning 

algorithm. Nevertheless, these two BPN weaknesses will be 

overcome using an improvement BPN learning algorithm [17]. 

More comparisons and discussions among the simulated 

manufacturer and the three simulated local partners had been 

done but are not shown here because the limited length of the 

presenting paper. Detailed work about the experiments of 

proposed autonomous modular BPN-based CF system can be 

found in [28].   

 
 

 
 

 
 

 
 

 

Fig. 7 The training curves of the simulated four trading partners 

VIII. CONCLUSION 

It is well-known that through CPFR, an enterprise is able to 

set up its SDC objective of product sales and productions so as 

to direct its global logistics system, particularly to guide how to 

reduce the product inventory level and to smooth the bullwhip 

effects. The proposed autonomous modular BPN-based CF 

system functions to achieve this objective by mans of 

assimilating marketing and production information. This paper 

positioned CF in the overall process of meeting SDC 

information requirements. It may not be as challenging as the 

integration of an intact CPFR system, but it truly is the primary 

foundation of recognizing CPFR. Besides, applied to an 

incomplete SKU input feature vector, the proposed autonomous 

CF system can perform the reconstruction of the missing 

feature(s) and the correction of outliers, which they are not 

presented in this paper but can be found in [29]. Also, applied to 

input feature vectors of lagged time series data, the proposed 

system can well perform the SKU forecasting for the upcoming 
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management of the SKU inventory. The experimented 4-partner 

SDC can be expendable and applicable to more multistage SDC 

because the SKU order and sales process at each successive tier 

remains the nature of modularity process. The results are not 

startling but may provide a useful idea in implementing an 

autonomous CPFR system. Some further improvement forwards 

to an intact CPFR system is currently under study and future 

work will focus on applicability and refinement of the updated 

ANN methodology.  
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(a-1) Error of training set of SKU A 
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(a-2) Error of testing set of SKU A 
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(b-1) Error of training set of SKU B 
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(b-2) Error of testing set of SKU B 
 

Fig. 8 Prediction accuracy of training and testing sets for two SKUs of 

the simulated manufacturer 
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