
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1134

Abstract—A key to success of high quality software development

is to define valid and feasible requirements specification. We have
proposed a method of model-driven requirements analysis using
Unified Modeling Language (UML). The main feature of our method
is to automatically generate a Web user interface mock-up from UML
requirements analysis model so that we can confirm validity of
input/output data for each page and page transition on the system by
directly operating the mock-up. This paper proposes a support method
to check the validity of a data life cycle by using a model checking tool
“UPPAAL” focusing on CRUD (Create, Read, Update and Delete).
Exhaustive checking improves the quality of requirements analysis
model which are validated by the customers through automatically
generated mock-up. The effectiveness of our method is discussed by a
case study of requirements modeling of two small projects which are a
library management system and a supportive sales system for text
books in a university.

Keywords—CRUD, Model Checking, Model Driven
Development, Requirements Analysis, Unified Modeling Language,
UPPAAL.

I. INTRODUCTION

ODEL Driven Development [1,2,3,4] is a promising
approach to develop high quality software products

efficiently. Supporting tools such as a source code generator and
several domain specific languages have been proposed [4].
However, to obtain high quality source codes, appropriate
models that meet customer's requirements should be well
defined at the requirements analysis phase which is a start point
of the system development. At the requirements analysis phase,
it is difficult to strictly define requirements analysis models (RA
models) so that they can be translated into the source codes.
This is because that the user requirements are often ambiguous,
imprecise, insufficient and incomplete. To make the RA models
precise, the developers should fully understand user
requirements and define the problems that the customer is trying
to solve as precisely as possible. Moreover, the requirements
specification is the result of analysis so that it can offer correct
and sufficient information to the following phases to generate
the final product automatically.

S. Ogata is with the Shinshu University, Wakasato 4-17-1, Nagano Nagano

380-8553 Japan (e-mail: ogata@cs.shinshu-u.ac.jp).
Y. Aoki is with Shibaura Institute of Technology, Minuma-ku Fukasaku

307, Saitama Saitama 337-8570 Japan (e-mail: ma11081@shibaura-it.ac.jp).
H. Okuda is with Shibaura Institute of Technology, Minuma-ku Fukasaku

307, Saitama Saitama 337-8570 Japan (e-mail: ma11043@shibaura-it.ac.jp).
S. Matsuura is with Shibaura Institute of Technology, Minuma-ku Fukasaku

307, Saitama Saitama 337-8570 Japan (e-mail:
matsuura@se.shibaura-it.ac.jp).

We have proposed a method of model-driven requirements

analysis [5,6] using Unified Modeling Language (UML[7]).
The main feature of our method is to automatically generate a
Web user interface (UI) mock-up from UML RA model so that
we can confirm validity of input/output data for each page and
page transition on the system by directly operating the mock-up.

Models are effective in specifying the target system by the
different aspects. However, the resultant integrated model often
has some defects that are difficult to detect on each individual
model such as omissions on entity data life cycle.

This paper proposes a support method to exhaustively check
the validity of data lifecycle for the RA model in UML by using
a model checking tool “UPPAAL” [8]. Exhaustive checking
improves the quality of the RA model which are validated
through automatically generated mock-up.

II. PROBLEMS IN APPLYING MODEL CHECKING TECHNIQUES TO

REQUIREMENTS ANALYSIS

Model checking techniques allow us to exhaustively and
efficiently check the model whether it satisfies the
specifications in temporal logic formulas or not. Therefore, to
introduce the model checking techniques into the interaction
model is a promising trial because the interaction between a user
and a system in an enterprise application is easy to become huge
and complex.

Furthermore, the later the discovery of defects, the higher the
cost of reworking becomes [16]. Therefore, it is important to
discover the defects at an early stage of the development.
However, there are some problems in applying model checking
techniques to the requirements process.

A. The Lack of Supports of Intuitive Understanding of a
Requirements Specification for Customers

Validation is very important for analysts to elaborate the
requirements specification so that they can decrease the change
of the specification at a late stage of the development. Therefore,
it is necessary for analysts to shape the visualization of a
requirements specification so that the analysts can make
customers validate correctly and sufficiently the requirements
specification.

However, it is not easy for the customers to understand a
model and specification for model checking techniques because
it has the formal expression which is unfamiliar to them.
Therefore, it is difficult for them to understand correctly and to
decide whether the requirements specification is valid or not by
using model checking techniques.

Shinpei Ogata, Yoshitaka Aoki, Hirotaka Okuda, Saeko Matsuura

An Automation of Check Focusing on CRUD for
Requirements Analysis Model in UML

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1135

Accordingly, it becomes an important issue that the method
of combining with intuitive understanding support of the
requirements specification, and utilizing model checking
techniques is actualized.

In this paper, we try to solve above-mentioned issue by
completely generating the model and specification for a model
checking technique. To achieve this, we partly expand the
notation of the RA model which employs the ability of
automatic prototyping.

Prototyping [10] which creates a mock-up of a system such as
user interface at an early stage of development is widely known
as one of the effective methods to promote the validation.
Accordingly, we have proposed a method to generate a mock-up
of Web user interface [5, 6] from the RA model so that the
customer can intuitively and easily validate the RA model of
Web enterprise application through the mock-up. The RA
model represents interaction between actors and a system in
UML.

B. The Cost-Effectiveness of Model Management in Frequent
Changes of Requirements

It is realistic to refine the requirements specification by
iterative validation because it is rare for analysts and customers
to completely understand the requirements from the beginning.
Namely, we have to pay attention to manage the model as the
specification because the change of the requirements and
specification may often appear. Therefore, the following issues
should be dealt with when we apply model checking techniques
into requirements process.
(a) The cost of managing the requirements specification, the

model and specification for the model checking techniques
in parallel because of frequent change of the requirements
is high.

(b) To validly and precisely create the model and specification
for the model checking techniques according to ambiguous
and incomplete requirements needs a high degree of skill.

(c) It is difficult to reuse the model and specification for the
model checking techniques from other development if the
model and specification are specialized to a specific
domain.

We try to solve above-mentioned issues along the following
plans.

For the issue of (a), we try to improve by automatically
generating the model and specification for model checking
techniques from the RA model so that the analysts do not need
to directly manage these model and specification.

For the issue of (b), we try to solve it by automatically
generating the model and specification for model checking
techniques as same as above-mentioned. This implies that our
method does not require the analysts to write the model and
specification including the knowledge of the model checking
techniques. To actualize this, we propose templates of the
model and specification used by the generation.

For the issue of (c), we keep the generality of the templates
high so that the analysts can use the templates regardless of
depending on domains. One of such aspects whose generality is
high is the lifecycle of data in CRUD.

CRUD is widely known as a fundamental unit of database
operation. Furthermore, a CRUD table [12] is a major example
showing that the concept of CRUD is utilized at an early stage of
a software development.

The concept of CRUD is divided into two levels as follows so
that we can enhance the generality of CRUD.

On the 1st level, it checks the validity of data lifecycle
focusing on the existence of data. For example, it checks
whether “the data always have to be created or read when the
data is updated.” The generality of this aspect is high because it
is not depending on a specific domain. This aspect seems too
simple and natural so that it does not need to ensure. However,
we assume that to ensure the validity of this aspect is difficult
because the management of the RA model tends to become
complex and unclear by making a lot of analysts share the work
in a large project. In this paper, we focus on the aspect of the 1st
level.

On the 2nd level, it checks the validity of data lifecycle
focusing on how to change the data before and after CRUD.
This aspect is easy to depend on a specific domain by according
to a business rule, a law, etc. Therefore, the generality of this
aspect is not high enough. In this paper, we do not handle the
aspect of the 2nd level because the aspect of the 1st level should
be ensured at the first.

III. REQUIREMENTS ANALYSIS MODEL IN UML AND

AUTOMATIC MOCK-UP GENERATION

At requirements analysis phase, developers extract
requirements for a system from customers and generally
specified them by defining semiformal documents. Recently,
many developers have been getting to use UML, so that
requirements specifications can be defined more formally. We
have proposed a method of model-driven requirements analysis
using UML.

We analyze functional requirements of services as well as
service analysis. Especially, because what customers essentially
want to do obviously appear within the interaction between a
user and a system, our method proposes to clearly model the
interaction.

To put it concretely, we specify business process as a service
from the following four viewpoints.
� Based on the business rules, what kinds of input data and

the conditions are required in order to execute a service
correctly?

� To observe the business rule, what kinds of conditions
should be required in case of not executing the service?
Moreover, how the system should treat these exceptional
cases?

� According to these conditions, what kinds of behaviors are
required in order to execute the service?

� What kinds of data are outputted by these behaviors?
Based on the above mentioned four viewpoints, both business

flow and business entity data which are required to execute the
target business are defined by activity diagrams and a class
diagram in UML.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1136

Fig. 1 UI mock-up generation from RA model

An activity diagram specifies not only normal and

exceptional action flows but also data flows which are related
with these actions. An action is defined by an action node and
data is defined by an object node being classified by a class
which is defined in a class diagram.

Accordingly, these two kinds of diagrams enable us to specify
business flow in connection with the data. This is one of the
features of our method on how to use activity diagram and class
diagram. Especially, the interaction between a user and a system
includes requisite various flows and data on user input,
conditions, output to execute a service correctly.

The second feature is that an activity diagram has three kinds
of partitions being named User, Interaction, and System. This is
because that these partitions enable us to easily recognize the
following activities; user input activities, interaction activities
between a user and a system which are caused by the conditions
to execute a service, and the resulted output.

The third feature is that we use an object diagram to define
concrete data for each activity, because concrete valid data
make it easy for us to confirm business process.

The fourth feature is that a mock-up which consists of Web
pages written in HTML is automatically generated from these
three kinds of diagrams. Fig. 1 shows an image of mock-up
generation. The mock-up which is a kind of final product model
enables the customers to confirm plainly and easily the requisite
business flows in connection with the data. The generated
mock-up describes the required target system except user
interface appearance and internal business logic processing.
Moreover, the mock-up enables the developer to confirm and
understand the correspondence between his/her models and the
final system. The developer defines three kinds of diagrams
along requirements analysis from such different viewpoints as
action flows, data flows and the structure, and the concrete
values. The automatically generated mock-up enables him/her
to easily understand the consistency between his/her models and
the target system. To be able to fully understand the
correspondence between each diagram and the target system, a
mock-up can be generated whenever the developer want to
confirm at the requirement analysis phase. The requirement
analysis model is defined by using the astah[11] of a modeling
tool.

IV. PROPOSAL OF HOW TO AUTOMATE THE CHECKING OF THE

VALIDITY OF REQUIREMENTS ANALYSIS MODEL

Our proposal targets to the development of the interactive
Web system that deals with entities as the core of the system
such as enterprise application. And the phase to apply our
proposal is requirements analysis from the viewpoint of
checking the feasibility of functional requirements. Also,
checking the validity of the RA model focusing on CRUD is
needed to step to fundamental design phase.

We explain our method from the following three aspects after
depicting the outline of our proposal.
� Architecture of our CASE tool to support the checking for

the validity of the RA model focusing on CRUD.
� Notation to identify CRUD actions in the RA model.
� A Template of the model in UPPAAL which is a model

checking tool, in order to support the automation of use of
UPPAAL.

At the first, we define a glossary which identifies misleading
terms. The RA model is the UML model we have proposed. A
UPPAAL model is the model of the system in the format needed
by UPPAAL. A UPPAAL specification is the specification to
check the validity of the UPPAAL model, which is represented
as formulas of CTL [9] (Computational Tree Logic) format.

A. Outline of Proposal

Unfeasible definitions of business logic in the RA model
cause critical reworking in the later stage of the development
process even if the RA model allows the analysts to capture
desirable interaction more precisely and validly.

Accordingly, we propose a method to automatically check the
validity of the lifecycle of the data which change in state by
CRUD so that such unfeasible business logic can be
automatically detected from defined interaction at an early stage
of the development process.

LibraryManagementSystemInteractionUser

display searchConditionsInputsearchConditionsInput : SearchConditionsInput

input bookName

single-select-from-list tag

searchedTags : OrderedSet<Tag>

input authorName

input abstract

execute search

searchConditionsInput : SearchConditionsInput validate searchConditionsInput

display "input is incorrect"

<<exceptional>>
[searchBookInput is incorrect]

search book
<<normal>>

[searchBookInput is correct]

display "there is no book you search"
<<exceptional>>

[searchedBooks not exist]

searchedBooks : OrderedSet<Book>

search tag

display searchResultsearchResult : OrderedSet<SearchedBook>

searchedBook : SearchedBook

select searchBooks

select name

postcondition:(exceptional)
There is no book searched under the conditions

postcondition:(normal)
A book is specified

precondition:
A user logined

<<normal>>
[searchedBooks exist]

input

- registerListedBooks : String
- BookListFile : String
- registerIndividualBook : String
- ISBNorISSN : String

ISBNorISSNInput

- search : String
- abstract : String
- authorName : String
- tag : String
- bookName : String

SearchConditionsInput

output

- currentBookNumber : Integer
- publisher : String
- publishYear : Integer
- authorNames : String
- tag : String
- bookName : String

SearchedBook

entity

- name : String

Tag

- nameKana : String
- name : String

Author

- maxNumber : Integer
- currentNumber : Integer
- publisher : String
- publishYear : Integer
- author : OrderedSet<Author>
- abstract : String
- tag : String
- name : String
- ISBNorISSN : String

Book

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1137

In this context, valid data lifecycle means that CRUD actions
are properly performed depending on the situation in which the
data to perform CRUD exist or not. In valid data lifecycle, for
example, certain data is always created or read before the
business logic updates its data. Benefits by focusing on the data
lifecycle on CRUD according to the existence of data are
explained as follows.

Firstly, analysis techniques of CRUD is reusable enough
because the techniques such as a CRUD matrix [] were utilized
over wide variety of business domains in the past. In essential,
we try to utilize techniques whose generality are high so that we
can reuse the techniques without essential change of them
depending on the kind of business domain.

Secondly, Focusing on the existence of data allows us to
decompose the complexity of functional requirements and to
concentrate to define and understand fundamental of the data
lifecycle.

This decomposition is very important to alleviate difficulties
of the process in which we derive the rigorous and correct model
from ambiguous and incomplete requirements. It is meaningful
to define detailed contracts such as pre/post-conditions
including concrete side effects but this definition from the
beginning brings us thorny confusion and workload when we
refine or maintain these contracts. The definition focusing on
the existence of data can become the basis to detail such
contracts.

B. Architecture of a CASE Tool to Automatically Generate
the UPPAAL model and UPPAAL specification

Fig. 2 shows the architecture of our CASE tool which enables
us to automate the use of a model checking tool “UPPAAL” . To
be precise, a user of the tool needs to understand the output of
the UPPAAL. The tool is developed with Java, C# and the astah
API which can get the information of the RA model from the
astah file.

Model checking by using UPPAAL

The RA model
with CRUD notation

(in an astah file)

[Pre-defined]
Templates of the

UPPAAL Specification

Generation of the model of the system and the specification in
UPPAAL from the RA model by using our CASE tool

Generated UPPAAL model Generated UPPAAL specification

[Pre-defined]
A template of the
UPPAAL model

: Process : Data

Fig. 2 Architecture of proposal

 Our CASE tool requires two inputs of a user. One is each
name of System partitions. The other is the RA model whose
notation is extended for CRUD. Also, both of a template of the
UPPAAL model and templates of UPPAAL specification are
needed by our CASE tool. And, the user does not need to
explicitly input these templates. The template of the UPPAAL
model is a thing to depict data lifecycle on CRUD, which is
called by the UPPAAL model generated from the RA model
when we perform model checking by using UPPAAL. The
templates of the UPPAAL specification are things to check the
validity of data lifecycle, which are automatically arranged as
corresponding to the RA model by our CASE tool.

Then, our CASE tool outputs UPPPAAL model and
UPPAAL specification. The user does not really need to define
these artifacts but needs to operate UPPAAL in order to confirm
the results of model checking.

From next sections, we explain about the CRUD notation,
above mentioned templates and how to confirm the results of
model checking.

C. Notation of CRUD

We propose the notation of CRUD to identify the data
lifecycle on CRUD in the RA model. Accordingly, CRUD
actions and entity data are needed to be identified. To realize
such identification, we extend the notation of the RA model
which handles a part of classes as entity and a part of actions as
business logic. The notation is extended based on UML notation
so that original one is not violated. This extension is conducted
by two ways. One is by the stereotypes which is UML standard
extension. The other is by limitations of the terms which
represent actions, object nodes and the guard condition of
specific branched flows. This limitation is quite simple and
natural to represent the data lifecycle on CRUD.

We have ever proposed a simple format for the actions in
order to avoid misreading of them by developers. Concretely,
the format is represented as “behavior (as verb) object (as
noun).” An example of the format is “create book.”

In this paper, we propose a new categorization of verbs, an
interpretation of the relationship between actions and object
nodes and new stereotypes in order to identify elements related
to CRUD in the RA model.

Fig. 3 shows an example of the activity diagram with CRUD
notation. This activity diagram depicts a typical login service.
The CRUD notation is applied only to the System partition
because entities are handled by business logic only.

Table I shows the category of verbs corresponding to the
CRUD type. The “search User from inputtedAuthentification”
action, for example, is categorized to the type of “R” .

Then, the interpretation of the relationship between actions
and object nodes is explained. The result of above-mentioned
“R” action is depicted as the object node immediately after this
action. The same interpretation is applied to the “C.” In the case
of actions of “U” or “D” , the object of each action has to be
defined as corresponding to the name of the object node as the
target.

TABLE I
ASSOCIATIONS BETWEEN A CRUD TYPE AND VERBS

Type Verbs

C create, generate
R read, get, search
U update, add, insert, change
D delete

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1138

For example, if we need to update “searchedUser” in Fig. 3,
its action will be represented as “update searchedUser.”

Table II shows the stereotypes we propose. In general, an
action of “R” often provides the null value. The oversight of this
makes analysts create invalid data lifecycle. Therefore, we
propose the stereotypes to avoid such oversights. The “nullable”
stereotype implies the possibility to return the null value. For
example, an action without the “nullable” stereotype implies
that some values exclusive of the null value are inevitably
returned. In this case, the data needed as the result has to be
created by an action of “C” before such read action. In contrast,
if a read action has the “nullable” stereotype, the analysts should
define the proper activity for the null value after such action.

Furthermore, there is one of the kinds of conditional branch
in order to check whether the value is null or not. It is necessary
to identify such condition in order to determine whether
above-mentioned “proper activity” is valid or not. Accordingly,
we propose the identifier of such condition for the guard
condition of branched flow. When the data represented as an
object node has one or more values, the guard condition ends
with “exist.” When the data has the null value, the guard
condition ends with “not exist.” For example, the guard
conditions such as “searchedUser not exist” and “searchedUser
exist” in Fig. 3 imply that the flows are branched depending on
the existence of the “searchedUser” data.

SystemInteractionUser

select access
to system

require
inputAuthentification

inputAuthentification : InputAuthentification

input ID
secret-input
password

execute login
inputAuthentification :
InputAuthentification

<<nullable>>
search User from
inputtedAuthentification

inputtedAuthentification :
Authentification

<<constant>>
searchedUser : User

display "Wrong
ID or password!"

<<exceptional>>

[searchedUser not exist]

display
loginedUser

loginedUser : UserDisplay
<<normal>>

[searchedUser exist]

Fig. 3 An activity diagram of login service

D. The Template of the UPPAAL Model and Generation of
the UPPAAL Model

The UPPAAL model is expressed as finite state machine i.e.
the state of data can be recorded based on the data lifecycle
focusing on CRUD. The purpose of the template of the
UPPAAL model is to represent the data lifecycle in such state as
the finite state machine.

The template includes three types of finite state machines.
Firstly, it represents the change in state by performing CRUD
actions shown as Fig. 4. The state in this machine transits by
messaging from the state machines corresponding to the service
shown as Fig. 7. The state machine in Fig. 7 is not in our
pre-defined templates but can be generated from the activity
diagram in Fig. 1 by using our CASE tool. For example, the
message of “r_objnul[3][1]!” in Fig. 7 which corresponds to the
read action of “search tag” in Fig. 1 is sent to the state machine
in Fig. 4. In response to this message, the state machine in the
Fig. 4 transits from “START” to “Pre_Read.” Finally, the state
in the Fig. 7 reaches “START” with the flag which records that
the data was read. The indexes of “[3][1]” are the things to
identify each data. For example, “[3][1]” implies the first data of
the “Tag” class whose identifier is 3.

Secondly, it represents the existence of data for each class
shown as Fig. 5. The state in this machine reaches to
“EXECUTE” when data of a certain class is created. Similarly,
there are the state machines for the existence of each data on
creation and on read.

Thirdly, it represents the possibility of whether the return
value is null or not, depending on the “nullable” stereotype
shown as Fig. 6. This machine randomly decides whether each
return value of read actions is null or not; but the return value for
data of the class which is never created is inevitably null.

Fig. 4 The state machine on CRUD in the template

To avoid state explosion as much as possible, we shapes how

to generate the UPPAAL model such as Fig. 7 as follows.
� The action nodes which have no relation with CRUD are

removed through the generation process.
� Meta type which UPPAAL does not count state of variable

of is used as much as possible.

TABLE II
STEREOTYPES RELATED TO CRUD

Element Type Stereotype Description

Action of “R” nullable The read action which has this
stereotype implies that the null
value may be returned.

Class constant The data of the class which has
this stereotype implies that the
data is already created by other
external systems or else.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1139

� The routine to forcibly break out of the infinite loop is
added through the generation process.

� The sequent transitions over different machines by utilizing
synchronous messages are actualized in order to reduce the
combinations of state that increase by allowing concurrent
transitions. Concretely, each machine is created so that it
always waits for the return message from another one
immediately after sending the message to it.

Fig. 5 The state machine of the existence of data in the template

Fig. 6 The state machine in the template to determine whether the

result of a read action is the null value or not

Fig. 7 The state machine which is generated from the activity diagram

in the RA model

E. The Templates of the UPPAAL Specification and
Generation of the UPPAAL Specifications

We propose UPPAAL specifications which check whether
the data lifecycle of each entity is valid or not from the
viewpoint of the existence of data. Concrete problems which
can be detected by using generated UPPAAL specifications are
explained as follows.

Oversight of the possibility of “null”: The analyst should pay
attention to correctly suppose the “null” value so as not to
introduce invalid data lifecycle. For example, the data to be read
must exist when the read action without the “nullable”
stereotype is performed. We propose templates of the UPPAAL
specification such as “A[] Object_null(m,n).Pre_Read imply

Class(m).EXECUTED” so that analysts can check the validity
of data lifecycle in above-mentioned situation. The parameters
of m and n are the identifier of classes and object node
respectively explained at IV.D, which are automatically decided
by our CASE tool according to the RA model.

Invalid data lifecycle: To create or read data is needed in
order to achieve updating or deleting its data. Although it is a
very simple principle, it seems that it is difficult to keep the
completeness of data lifecycle when the project makes a lot of
analysts share the work and when the requirements are
frequently changed. Accordingly, we propose templates of the
UPPAAL specification to ensure “the data are created or read at
some services or external systems before the action for updating
or deleting is performed.” Exactly, the read action has to
provide one or more data but not the null value in this sense. An
example of the template is “A[] Object_null(m,n).Pre_Update
imply Create(m).EXECUTED or Read(m).EXECUTED.”

We can get numerous UPPAAL specifications shown as Fig.
8 at low cost by generating the specifications based on
above-mentioned templates.

After the generation of the UPPAAL model and UPPAAL
specifications, the analysts can confirm the result of check and
the counterexamples by using UPPAAL without defining any
model and specification.

Fig. 8 The UPPAAL specifications in the UPPAAL verifier

V. PRELIMINARY EVALUATION

To evaluate the effectiveness of our method, we conducted
preliminary evaluation through small case studies. Then we
have evaluated the effectiveness of our method by comparing
each data obtained by two kinds of methods.

Firstly, we have compared the difference of the time taken by
manual review and by using our method because we expect to
decrease the time by using our method.

Secondly, we have measured the rate of recall and precision
on detected defects to pre-defined defects because we expect to
improve the correctness of detecting defects than manual
review. Finally, we discuss the effectiveness and correctness of
our method.

A. Case Study

We apply our method into two small projects which are the
development of library management system (LMS) and of a
supportive sales system for text books (STB) in a university. At
the first, the RA model of each project was manually created.
The RA model of LMS was defined by one analyst.

The RA model of STB was defined as an exercise of the class
of software engineering by three graduate students. These
systems are assumed as Web enterprise application.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1140

These analysts did not have the experience of using UPPAAL

enough. At least, one analyst was not able to correctly write the
UPPAAL model and UPPAAL specification.

The other was able to manage to correctly write the UPPAAL
model and UPPAAL specification according to its tutorial but
did not have the experience of using UPPAAL in any software
development.

There is each customer for these systems. Then, they
validated the RA model through the mock-up which was
generated form its model.

Table III and IV show the scale of these projects. The kinds
of actors in LMS are one. In STB, these are three. The kinds of
entities in LMS are 6. In STB, these are 8.

B. Steps of Evaluation

We have conducted the evaluation along the following steps.
Two analysts as participants were decided in by selecting one
analyst from each project.

Each analyst put some defects shown as table V into his own
RA model. Concretely, they put defects by removing “nullable”
or “constant” stereotypes or CRUD actions from valid RA
model. Then, they exchanged the RA model each other.

Each analyst manually discovered the defects and recorded
the time at each time when he discovered a defect. As how to
record the defects they suspected, they give a note to each
suspect action in astah.

After the manual review, each analyst automatically detects
the defects by our method. Also, they recorded the time in the
same way of the manual review.

In this evaluation, we let the analysts find the defects by
focusing on only the existence of data of which the generality is
high so that the point of view of checking can be kept fair
between the manual review and our method. Each analyst was
not able to sufficiently understand the model he reviewed
because he did not relate to the project which created its model.
However, such situation often appears in the large scale
development in which it makes a lot of analysts share the work.
Therefore, it is natural for them to review the model by focusing
on the viewpoint which has high generality. On the other hand,
we did not make them refine the RA model because they were
not able to exactly understand the requirements as the
background of the RA model.

C. Result and Consideration

The analysts were able to detail the RA model without the
modification of a part of the RA model which is transformed to
the UI mock-up. Therefore, our checking method was able to be
completely combined with the analysis method which supports
the validation by generating the UI mock-up.

90%

10%

Recall in STB

discovered

undiscovered

86%

14%

Recall in LMS

discovered

undiscovered

69%

31%

Precision in STB

correct

incorrect

86%

14%

Precision in LMS

correct

incorrect

Fig. 9 The rate of recall and precision in manual review

Fig. 9 shows the rate of recall and precision of discovered

defects in manual review. On the other hand, the recall and
precision in our method is 100%.

This reason is that the defects put were adjusted so that our
method can discover all defects. We consider that this setting
does not affect the result about whether the analysts can
correctly and exhaustively discover all defects or not. On the
other hand, this setting is inadequate if the ability of our method
for detecting the definition which will become the defects
potentially is evaluated.

As a preliminary evaluation, we focused on whether the
analysts can correctly and exhaustively discover all defects that
our method focuses on than manual review because we wanted
to evaluate the potential of our method for efficiency, easiness
and effectiveness.

As the result, the rate of recall and precision in the manual
review was decreased because it was perhaps difficult for the
modelers to correctly imagine the situation which violates the
validity of data lifecycle even if the projects were small scale.

TABLE III
SCALE OF LMS

Use cases
Number of actions

User Interaction System Total
Borrow books 3 6 6 15
Return books 8 7 4 19
Confirm history of
borrowing books

3 5 1 9

Search books 7 5 2 14
Register books 25 17 17 59

Total 46 40 30 116

TABLE IV
SCALE OF STB

Use cases
Number of actions

User Interaction System Total
Browse results of
questionnaire

3 3 3 9

Make and edit a text book
purchase list

25 12 28 65

Reserve receipts 11 10 8 29
Make and edit a purchase
plan list

32 20 15 67

Browse reservation
receipts

5 5 4 14

Process purchase 6 9 9 24
Total 82 59 67 208

TABLE V
THE NUMBER OF DEFECTS PUTTING IN THE RA MODEL

Defect types LMS STB
Oversight of the possibility of “null” 5 4
Invalid data lifecycle 2 6

Total 7 10

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1141

The activity diagrams can explicitly represent object nodes
but the data lifecycle of concrete data level cannot be visualized
on the diagram. What is worse, the activity diagrams were a
little complex so that the analysts can not completely and
correctly trace flow in manual because the services can be
variously used by users. For example, the user of LMS can
arbitrarily perform the service of “borrow books” regardless of
that the “register books” is called or not. Any books which the
user wants to borrow may not exist if the “register books” is not
called. The modelers were required to manually imagine such
situations and had to specify the defects.

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

a
ct

io
n

s
p

o
in

te
d

 o
u

t

Elapsed time [minute]

The time for discovering defects in LMS

Manual review Our method

Fig. 10 The time for discovering defects in LMS

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

a
ct

io
n

s
p

o
in

te
d

 o
u

t

Elapsed time [minute]

The time for discovering defects in STB

Manual review Our method

Fig. 11 The time for discovering defects in STB.

Fig. 10 and 11 show the time spent by discovering defects by

each way. Cumulative number of actions pointed out implies the
cumulative number of points by the analyst or of points by using
UPPAAL. The elapsed time implies the time elapsed after
starting of checking. The time of detecting a defect by using our
method implies the time from generating the UPPAAL model
and UPPAAL specifications to pointing out the incorrect action.
Such time in the manual review is the time from manually
searching the defect to pointing out the suspect action.

The time of the manual review was earlier than our method in
LMS. On the other hand, the time of our method was earlier than
the manual review in STB.

According to this result, our method can efficiently detect
defects as increasing the scales of the RA model. However, for
too small project, the overhead of generating the UPPAAL
model and UPPAAL specifications and of utilizing of UPPAAL
using the generated model and specifications was high than the
manual review.

The analyst of STB said that “In manual review, I had to point
out the defects after I grasped the data lifecycle of a certain
entity through the entire services by focusing on the entity.
Therefore, I spent a lot of time in some cases for pointing out a
defect.” In our method, the analysts did not need to grasp the
entire services because the model checking tool exhaustively
checks the RA model. Furthermore, the analysts needed less
time for detecting defects because the UPPAAL model and
UPPAAL specifications were able to be automatically and
completely generated.

As a problem of our method, the analysts needed to
iteratively use our CASE tool in order to completely remove
defects because the model checking tool can depict only one
counterexample for each UPPAAL specification even if there
are the one or more defects which can be detected by the same
UPPAAL specification at one time. Therefore, we try to
improve the architecture of the CASE tool which can round trip
support so that the analyst can efficiently utilize our method.

Another problem is the scale of this case study. To show the
significant effectiveness of our approach is needed to apply it
into larger projects. However, we showed an effectiveness of
our method from the aspects of the time for discovering defects,
the rate of recall and precision and the analyst’s opinions.

VI. RELATED WORK

A. Variation of Checking Aspects

CRUD is widely known as the useful viewpoint in order to
effectively clarify and check the specification. CRUD table [12]
often is used for analysis. CRUD table can simply visualize the
relation between the behavior and data so that analysts are easy
to understand its relation. For example, the behavior means
services, functions or actions. Also, the data means classes
which includes entities, or attributes.

However, CRUD table cannot capture the relation between
the behavior and data on the flow. Therefore, we cannot use the
CRUD table to check the validity of the relation from the aspect
of action sequence. Also, CRUD table shows the CRUD
operation if its operation appeared in the behavior at least one
time. However, its operation may not be performed through a
certain path as a result of user’s operation. We cannot
understand whether such situation exists or not, by only using
CRUD table.

In our method, the CRUD operation is represented in the
interaction flow which is depicted in the RA model. Therefore,
the RA model can resolve above-mentioned problems.
Furthermore, by using model checking techniques, we can
exhaustively and efficiently find more problems than what we
can find by grasping at CRUD table only.

B. The degree of abstraction of the Specifications

In the method proposed by Li et al. [13], the specifications
are created as specialized to a specific domain. In this way, the
specifications is useful for its domain but cannot be reused for
other domains. The specifications generated in our method can
be reused to various domains because we focused on the aspect
whose generality is high.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:9, 2012

1142

Such aspect is the data lifecycle focusing on the existence of
data on CRUD. In the method proposed by Sciascio[14], the
specifications used in a model checking tool can be exhaustively
created as combination which can be considered according to
existing specification. Such specifications are useful from the
aspect of the support of regression testing. However, it seems
that it is difficult to apply it to an early stage of the development
in which requirements frequently change because the software
may not exist and the specification may not always be valid and
correct. In our method, the proposed UPPAAL specifications
ensure absolute correctness by deriving based on fundamental
principle of the data lifecycle from the aspect of the existence of
data. Furthermore, we can combine our method with the
analysis method which can supports validation by generating
the UI mock-up.

C. Controlling State Explosion

There are a lot of challenges to control the state explosion.
One of how to control is the abstraction of the model of the
system and the specifications. In this context, the model of the
system implies requirements specification, design specification,
program, etc.

Corbett et al. [15] control the state explosion by slicing
techniques and the engine for performing abstraction.
Concretely, they perform abstraction as follows. Firstly,
unrelated components for the specification are removed.
Secondly, data abstraction is performed. Finally, they conduct
to limit the components which are used in checking. On the
other hand, the analysts are required the task such as selecting
the model of the system and so on.

In our method, the UPPAAL model is degenerated as leaving
only the sequence of CRUD actions in the System partition when
the UPPAAL model is generated from the RA model.
Furthermore, the analyst does not need the knowledge of
abstraction of the model because he does not manually adjust
the UPPAAL model.

VII. CONCLUSION

In this paper, we proposed a support method to check the
validity of the data lifecycle focusing on CRUD by combining
UML and UPPAAL. One of main features of our method is that
we can receive support not only of verification but also of
validation by using the RA model. The other is that our CASE
tool can completely generate the UPPAAL model and UPPAAL
specifications from the RA model. As the result of preliminary
evaluation, the effectiveness of our method in applying it to
larger project was confirmed. Concretely, the time for
discovering defects was reduced. Also, the analysts could
exactly detect the defects at low cost.

As the future work, we plan to evaluate our method by
applying it to larger projects of the development of enterprise
application. Also, we improve the CASE tool for iterative
usage. Furthermore, we consider how to actualize more steps in
“stepwise” support e.g. we focus on the attributes of a class, so
that we can more rigorously and particularly check the model.

REFERENCES

[1] Paulo, Rogerio; Carvalho, Adriano,Towards model-driven design of
substation automation systems, 8th International Conference and
Exhibition on CIRED, pp.1-5, 2005.

[2] Monteiro, R.; Araujo, J.; Amaral, V.; Patricio, P., Mdgore: Towards
Model-Driven and Goal-Oriented Requirements Engineering , 18th IEEE
International Requirements Engineering Conference , pp. 405-406, 2010.

[3] Forward, A.; Badreddin, O.; Lethbridge, T.C. Towards combining model
driven with prototype driven system development, 21st IEEE
International Symposium on Rapid System Prototyping (RSP),
pp.1-7,2010.

[4] Rational Software Modeler, http://www-06.ibm.com/software/jp/rational
/products/design/rsm/.

[5] S. Ogata, and S. Matsuura, “A UML-based Requirements Analysis with
Automatic Prototype System Generation,” Communication of SIWN,
Vol.3, Jun. 2008, pp.166-172.

[6] S. Ogata. and S. Matsuura, “A Method of Automatic Integration Test
Case Generation from UML-based Scenario,” WSEAS
TRANSACTIONS on INFORMATION SCIENCE and
APPLICATIONS, Issue 4, Vol.7, Apr 2010, pp.598-607 .

[7] UML, http://www.uml.org/
[8] UPPAAL, http://www.uppaal.com/, 2010.
[9] Thomas A. Henzinger. Symbolic model checking for real-time systems.

Information and Computation, 1994, 111:193-244.
[10] ACM SIGSOFT, Special Issue on Rapid Prototyping, ACM SIGSOFT

Software Engineering Notes, Vol.7, No.5, 1982.
[11] astah*, http://www.change-vision.com/
[12] van den Brink, H.; van der Leek, R.; Visser, J., Quality Assessment for

Embedded SQL, Proc. of Seventh IEEE International Working
Conference on Source Code Analysis and Manipulation, 2007 (SCAM
2007), pp.163-170, 2007.

[13] Li, H., Krishnamurthi, S. and Fisler, K.: Verifying cross-cutting features
as open systems, in international conference on Foundation of Software
Engineering ,2002

[14] Sciascio, E. D., Donini, F. M., Mongiello, M., and Piscitelli, G.: Web
Applications Design and Maintenance Using Symbolic Model Checking,
Proc. of the 7th European Conference on Software Maintenance and
Reengineering (CSMR 2003), 2003, pp. 63?72.

[15] Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby
and Zheng, H.: Bandera: extracting _nite-state models from Java source
code, Proc. the 22nd Int'l Conf. on on Softw. Eng. (ICSE 2000),
pp.439-448 (2000).

[16] Wiegers, K. E., Software Requirements, Microsoft Press, 2003.

