International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

An Automatic Model Transformation Methodology
Based on Semantic and Syntactic Comparisons and
the Granularity Issue Involved

Tiexin Wang, Sebastien Truptil, Frederick Benaben

Abstract—Model transformation, as a pivotal aspect of Model-
driven engineering, attracts more and more attentions both from
researchers and practitioners. Many domains (enterprise engineering,
software engineering, knowledge engineering, etc.) use model
transformation principles and practices to serve to their domain
specific problems; furthermore, model transformation could also be
used to fulfill the gap between different domains: by sharing and
exchanging knowledge. Since model transformation has been widely
used, there comes new requirement on it: effectively and efficiently
define the transformation process and reduce manual effort that
involved in. This paper presents an automatic model transformation
methodology based on semantic and syntactic comparisons, and
focuses particularly on granularity issue that existed in transformation
process. Comparing to the traditional model transformation
methodologies, this methodology serves to a general purpose: cross-
domain methodology. Semantic and syntactic checking
measurements are combined into a refined transformation process,
which solves the granularity issue. Moreover, semantic and syntactic
comparisons are supported by software tool; manual effort is replaced
in this way.

Keywords—Automatic model transformation, granularity issue,
model-driven engineering, semantic and syntactic comparisons.

1. INTRODUCTION

OWADAYS, the theory of model-driven engineering

(MDE) [1] has been widely used by numerous domains;
furthermore, a large amount of MDE related practices
(modeling languages, modeling techniques, model
transformation instances, etc.) have been developed to serve to
both general purposes and specific domain problems. For
example: at this moment, model transformation practices have
been widely adopted in enterprise engineering. Enterprises
build models to simulate and analyze their producing process,
information system, service production, etc. Internally, model
transformation helps enterprises to merge different
departments and modules by sharing information among them;
externally, model transformation helps different companies to
cooperate with each other by exchanging data and integrating
information. According to [2], the ability of cooperating with
other enterprises is becoming one of the core competition
factors to an enterprise. It is also stated in [2] that the
collaboration among enterprises tends to be global, dynamic
and instantaneous. So, it is important to share and exchange

T. Wang, S. Truptil and F. Benaben are with the Centre Genie Industriel,
University de Toulouse - Mines Albi, Albi, CO 81000 France, (phone: 0033-
0781304573; fax: 0033-0563493185; e-mail: tiexin.wang@mines-albi.fr,
sebastien.truptil @mines-albi.fr, frederick.benaben @mines-albi.fr).

data efficiently and effectively among heterogeneous partners
that involved in collaborations.

Model transformation provides a solution to share and
exchange data between heterogeneous partners. However,
there exist several weaknesses in traditional model
transformation practices [3]: low reusability, contain repetitive
tasks and involve huge manual effort, etc. These weaknesses
limit the usage of model transformation to serve general
purpose and reduce the efficiency of model transformation
developing process. Based on this fact, we propose an
automatic model transformation methodology (AMTM) that
combines semantic and syntactic comparisons into model
transformation process. The basic idea of AMTM has been
illustrated in our previous work [4]. This paper presents a
refined model transformation process and mainly focuses on
solving granularity issue. The semantic and syntactic checking
(S&S) mechanism has also been detailed. The combination of
model transformation process and S&S has been illustrated
more clearly compared to our previous work.

This paper is divided into six sections. In the second
section, related work to this paper is presented. Then, a refined
model transformation process is stated in the third section. The
fourth section presents semantic and syntactic checking
measurements in detail. The fifth section illustrates the
combination of model transformation process and S&S with a
use case. The final section presents the conclusion and
prospect.

II. RELATED WORK

This section is divided into three subsections: first
subsection shows the comparing result of several modern
prominent model transformation techniques, second
subsection presents the horizontal comparisons among several
model transformation practices and the third subsection talks
about the category of model transformation. At the end of each
subsection, a short conclusion is given to compare the existing
achievements with AMTM.

A. Model Transformation Techniques Comparison

In this subsection, four popular model transformation
techniques are presented briefly. They are: “ATLAS
transformation language (ATL)”, “Query/View/
Transformation (QVT)”, “Visual Automated Model
Transformations (VIATRA2)” and “Graph Rewriting and
Transformation Language (GReAT)”.

ATL [5] is a model transformation language and toolkit. Its

1835

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

architecture is composed of three layers: ATLAS Model
Weaving (AMW) [6], ATL and ATL Virtual Machine (ATL
VM). ATL provides ways to produce a set of target models
from a set of source models.

QVT [7] is a standard set of languages for model
transformation defined by the “Object Management Group”; it
covers transformations, views and queries together. The QVT
standard defines three model transformation languages. All of
them operate on models which conform to Meta-Object
Facility (MOF) 2.0 meta-models. The QVT standard integrates
the “Object Constraint Language OCL 2.0” standard and also
extends it with imperative features.

VIATRA?2 [8] is a unidirectional transformation language
based mainly on graph transformation techniques. The
language operates on models expressed following the VPM
meta-modeling approach [9]. VIATRA?2 also integrates three
sublanguages: Graph pattern language, Graph transformation
rules language and Abstract State Machine (ASM) language.
All of the three sublanguages may be used in a standalone
manner.

GReAT [10] enables the specification of unidirectional
translations between sets of models. It mainly uses graphical
notation. However, some parts are specified textually: attribute
initialization expressions and guards. GReAT is also
composed of three sublanguages: Pattern specification
language, Graph transformation language and Control flow
language.

Table 1 shows the horizontal comparisons on some
characteristics of the four techniques.

B. Model Transformation Practices Comparison

Along with the emergence of model transformation
techniques, a large number of model transformation practices
have been developed. Some of these practices just propose the
ideas of doing model transformations (needs tools to support);
while the others provide both the theoretical solutions and
supportive tools.

Generally, model transformation practices could also be
divided into two categories (as model transformation
techniques): domain specific practices and general purpose
practices.

Table II shows three model transformation practices, the
detail of these practices is detailed in [11]-[13].

TABLE I
MODEL TRANSFORMATION PRACTICES COMPARISON
. domain theoretical or
name technique . . note
specific practical
Applying CIM-to-
PIM model Combining
transformations for MDA with
the service- service-oriented
oriented MDA-based yes both development of
development of information
information system
systems
Transformation of
decisional models .
. GRALI Grids to
into UML: ATL yes both UML model
application to
GRALI grids
Applying MDE to
the (semi-) applying MDE
automatic rinciples to
development of MeTAGeM no both geﬁnepmodel
model transformation

transformations

TABLEI
MODEL TRANSFORMATION TECHNIQUES COMPARISON
name hybrid rule scheduling M-to-N note
ATL yes implicit {nFemal yes self-executed
explicit
implicit internal based on MOF
QVT no explicit yes 2.0
VIATRA2 yes external explicit yes graph rewriting

GReAT yes external explicit yes on UML models

As a short conclusion, many model transformation
techniques have been developed. According to the purpose,
these techniques could be divided into two groups: serve to
general purpose “cross-domain” and serve to specific domain.

Normally, domain specific model transformation techniques
focus on and provide single solution to particular problematic.
However, the usage of these techniques is limited, and they
are not flexible for some special cases. Model transformation
techniques, which serve to a general purpose, are always
complex and provide a wide range of functions. Comparing
with domain specific model transformation techniques,
general purpose techniques are complex. So, people needs
more time to learn to use general purpose techniques properly.
The common problem of existing model transformation
techniques is: involved huge manual effort and repetitive
tasks. To solve this common problem, an automatic model
transformation methodology that serves to general purposes, is
presented in this paper.

Many model transformation practices focus on serving to
software development process; these practices are created
based on different theories and using different techniques.
Model transformation practices are also developed for other
domains (e.g. enterprise integration). Since the number of
modeling techniques is numerous and these techniques are
heterogeneous, it is difficult for model transformation
practices to serve to a general purpose. A common problem of
these practices is: requiring users’ effort. During the process
of defining model transformation mappings, manual work is
indispensable.

Comparing to these existing model transformation
practices, AMTM uses S&S as the technique and serves to a
general purpose. The basic theories of AMTM are defined in a
main framework, which created as a refined meta-model based
model transformation methodology. The practical solution of
AMTM is implemented as software tools that combining S&S
with model transformation process. The final purpose of
AMTM is to “automatically define transformation mappings”.

C. Model Transformation Category

In general, according to [14], there are two main kinds of
model transformation approaches. They are: model-to-code
approaches and model-to-model approaches.

1836

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

For the model-to-code approaches, there are two categories:

e Visitor-based approaches: an example of this approach is
“Jamda”.

e Template-based approaches: e.g.,
Framework, JET and FUUT—je.

And for the model-to-model approaches, there are five
categories:

o Direct-Manipulation Approaches: offering an internal
model representation plus some API to manipulate this
model.

e Relational Approaches: grouping declarative approaches
where the main concept is mathematical relations.

o Graph-Transformation-Based Approaches: e.g., VIATRA,
ATOM and GreAT.

e Structure-Driven Approaches: an example is “Optimal]”
model transformation.

e Hybrid Approaches: combining different techniques from
the previous categories.

The detail of these approaches (their applicable situations,
working mechanism, etc.) and instances for each approach
could be consulted in [14].

AMTM is a model-to-model model transformation
methodology. Based on AMTM, there are two kinds of model
transformation situations. Fig. 1 shows general ideas of the
two situations.

b+m Generator

the process of making transformation mappings will be done
without special user effort.

This section is divided into two subsections: first subsection
presents the basic theories of AMTM and second subsection
shows the working mechanism of this methodology.

A. Basis Theories

In this subsection, the basic theories of AMTM are
presented in two parts: the theoretical main framework and the
meta-meta-model (MMM) involved in it.

1. Theoretical Main Framework

AMTM is created on the basis of a theoretical main
framework that shows in Fig. 2.

Source Specific Shared concopts Specific Target
meta-model Concepls (T (& T del

rules area)

r‘ e /58 o -
Source | Speeific | Shared Shared Specific

Moxdel | Part | Pan Part Part

- -

Backup /¢ _/' Ry Enrichment

Target
Model

Additional

|' Meta- | evolution [Mata- | " Meta- - Meta-
| Model A J l M@d‘al A) -\ Mﬂd@[ﬁg L Mﬂdﬂﬁ
conform cconform conform canfoml
y ¢ r r transform
| Modela ———s| Modela | [Medela ———— modelt]

(@) (b)

Fig. 1 Model Transformation Situations

As stated above, AMTM is created on the basis of meta-
model based model transformation methodology.

In situation (a), target meta-model is the evolutional version
of the source meta-model (some new characteristics have been
added); source models that conform to the source meta-model
should be transformed to target models that conform to the
evolutional target meta-model. For this situation, large amount
of research work has been done and different theories and
practices have been developed. One of the mature techniques
is “COPE” [15].

In situation (b), source meta-model and target meta-model
are created for different purposes (no evolutional relation
between them). In order to transform source models to target
models (conforming to the source and target meta-models,
respectively), model transformation mappings should be built
on the meta-model level.

AMTM provides a solution to both situation (a) and
situation (b); furthermore, there is no precondition of applying
AMTM to both situations.

III. OVERVIEW OF THE METHODOLOGY

This section focuses on the detail of the automatic model
transformation methodology (AMTM). “Automatic” means

Knowledge

W-—’-

Fig. 2 Theoretical Main Framework

This theoretical main framework is created based on the
work stated in [16]. It illustrates the fundamental theories of
the whole automatic model transformation methodology.

The significance of doing model transformation could be
“sharing knowledge”, “exchanging information”, etc. The
necessary condition of doing model transformation between
two models is: source model and target model should have
some potential common items (to be detected and found).

For the reason “models are built based on the rules defined
in their meta-models [17]”, the potential common items could
be traced on meta-model layer. AMTM relies on the meta-
model layer (mappings are defined here among shared
concepts). The source MM shares part of its concepts with the
target MM. As a consequence, the source model embeds a
shared part and a specific part. The shared part provides the
extracted knowledge, which may be used for the model
transformation, while the specific part should be saved as
capitalized knowledge in order not to be lost. Then, mapping
rules (built based on the overlapping conceptual area between
MMs) can be applied onto the extracted knowledge. The
transformed knowledge and additional knowledge may be
finally used to create the shared part and the specific part of
the target model.

In order to automatically generate the model transformation
mapping rules, semantic and syntactic checking measurements
are combined into transforming process (detecting shared
concepts on meta-model layer). The principle of applying S&S

1837

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

on model transformation process is also stated in [6]. The
mechanism of applying S&S in AMTM is defined in a MMM,
which shows at the top of Fig. 2.

2. The Meta-Meta Model

A meta-meta model defines the rules for meta-modeling;
there exists several meta-modeling architectures, for example
“MOF: Meta-Object Facility” [7]. However, these
architectures serve to general purpose; they define their own
semantic and syntax. For our project, these meta-modeling
architectures are huge and complex. So, within the theoretical
main framework, we define a specific meta-meta-model
(MMM) to serve to AMTM. The content of this meta-meta-
model determines the matching mechanism that involved in
AMTM. Fig. 3 shows the detail of this meta-meta-model.

12
+id Sting has
sname:Seing | |
1
| Model | SemanticRelation
- envuonment St | 2 has 1 [levetsing

L
PrimitiveType
oW
‘:9;'::'"9 » contains ’ "ds""s?m, /
. |* NaMe 1
name Sy 22 s valve Stng |
= g w
.“\ ha has . | <cdataTyper>
1 | Enumeration
i [SpiackRelaton |
. E +level Stng
Node < 5 |____FEdge | |
oyl | - links'” [tfomSing Sl
 ole i +10: Swing
: * |srole: Swing

Fig. 3 The Meta-Meta Model

There are ten core elements in this meta-meta-model. They
are listed as following:

e “Environment”, describes the context of a system that
models belong to.

o “Model”, stands for all kinds of inputs and outputs.

e “Element”, represents all items that could be contained in
models (elements are self-contained. The “Element” has
two inheritances: “Node” and “Edge”.

e “Node”, stands for an object or a concept; it is used to
describe a subject that exists in the world.

e “Edge”, describes the relationship between “Nodes”.
Every “Edge” links two roles (every node belongs to at
least one role).

e “Property”, is used to identify and explain the “Element”
(node or edge) that contains it. Each “Property” has a
“Data Type”.

e “Primitive Type” (string, integer, double, Boolean, etc.),
identifies property’s attribute.

e “Enumeration type” (defined by wusers), identifies
property’s attribute.

e “Semantic Relation”, exists on “Environment”, “Model”,

“Element”, and “Property” levels; it helps to define the
transformation mappings automatically.

e “Syntactic Relation”, exists only on “Element” and
“Property” levels; it works together with semantic
checking to define the transformation mappings.

Semantic and syntactic checking measurements are applied
between source and target meta-models. The detail of
executing process is presented in the following subsection.

B. AMTM Working Mechanism

In AMTM, a complete model transformation is regarded as
an iterative process: a target model could also be the source
model for the next iteration.

SM: source model TM: target model CK: capitalized knowledge AK: additional knowledge

ontology

|:| selement e :property

Fig. 4 Iterative Model Transformation Process

Fig. 4 shows the iterative issue. In each iteration phase, the
specific part from the source meta-models is stored in
ontology (the structure of this ontology is the same as the one
of MMM); the additional knowledge for the specific part of
the target model is also extracted from this ontology.

To deal with the granularity issue, the transformation
process is divided into three steps: Matching on element level,
hybrid matching and auxiliary matching for every iteration
phases.

1. Matching on Element Level

According to MMM, meta-models are made of elements.
So, model transformation mappings should be defined among
elements (nodes and edges); if two elements (come from
source model and target model, respectively) stand for the
same concept, a mapping should be built between them. As
stated above, semantic and syntactic checking measurements
are applied on a pair of elements to detect the relation between
them. The mechanism of defining matches on element level is
illustrated by an example shown in Fig. 5.

The source meta-model has ‘n’ elements and ‘m’ elements
for the target meta-model; the number of comparisons
between the two models on element’s level is: “m*n” (the
solid lines indicate parts of all the pairs).

Between each pair of elements (coming from source meta-
model and target meta-model, respectively), a specific value,
which based on their names and groups of properties, is
generated.

A matrix is created to store all these comparison values.
Table II1 shows this matrix.

1838

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

e name
nt R
Element
<O B1
=

-’(El
i

-

< Property S&S

Fig. 5 Matching on Element’s Level

TABLEIII
ELEMENTS COMPARISON MATRIX
N B emi EB2 ... EBm
EAl Ele SSV Ele SSV Ele SSV Ele SSV
EA2 Ele SSV Ele SSV Ele SSV Ele SSV
...... Ele SSV Ele SSV Ele SSV Ele SSV
EAn Ele SSV Ele SSV Ele SSV Ele SSV

Within each element’s pair, there exists an “Ele SSV”
value. “Ele SSV” stands for “element’s semantic and
syntactic value”; it is calculated based on the elements’ names
and their properties. The calculation rule of “Ele SSV” is
shown in (1).

Ele_SSV = name_weight * S_SSV + property_weight
X .
(2, Max(P_SSVi))/x (1)

In (1), “name weight” and “property weight” are two
impact factors for parameters ‘“elements’ names” and
“elements’ properties”, respectively. Both of the value of
“name_weight” and “property weight” are between 0 and 1;
the sum of them is 1. “S_SSV” stands for “string semantic and
syntactic value; it is calculated based on the words (element’s
name is a word). “P_SSV” stands for “semantic and syntactic
value between a pair of properties”. “x” stands for the number
of properties of a specific element from source meta-model
(e.g. element E Al).

The example shown below is to calculate the “Ele SSV”
value within the element’s pair of “E A1” and “E B1” (focus
on their properties’ group); Table IV is created for this
example.

“E A1” has number “x” properties and “E B1” has number
“y” properties; within each of the “x*y” pairs of properties,
there exists a “P_SSV”. Equation (2) shows the calculating
rule of “P_SSV”.

P_SSV = pn_weight*S_SSV + pt_weight*id_type 2)

In (2), “pn_weight” and “pt_weight” are two impact factors
for the parameters “properties’ names” and ‘“properties’
types”, respectively. The sum of “pn_weight” and “pt_weight”
is 1. “S_SSV” is the same as stated in (1); this time, it stands
for the semantic and syntactic value between two properties’

names. “id_type” stands for “identify properties type”. If two
properties have the same type, this value is 1; otherwise, this
value is 0.

TABLE IV
PROPERTIES COMPARISON MATRIX
EAI EBI pl P2 . Py
P1 P_SSV P_SSV P_SSV P_SSV
P2 P_SSV P_SSV P_SSV P_SSV
...... P_SSV P_SSV P_SSV P_SSV
Px P_SSv P_SSV P _SSV P_SSV

Based on (1) and (2), Tables III and IV could be fulfilled
with calculated values. For each element (E Al, E A2...) of
the source model A, it has a maximum “Ele SSV” with a
specific target model element (E B1, E B2...); if this value
exceeds a predefined threshold value (e.g. 0.5), a mapping is
built between the two elements. Moreover, matching a pair of
two elements requires building mappings among their
properties; Table IV also provides necessary and sufficient
information to build mappings on property level (for a
matched pair of elements). The rule of choosing property
matching pairs is the same as choosing element matching
pairs.

After this matching step: mappings on element level are:
“one-to-one” and “many-to-one’’; mappings on property level
are “one-to-one” and “many-to-one” (constraint with matched
element’s pairs). In order to solve granularity issue (‘“many-to-
many”) on both element’s and property’s levels, another two
matching steps that stated in the following subsections are
necessary.

2. Hybrid Matching

After first matching step, some of the elements (both
belonging to source and target meta-models) are still
unmatched; even the matched elements, some of their
properties are still unmatched. The hybrid matching step
focuses on these unmatched items.

This matching step works on property level, all the
matching pairs are built among properties (come from both the
unmatched and matched elements). Fig. 6 is a simplification of
this matching step.

Source Meta-Model: A
Matched elenents Unmatched properties

L EAL ="

S - Target Meta-Model: B
3 Mappings on progerties Matched & unmatched
L EAZ . properties
‘»\,-’J - EB1.)
- < —
Unmatched elements & properties v c
& - L EB2
. nam .
LEBy ' A o properties e = S ET,
S, type =
CEMS) = A :
iy <A

Fig. 6 Hybrid Matching Illustration

All the unmatched properties from source model will be

1839

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

compared with all the properties from target model. A
comparison matrix (similar to Table 1V) is created to help
complete this step. The mechanism of building such matching
pairs is also depending on semantic and syntactic checking
measurements (based on properties’ names and types).

In hybrid matching step, all the matching pairs are built on
property’s level.

This step breaks the constraint: property matching pairs
only exists within matched element’s pairs; this constraint is
the main granularity issue involved in model transformation
process. However, it is also necessary to consider about the
influence from element’s level when building mappings in
hybrid matching step. The matching mechanism of this step is
shown in (3).

HM_P_SSV = el_weight*S_SSV + pl_weight*P_SSV 3)

In (3), “HM_P_SSV” stands for “hybrid matching property
semantic and syntactic value”. “el _weight” and “pl weight”
are two impact factors for the parameters “element level” and
“property level”, respectively. The sum of “el weight” and
“pl_weight” is 1. “S_SSV” is calculated between two
elements’ names (for source property and target property,
respectively). “P_SSV”, as stated in (2), calculates the syntactic
and semantic relation between two properties based on their
names and types.

This step achieves “one to many” matching mechanism on
element’s level, and on property level matching breaks the
matched elements’ constraint: properties from one source
element could be matched to properties that from several
target elements.

With the help of matching pair choosing mechanism (which
explained later in this section), on both element’s and
property’s levels the mappings are “many-to-many” after the
first two matching steps.

3. Auxiliary Matching

After the first and second matching steps, all the shared
parts (presented in the theoretical main framework) between
source model and target model are regarded to be found.
However, according to the iterative model transformation
process that mentioned at the beginning of this subsection,
there are still some specific parts should be stored as
capitalized knowledge or enriched as additional knowledge.
Auxiliary matching step focuses on the mechanism of storing
and reusing these specific parts from both source and target
models.

As illustrated above, all the unmatched items from source
model, which regarded as specific part, are stored in ontology
(which is called “AMTM_O” within this project). AMTM_O
designed with the same structure as the meta-meta-model that
shown as Fig. 3. For a complete model transformation process,
the capitalized knowledge from former iterations could be
used as the additional knowledge to enrich the target models
that generated in the latter iterations.

In some cases, the capitalized knowledge within only one
iterative process is not enough to generate all the additional

knowledge that needed in the same process. So, the capitalized
knowledge from other model transformation process is needed
to supplement to such cases. All the model transformation
practices, which solved with AMTM, keep specific parts that
stored in AMTM_O as capitalized knowledge. With the
increased number of model transformation practices that
solved with AMTM, the content of AMTM O grows
correspondingly. Furthermore, knowledge from other
ontologies could also be extracted and stored in AMTM_O
(conform to its structure).

Auxiliary matching step is created with the help of
AMTM_O, semantic and syntactic checking measurements are
the tools used to extract information from AMTM_O in this
step.

4. Matching Pair Choosing Mechanism

According to the three former sub-subsections, the relation
between two elements (come from source and target models
respectively) is represented by a value between 0 and 1, which
calculated by semantic and syntactic comparisons. Based on
this value, each element from source model could be matched
with “zero to several” elements from target model. The
mechanism of selecting matching elements pairs depends on
the range of this value. Fig. 7 reveals the basic principle.

Semantic

0.8 0.9 1 Syntactic

a b

Fig. 7 Matching Pair Choosing Mechanism

For choosing element’s matching pairs, two threshold
values: 0.5 and 0.8 are assigned. As shown in Fig. 7 (a), if two
elements have a relation value in region 1 (value between 0.8
and 1), a transformation mapping is built between them; if this
value is in region 2 (value between 0.5 and 0.8), a potential
mapping exists between the two elements; else, if this value is
in region 3, no mappings will be built between them.

Fig. 7 (b) shows the mechanism of choosing matching pairs
of words: elements’ names. Between two words, strong
semantic relation means high potential of making mappings.
Region 1 stands for two words that have close relationship:
could transform to each other. Region 2 stands for two words
have strong relationship: potential transform pair. Region 3
means two words have weak relationship: low possibility to
transform to each other. Region 4 is special; it stands for word
pairs that have close syntactic relation but very weak semantic
relation. For example, word pair: common and uncommon,
they could not transform to each other.

On property level, it is following the same choosing
mechanism of making mappings.

In this way, an element (or a property) may have several
potential matching items. So, from source model to target

1840

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

model, a “many-to-many” matching relationships are built on
both element and property level.

IV. SYNTACTIC AND SEMANTIC CHECKING MEASUREMENTS

Semantic and syntactic checking measurements play a key
role in AMTM. They work together to define a relationship
(stands by a value between 0 and 1) between two words. As
stated in (1) and (2), the “S_SSV” stands for the semantic and
syntactic value between two words; the calculation method of
“S_SSV” is shown in (4).

S_SSV = sem_weight*S_SeV + syn_weight*S_SyV @)

In (4), “sem_weight” and “syn_weight” are two impact
factors for semantic value and syntactic value between two
words. The sum of them is 1. “S_SeV” stands for the semantic
value between two words, while “S SyV” stands for the
syntactic value.

A. Syntactic Checking Measurement

Syntactic checking measurement is used to calculate the
syntactic similarity between two words (elements’ and
properties’ names in our case). There exists several syntactic
checking methods; majority of them use classic similarity
metrics to calculate the syntactic relations. As stated in
reference [18], such methods are: “edit-distance metrics”, “fast
heuristic string comparators”, “token-based distance metrics”
and hybrid method.

The syntactic checking measurement involved in AMTM
could be divided into two phases:

e Pretreatment: focuses on finding if two words that in
different forms (e.g. tense, morphology) stand for a same
word.

e “Levenshtein Distances” algorithm [19].

For pretreatment, Table V shows several pairs of the
situation: two words that in different forms (e.g. tense,
morphology) stand for the same word.

TABLE V
SYNTACTIC PRETREATMENT SITUATIONS
Case Word 1 Word 2 Example
1 word 1 + ‘s’ at end son & sons
2 Ends with ‘s’ “sh”, word 1 + “es” at end match & matches
“ch”, *x’
4o
3 word 1 + “ing” at the do & doing
end

4 Ends with ‘y’ change ‘y’ to ‘i” + “es” city & cities
5L s

For some specific cases (e.g. man and men), which are not
followed general transformation rules, pretreatment phase
does not consider about them.

If two words are not satisfied the conditions defined in the
pretreatment, “Levenshtein Distances” algorithm is applied
between them. This algorithm calculates the syntactic
similarity between two words; it is based on the occurrences
of the letters that involved in two words.

“Levenshtein distances” is equal to the number of
operations needed to transform one string to another. There

are three kinds of operations: insertions, deletions and
substitutions. During the calculation process, a two-
dimensional table is created to store the transformation
information. The basic theory and concrete executing process
of this algorithm is stated in [19].

Equation (5) shows the calculation rules of syntactic
relation between two words: wordl and word2, which based
on “Levenshtein distances”.

S_SyV=1-LD / Max (wordl.len, word2.len) &)

In (5), “S_SyV” stands for the syntactic similarity value
between wordl and word2; “LD” means the “Levenshtein
distances” between them. The value of “S_SyV” is between 0
and 1; the higher of this value means the higher syntactic
similarity.

B. Semantic Checking Measurement

Different to syntactic checking measurement (relies just on
the two comparing words); semantic checking measurement
relies upon a huge semantic thesaurus which contains large
amount of words, their semantic meanings and semantic
relations among these words. A huge semantic thesaurus
(AMTM_ST) has been created for serving to AMTM, and
AMTM_ST is based on the basis of “WordNet” [20]. Fig. 8

shows the structure of this semantic thesaurus.

- Belo
P Word | "8
jord 1
— Sensekey _sense | Synset
- !
Semantic
Word Belo
Wmd Sensekey Sensekey sense I " relation
r . SenseKey Belong |
Word 3 Word | } Synset
L 1 |
SenteKey Sen;eKev_ Sense ’
| Semantic
‘Word =i relation
Word Belong
Sensekey 1 sansgi]
Word | Synset

Fig. 8 Structure of AMTM_ST

As shown in Fig. 8, there are three kinds of items in

AMTM_ST, they are listed as following:

e Word base: contains normal English words (nouns, verbs
and adjectives).

e Sense base: contains all the word senses; a word could
have “one or several” senses. For example: word “star”: it
has six senses; as noun, it has four senses; as verb, it has
another two senses

e “Synset” base: a group of word senses that own synonym
meanings; semantic relations are built among different

synsets.
There are seven kinds of semantic relations that defined
among synsets: “synonym”, ‘“hypernym”, “hyponym”

“iterative hypernym”, “iterative hyponym”, “similar-to” and
“antonym”. For each of the semantic relations, a specific value

1841

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

(between 0 and 1) is assigned to it. Table VI shows these
semantic relations and their values pairs.

In Table VI, all the “S _SeV” values are assigned directly
(based on experience); these values could be assigned with
more reasonable methods.

TABLE VI
SEMANTIC RELATIONS AND VALUES INAMTM ST
Semantic relation S SeV Remark Example
synonym 0.9 words from the shut & close
same synset
two synsets have
hypernym 0.6 this relation person-creator
two synsets have
hyponym 0.8 this relation creator-person
similar-to 0.85 only b'etheen two perfect & ideal
adjectives
antonym 0.2 Wo.rds have. good & bad
opposite meanings
iterative Math.Power iterative hypernym person-creator-
hypernym (0.6, n) relation maker-author
iterative Math.Power iteritance hyponym author-maker-
hyponym (0.8, n) relation creator-person

As a word may have different word senses (furthermore,
may belong to different synsets), there might be several
semantic relations that exist between two words. So, the
number of “S_SeV” values between two particular words is
not limited to one. In our project, we focus on finding the
maximum “S_SeV” value between two words (for the purpose
of selecting potential shared concepts as matching pairs).
Based on this cognition, the process of detecting semantic
relations between two words should be serialized.

In order to define the semantic relation between two words,
there are several steps to follow:

o First, locating two words (element’s or property’s names)
in AMTM_ST. However, at this moment, only form
English words that in simple case could be located in
AMTM_ST.

e Second, finding all the word senses of the two words and
grouping these word senses into two sets.

e Third, tracing all the synsets, which the two sets of word
senses belong to, and grouping these synsets into two
groups.

Fig. 9 is an illustration of the three steps.

Semantic relation build

isetd <— WordSensed
» Word Sensel ——» Synsetl g 7 Fhyns

¥ BSynselS < Ward Senses

Word2

Word Sensed ——= Synset2 4

s Bynseth < rd Sensa
4 WO SEnse3 — s Synsetd £ “ 1gsynset6 <— Word Sense6

ey nset7? «<— wordsenss?

Fig. 9 Synsets Locating

After getting two synsets groups, the final step is to detect
the semantic relations that exist among all the possible synset
pairs (one from word1 side, the other from word2 part). In Fig.
9, the red dash lines show these possible pairs (not all of
them). The detail of detecting process is shown in Fig. 10.

wynnet group A

bpermuem T @

hyponym | synset growp B | 3

g belongs
4 i o vond2

¥ the two ends are the same

Fig. 10 Semantic Relationship Detecting Process

After locating the two synsets groups, which wordl and
word2 belong to, next step is to detect the semantic relations
that exist among these synsets. Fig. 10 only shows the
mechanism of detecting five kinds of semantic relations:
synonym, similar-to, hypernym, hyponym and antonym. The
basic principle is: search all the synsets that have these five
kinds’ of semantic relations with the synsets in “synset group
17, then comparing if there exist one synset in “synset group
2”, which is the same as one of the located synsets.

The detecting process of “iterative hypernym” and
“iterative hyponym” semantic relations is more complex than
these five semantic relations that illustrated in Fig. 10.

The detecting mechanism for “iterative hypernym” and
“iterative hyponym” semantic relations is same. Fig. 11 is an
illustration of detecting “iterative hypernym” semantic relation
between two words.

Word1 Word2 Comparisons
Synset - L e L
Y 1 }
Hypernym Synset LV1 ' X | = 3*4
Hypernym Synset LV2 @ @ 93 3*4
Hypernym Synset 1V3 @ @ 2*4
a4
Hypernym Synset LV4 ¢ 1*4

Fig. 11 Iterative Hypernym Relation Detecting

The basic idea of this detecting process is: locating the
synsets that have hypernym relation with wordl’s synsets
iteratively and comparing with word2’s synsets, in order to
find two same synsets.

The basic information of doing all these semantic checking
measurements is provided by AMTM_ST. So, the content of
AMTM_ST should be really. Table VII shows the content that
stored in AMTM_ST.

As shown in Table VII, large amount of words with their
word senses and synsets are stored in AMTM_ ST. The
semantic relations that built among these synsets have been
shown in Table VI.

TABLE VII
AMTM ST CONTENTS
Item Number
word 147306
word sense 206941
synset 114038

1842

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

These synsets could be divided into three groups and each
group contains several kinds of semantic relations. Table VIII
shows the detail of synsets categories.

TABLE VIIT
SEMANTIC RELATIONS IN DIFFERENT SYNSETS

Synset Number Semantic relation
noun synset 82115 synonym, hypernym, antonym, hyponym
verb synset 13767 synonym, hypernym, antonym, hyponym

adjective synset 18156 synonym, antonym, similar-to
synonym, hypernym, antonym, similar-to,

total 114038
hyponym

Table VIII lists the categories of synsets and the semantic
relations that built on each synset category. As stated
previously, semantic relations: hypernym and hyponym are
iterative; it means the two semantic relations could have
several levels of nesting.

C.Short Conclusion

By using syntactic and semantic checking measurements, a
“S_SSV” value could be generated between two words. When
the words stand for properties’ names, an approximate value
between two properties is generated (properties’ types are also
considered). When the words stand for elements’ names, an
approximate value between two elements is generated (the
summary of approximate value on their properties’ level are
also considered).

Based on all these approximate values that generated on
both elements’ and properties’ levels, transformation
mappings could be built between source and target models.

Combining syntactic and semantic checking measurements
into process of AMTM (three matching steps that mentioned
in the third section), an automatic model transformation
process is generated.

V. USECASE

In this section, a simple use case will be presented to show
the working mechanism of AMTM. We test the matching
possibility between two elements (each of them has several
properties), and show the whole comparison process.

The test use case is shown in Fig. 12.

As stated above, model transformation mappings are built
on meta-model level, and focused on elements and their
properties. In this test case, there are two elements: “student”
and “person”. They have four properties and come from
source meta-model and target meta-model, respectively. We
will apply AMTM on the two elements and calculate the
matching possibility between them based on their names and
properties’ groups.

According to (4), the S&S value between two elements’
names could be calculated.

Equation (4) uses the results that shown in Table VI and (5)
to calculate semantic value and syntactic value between two
names, respectively. At this moment, we consider more about
the semantic relation than syntactic relation (assign
“sem_weight” as 0.9, “syn weight” as 0.1 in (4)). So, the
calculated “S_SSV” value between two names “student” and

“person” is: 0.743. Next step is to calculate the S&S relation on
their property level based on (2) and Table IV. Table IX is
created for this test case.

b

| Source Meta-Model: A ‘ Target Meta-Model: B

/

L 4
Fig. 12 Test Use Case

When calculating the values in Table IX, both properties’
names and their types are taken into consideration. To
AMTM, property’s name is more important than its type for
making mappings. So in (2), we assign “pn_weight” as 0.8 and
“pt_weight” as 0.2. With the help of (4) and Table IV, Table
IX is fulfilled.

TABLE IX
PROPERTIES COMPARISON IN TEST CASE
student surname forename gender address
person
name 0.8936 0.888 0.2136 0.7946
age 0.0229 0.02 0.4856 0.2229
address 0.2 0.21 0.6366 1
sex 0.2114 0.21 0.8616 0.6366

Finally, the final S&S value between the two elements is
calculated as: 0.7766. We treat elements’ names and their
properties’ groups as equal importance (based on (1), both
“name_weight” and “property weight” are assigned 0.5).

According to the matching pair choosing mechanism that
illustrated in the third section, the two elements are considered
as a potential matching pair.

In this test case, it just shows the process involved in the
first matching step: matching on element level. For the other
two matching steps, they use the same comparing mechanism
(S&S). The only difference is: the hybrid matching focuses on
property and the auxiliary matching step relies on AMTM_O.
The second and third matching steps could solve the
granularity issue involved in model transformation process.
On both element level and property level, the matching
mechanism is “many-to-many”. Furthermore, element and
property could be transformed to each other.

VI. CONCLUSION

In this paper, an automatic model transformation
methodology (AMTM) is presented. According to the real
requirement, model transformation should be done effectively
and efficiently, semantic and syntactic checking measurements
are combined into model transformation process.

As theoretical foundation, a main framework is created;

1843

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

within this framework, a meta-meta-model is defined (the

mechanism of applying semantic and syntactic checking

measurements are defined in this meta-meta-model). For the
semantic checking measurement, a specific semantic thesaurus

(AMTM_ST) is built. To deal with the granularity issue,

model transformation process is regarded as iterative and

within each iteration phase, the transformation process is
divided into three steps. Furthermore, a specific ontology

(AMTM_O) is created to support the third matching step. This

AMTM_O helps to store specific parts from source models

and enrich specific parts for the target models.

However, there are some points in this AMTM that needed
to be improved in the future.

e The impact factors such as “sem weight”, “pn_weight”
and threshold values for choosing matching pairs: the
better way to assign them is “using some mathematic
strategy” (e.g. “choquet” integral; one of the usages of
“choquet” integral is stated in [21]).

e Semantic checking measurement: only formal English
words are stored in the semantic thesaurus with semantic
meanings; not for words that in specific cases or phrase.

o The S SeV values that are defined in Table IV: More test
cases are needed to modify these values into reasonable
scope.

e Matching pair choosing mechanism: we aim at finding the
strongest semantic relation between two words, but maybe
the semantic meaning is not the exact one that the words
conveyed within a specific context.

Furthermore, the usage of AMTM is not limited to one
domain; AMTM aims at transforming and combining rough
data to information (with specific structure and format), and
allows “MDE” theories to serve other engineering domains.

Fig. 13 shows the scientific contribution of AMTM:
converting rough data to information.

Dara collect and analysis * Semantic and syntactic —> Transiorm data structure and i
comparing forma: & Data combination
Information An overview (huge model) contains all necessary informztion (not repeat)
domain independent
N
)
!
A
Data \

Fig. 13 AMTM Scientific Contribution

Many data collectors such as: sensors, smart equipment,
computers, could gather rough data from a particular region or
domain. Generally, this kind of data focuses on different
purposes and reflects different views of a system. Moreover,
different collectors store data in heterogeneous structures. So,
it is difficult to make use of this kind data as a whole.

AMTM regards these collected data as many single

models, and wuses semantic and syntactic checking
measurements to detect the intrinsic links among them.
Finally, after transforming and combining these data, a huge
model (overview of a specific system) is generated. This huge
model contains all the useful (not overlap) information.

With rules that defined in specific domains, such
information could be transformed to knowledge which serves
to domain specific problems.

By combining semantic and syntactic checking
measurements into model transformation process, an efficient
model transformation methodology “AMTM?” is created. With
the improvement on some detail aspects, this methodology
could serve to a large number of domains in practice.

REFERENCES

[1] DC. Schmidt, Model-Driven Engineering. IEEE Computer, February
2006 (Vol.39, No. 2) pp. 25-31.

[2] J. Touzi, JP. Lorré, F. Bénaben, Interoperability through Model-based
Generation: The Case of the Collaborative Information System (CIS)
(J)]- Enterprise Interoperability, 2007: 407.

[3] M.D. Del Fabro, P. Valduriez, Towards the efficient development of
model transformations using model weaving and matching
transformations. Software & System Modeling, July 2009, Volume 8,
Issue 3, pp 305-324.

[4] T. Wang, S. Truptil, F. Bénaben, “Semantic approach to automatically
defined model transformation.” International Conference on Model-
Driven Engineering and Software Development
(MODELSWARD 2014), pp. 340-347.

[51 F. Jouault, F. Allilaire, J. Bézivin, 1. Kurtev, ATL: A model
transformation tool. Science of Computer Programming. 2007, Volume
72, Issues 1-2.

[6] M.D. Del Fabro, J. Bézivin, F. Jouault, E. Breton, AMW: A Generic
Model Weaver. 2005, 1ére Journées sur I'Ingénierie Dirigée par les
Modeles: Paris.

[77 OMG: QVT. Meta Object Facility (MOF) 2.0 Query/View/
Transformation Specification OMG (2008)
http://www.omg.org/spec/QVT/1.0/PDF

[8] D. Varr'o, A. Balogh, The model transformation language of the viatra2
framework. Sci. Comput. Program 68(3), 214-234 (2007).

[91 D. Varr'o, A. Pataricza, VPM: A visual, precise and multilevel meta-
modeling framework for describing mathematical domains and UML
(the mathematics of metamodeling is metamodeling mathematics),
Software. Syst. Model. 2 (3) (2003) 187-210.

[10] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, “On the use of graph
transformation in the formal specification of model interpreters”, J.
Univ. Comput. Sci. 9 (11) (2003) 1296-1321.

[11] D.V. Castro, E. Maros, J.M. Vara, Applying CIM-to-PIM model
transformations for the service-oriented development of information
systems. Information and Software Technology, 2011, Volume 53, Issue
1, Pages 87-105.

[12] R. Grangel, M. Bigand, J.P. Bourey, “Transformation of decisional
models into UML: application to GRAI grids”. International Journal of
Computer Integrated Manufacturing, 2010, Volume 23, Issue 7.

[13] VA. Bollati, JM. Vara, A. Jiménez, E. Marcos, Applying MDE to the
(semi-)automatic development of model transformations. Information
and Software Technology 2013; 55(4):699-718.

[14] K. Czarnecki, S. Helsen, Classification of Model Transformation
Approaches. OOPSLA’03, 2003, Workshop on Generative Techniques
in the Context of Model-Driven Architecture.

[15] M. Herrmannsdoerfer, S. Benz, E. Juergens, COPE - automating coupled
evolution of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP
2009 — Object-Oriented Programming. LNCS, vol. 5653, pp. 52-76.
Springer, Heidelberg.

[16] F. Bénaben, W. Mu, S. Truptil, H. Pingaud, “Information Systems
design for emerging ecosystems.” 2010, 4th IEEE International
Conference on Digital Ecosystems and Technologies (DEST).

[17] J. Bezivin, “Model driven engineering: An emerging technical space,” in
Generative and Transformational Techniques in Software Engineering,
International Summer School -GTTSE, 2006, pp. 36—64.

1844

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

[18] W. C. William, R. Pradeep, E. F. Stephen, “A Comparison of String
Metrics for Matching Names and Records.” KDD Workshop on Data
Cleaning and Object Consolidation, 2003, Vol. 3.

[19] H. Wilbert, “Measuring Dialect Pronunciation Differences using
Levenshtein Distance.” Ph.D. thesis, 2004, Rijksuniversiteit Groningen.

[20] X. Huang, C. Zhou, “An OWL-based WordNet lexical
ontology.” Journal of Zhejiang University, 2007, pp. 864-870.

[21] D. Abril, G. Navarro-Arribas, V. Torra, Choquet integral for record
linkage Ann. Oper. Res., 195 (1) (2012), pp. 97-110.

1845

