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Abstract—The performance of a sucrose-based H2 production in 

a completely stirred tank reactor (CSTR) was modeled by neural 
network back-propagation (BP) algorithm. The H2 production was 
monitored over a period of 450 days at 35±1 ºC. The proposed model 
predicts H2 production rates based on hydraulic retention time 
(HRT), recycle ratio, sucrose concentration and degradation, biomass 
concentrations, pH, alkalinity, oxidation-reduction potential (ORP), 
acids and alcohols concentrations. Artificial neural networks (ANNs) 
have an ability to capture non-linear information very efficiently. In 
this study, a predictive controller was proposed for management and 
operation of large scale H2-fermenting systems. The relevant control 
strategies can be activated by this method. BP based ANNs modeling 
results was very successful and an excellent match was obtained 
between the measured and the predicted rates. The efficient H2 
production and system control can be provided by predictive control 
method combined with the robust BP based ANN modeling tool. 
 

Keywords—Back-propagation, biohydrogen, bioprocess 
modeling, neural networks.  

I. INTRODUCTION 
HE fossil fuel dependency of energy economy today 
results in global warming, air pollution and environmental 

and health problems. Hydrogen (H2) produced from renewable 
energy sources offers a clean alternative for the fossil fuels 
[1]. Besides uses as an energy carrier, H2 has multiple uses in 
industrial applications, such as production of lower molecular 
weight compounds, saturation of compounds, cracking of 
hydrocarbons or removal of sulfur and nitrogen compounds, 
O2 scavenger to prevent corrosion and oxidation, and coolant 
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in electrical generators [2]. Today, several techniques for 
sustainable H2-production exist including microbiological 
fermentation processes [3].  

Microbiological dark fermentation, involving mixed 
microbial cultures, can be used to produce H2 from biomass or 
organic waste materials [4], [5]. H2 production is an 
intermediate step in the anaerobic degradation of organic 
material. H2 is produced in order to maintain the electron 
balance in the anaerobic system [6]. The gases (H2 and CO2) 
and organic acids such as acetate, butyrate, propionate and 
valerate, and alcohols (e.g. ethanol) are the end products of 
the bioprocess [6]-[8]. In this study, input and monitoring 
parameters and end-products (organic acids, alcohols) and 
biomass concentrations have been used to predict H2 
production rate. 

It is very important to predict H2 production rates by a 
comprehensive model for the design, monitoring and 
management of biohydrogen producing bioreactors. ANN 
models may be successfully applied in biohydrogen 
production systems and are very effective in capturing the 
nonlinear relationships existing between variables (multi-
input/output) in complex system like biohydrogen production. 
This study aims at using ANN capabilities to predict H2 
production rates in completely stirred tank reactor (CSTR) and 
thereby managing the bioreactor. The proposed ANN based-
model predicts H2 production rate from hydraulic retention 
time (HRT), recycle ratio, sucrose concentration, sucrose 
degradation, biomass concentrations, pH, alkalinity, 
oxidation-reduction potential (ORP), ethanol, acetate, 
propionate and butyrate concentrations.  

Recently, numerous studies have reported the use of ANN 
models in environmental engineering applications [9]-[14] 
which were successively applied and excellent match obtained 
by this robust tool, yet most of these models are applicable to 
only output data prediction. In addition, there are several 
works for controlling of complex bioprocess and biosystems 
in environmental and industrial applications [15]-[17]. For this 
work, it was hypothesized that a method can be developed that 
can propose the predictive control method of H2 production 
rate by combining BP based ANN model predictions.  Thus 
the purpose of this study was to evaluate and develop a 
combined BP based control predictive method for H2-
fermenting systems. 
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II. EXPERIMENTAL 

A. Completely Stirred Tank Reactor (CSTR) 
The CSTR placed in a water-bath tank (Fig. 1), with a 

working volume of 4.0 L, was operated for 15 months at 
35±1oC. The seed sludge was obtained from Li-Ming 
Municipal Sewage Treatment Plant (Taichung, Taiwan). The 
collected sludge was screened with a No. 8 mesh (diam. 2.35 
mm) and was preheated at 100oC for 45 minutes to inhibit 
methanogen or other microorganisms’ bioactivity. The seed 
sludge was acclimated with sucrose at a concentration of 20 g 
COD/L in a growth medium consisting of [18] (mg/L): 
NH4HCO3 5240, K2HPO4 125, MgCl2·6H2O 100, 
MnSO4·6H2O 15, FeSO4·7H2O 25, CuSO4·5H2O 5, 
CoCl2·5H2O 0.125, NaHCO3 6720. The substrate was stored 
at 4oC. 

 

 
Fig. 1 Configuration of an anaerobic completely stirred tank reactor 

(CSTR) for continuous H2 production 
 
Initial CSTR operation was in a continuous feeding mode 

and hydraulic retention time (HRT) was 12 h. The CSTR pH 
was controlled and maintained at around 6.7 which was found 
to be favorable for hydrogen production [19], [20]. When a 
steady-state condition was reached and the desired data were 
obtained the recycle ratio or substrate concentration or HRT 
was reduced. At each run, the CSTR was operated for more 
than ten times of the HRT to develop a steady-state condition. 
Steady-state conditions reached when the product 
concentrations such hydrogen gas content, biogas volume and 
metabolite concentrations were stable (less than 10 % 
variation). For each steady-state data measurement, 6-10 
samples were analyzed. 

 
TABLE I 

THE SUMMARY OF THE REACTOR OPERATIONS 
Reactor 
operation 

HRT (h) Sucrose 
concentration 
(g COD/L) 

Recycle ratio 

Stage I 12 20 0, 0.2, 0.4, 0.6, 0.8, 1 
Stage II 12, 8, 6, 4, 2 20 0.2 
Stage III 12 20, 25, 32, 40 0.2 

 
Table I shows the experimental stages of this study. The 

CSTR was routinely monitored for pH, alkalinity, oxidation-

reduction potential (ORP), gas production and composition, 
sucrose concentration, ethanol concentration, volatile fatty 
acid (VFA) distribution and volatile suspended solids (VSS) 
concentrations. The gas volumes were corrected to a standard 
temperature (0°C) and pressure (760mmHg).  

B. Bioprocess Monitoring Analyses 
The mixed liquors sampled were centrifuged (900 g, 15 

min) and the supernatants were taken for metabolite analysis. 
VFA and ethanol were analyzed with a gas chromatograph 
having a flame ionization detector (Shimadze GC-14, Japan). 
Biogas volume was determined by a gas meter (Ritter, 
Germany). Biogas composition except hydrogen sulfide was 
analyzed with a gas chromatograph having and a thermal 
conductivity detector (China Chromatograph 8700T, Taiwan). 
Hydrogen sulfide gas was analyzed with a gas chromatograph 
having a flame photometric detector (capillary column, 150°C; 
injection temperature, 150°C; carrier gas, N2). Other analytical 
details for the VFA, ethanol and biogas assays were the same 
as those in our previous study [21], [22]. Anthrone-sulfuric 
acid method was used to measure sucrose [23]. The ORP 
value was measured using a pH/ORP Controller with a silver 
chloride electrode (Suntex, Taiwan). Other water quality 
parameters were measured according the procedures of 
Standard Methods [24].  

III. ANN BASED PREDICTION OF H2 PRODUCTION AND ITS 
PREDICTIVE CONTROL 

Neural networks are composed of simple elements 
operating in parallel. As in nature, the network function is 
determined largely by the connections between elements. 
Commonly neural networks (NN) are adjusted, or trained, so 
that a particular input leads to a specific target output.  In the 
basic neural networks architecture, the network is adjusted, 
based on a comparison of the output and the target, until the 
network output matches the target [25]. Typically many such 
input/target pairs are used to train a network. Back-
propagation (BP) algorithms use input vectors and 
corresponding target vectors to train an NN. The neural 
networks with a sigmoid and linear output layer are capable of 
approximating any function with a finite number of 
discontinuities [26]. The standard BP algorithm is a gradient 
descent algorithm, in which the network weights are changed 
along the negative of the gradient of the performance function 
[27], [28]. There are a number of variations of the basic back-
propagation algorithm, which are based on other optimization 
techniques, such as conjugate gradient and Newton methods. 
For properly trained back-propagation networks, a new input 
leads to an output similar to the correct output. This NN 
property enables the training of a network on a representative 
set of input/target pairs and getting well predicting results. 

In this case, H2-production rate is the most important 
control parameter and selected as output parameter in CSTR 
system because of energy recovery and process performance. 
The main difficulties in control of biological process are the 
variability of the kinetic parameters, especially in anaerobic 
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Fig. 2 Neural network predictive control of completely stirred tank reactor (CSTR) for continuous H2 production (adapted from Matlab) 

 
fermentation system bioprocesses consisting of several steps. 
Further, one step may be limiting factor for the other steps, 
such as time-varying influent wastewater characteristics and 
non-linearity. Hence adaptive and non-linear controller is the 
excellent choice for biological process control. Due to their 
impressive capability in dealing with severe non-linearity and 
uncertainty of a system, the application of neural network 
method for the design of controllers is promising. In the 
present study, twelve input variables were used for robust 
prediction of H2 production. This study is aimed at obtaining a 
proper H2 production control in the complex biological system 
by proposing a method based on BP algorithms with the NN 
and model predictive method (Fig. 2). This method is based 
on the receding horizon technique. The neural network model  

predicts the plant response over a specified time horizon; 
where N1, N2 and Nu define the horizons over which the 
tracking error and the control increments are evaluated. The u’ 
variable is the tentative control signal, yr is desired response 
and ym is the network model response. The ρ value determines 
the contribution that the sum of squares of the control 
increments has on the performance index (Matlab 7 Toolbox).  

The diagram in Fig. 2 shows the model predictive control 
process. The controller consists of the NN plant model and the 
optimization block. The optimization block determines the 
value of u’ that minimize J, and then the optimal u is input to 
the plant. This method consist of three steps including 
optimization, BP based ANN model and reactor system. To 
optimize the H2 production rate with this method, CSTR 
system can be operated with the optimum operational 

conditions (inputs) such as recycle ratio, HRT, pH, alkalinity, 
and sucrose concentration. In this system, if the H2 production 
is under desired level, input parameters (HRT, pH, etc.) can be 
controlled by this controller, and relevant actions concerning 
CSTR can be taken.  

In this study, a two-layer neural network was used, with a 
tan-sigmoid (tansig) transfer function at the hidden layer and a 
linear transfer function (purelin) at the output layer within NN 
predictive controller (Fig. 3). Tansig is a hyperbolic tangent 
sigmoid transfer function calculating a layer's output from its 
net input. tansig(N) calculates its output according to: n = 
2/(1+exp(-2*n))-1. Purelin transfer functions calculate a 
layer's output from its net input.  In the present study, NN has 
12 input and one output parameters (Fig. 3).  

A. Selection of BP Algorithm 
Thirteen BP algorithms were compared to select the best 

fitting BP algorithm of the data. For all algorithms, a two-
layer network, with a tansig transfer function at the hidden 
layer and a linear transfer function at the output layer, were 
used. Fifteen neurons were used at the hidden layer. The 
learning rate parameter may also play an important role in the 
convergence of the network, depending on application and 
network architecture. In addition, the momentum allows a 
network to respond, not only to the local gradient, but also to 
recent trends in the error surface. Without momentum, a 
network may get stuck in a shallow local minimum (for details 
see [12], [26]). In this study, the learning rate and the 
momentum constant were 0.1 and 0.9, respectively. The 
training results were as given in Table 2, which are the best 
performance values (minimum MSE and maximum R) among 
the ten runs for each thirteen BP algorithms. The best BP 
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Fig. 3 Optimal neural network structure for prediction of H2 production rates 
 

TABLE II 
PERFORMANCE OF BACK-PROPAGATION ALGORITHMS 

Backpropagation Training algorithms  (MATLAB function in quotes) MSE R Iteration 

Resilient (Rprop) 'trainrp' 0.044 0.915 54 

One step secant 'trainoss' 0.081 0.906 40 

Powell–Beale conjugate gradient 'traincgb' 0.089 0.904 28 

BFGS quasi-Newton 'trainbfg' 0.101 0.903 22 

Fletcher–Powell conjugate gradient 'traincgf' 0.096 0.901 27 

Gradient descent with momentum and adaptive learning rate 'traingdx' 0.125 0.899 100 

Levenberg–Marquardt 'trainlm' 0.014 0.897 10 

Scaled conjugate gradient 'trainscg' 0.097 0.896 34 

Polak–Ribiere conjugate gradient 'traincgp' 0.067 0.893 41 

Gradient descent with adaptive learning rate 'traingda' 0.132 0.889 96 

Gradient descent 'traingd' 0.324 0.777 100 

Gradient descent with momentum 'traingdm' 0.328 0.757 100 

Batch training with weight and bias learning rules 'trainb' 0.424 0.722 100 
 
 
algorithm, was with a minimum training error (0.0438) and a 
maximum R (0.92), the Resilient back-propagation (trainrp) 
algorithm.  

B. Optimization of Neural Network Structure 
Neuron numbers and relevant performance of the Resilient 

BP algorithm are shown in Fig. 4. To optimize the neuron 
number, between 5 to 30 neuron numbers were run ten times 
with the increments of five. Thereafter, the mean-squared 
error (MSE), R and iteration numbers were separately 
evaluated for the neuron numbers. With increasing neuron 
numbers, MSE decreased for the training set. However, 
increasing neuron numbers to more than 20 caused an 
unrealistic result, and a significant change over fitting 

occurred. With more than 20 neurons, the mean squared error 
begins to increase (Fig. 4); therefore, the optimal neuron 
number for Resilient Back-propagation algorithm is 20.  

The optimal neural network structure for the H2 prediction 
is given in Fig. 3: a two-layer network, with a tan-sigmoid 
transfer function at the hidden layer with 20 neurons and a 
linear transfer function at the output layer. A regression 
analysis of the network response between the output and the 
corresponding target was performed. For the output, one 
regression was determined (Fig. 5).  

Taking into account the nonlinear dependency of the data, 
the output seems to track the targets reasonably well. The R 
value is 0.91 and the obtained MSE value is 0.085 ± 0.01. The 
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training stopped after 30 iterations because the validation error 
started to increase (Fig. 6).  

The performance of the H2 production rates in CSTR 
predicted by the model is visualized for experimental data in 
Fig. 7. There is very good agreement in the trends between 
forecasted and measured data. This result is reasonable, since 
the test set error and the validation set error have similar 
characteristics, and it does not appear that any significant 
change over fitting has occurred. 

 

 
Fig. 4 Neuron number optimization with Resilient (Rprop) ‘trainrp’ 
BP algorithm. Selected neuron number ‘20’gives best performance 

with MSE and R. Trainrp can train any network as long as its weight, 
net input, and transfer functions have derivative functions. Training 
stops when any of these conditions occur: The maximum number of 

epochs (repetitions) is reached; the maximum amount of time has 
been exceeded; performance has been minimized to the goal; the 

performance gradient falls below min grad; and validation 
performance has increased more than max_fail times since the last 

time it decreased. 

 
Fig. 5 Linear regression between the network outputs and the 
corresponding targets for output of Resilient (Rprop) back-

propagation algorithm. (A: Measured, T: Predicted) 
 

 
Fig. 6 Training, validation and test mean square errors for Resilient 

(Rprop) back-propagation algorithm 
 

 
Fig. 7 Predicted and experimentally measured H2 production rates 

(solid line: predicted, dashed line: experimental measurements) 
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IV. CONCLUSION 
ANNs can be successfully used to predict H2 production 

rate from HRT, recycle ratio, sucrose concentration, sucrose 
degradation, biomass concentrations, pH, alkalinity, 
oxidation-reduction potential (ORP), ethanol, acetate, 
propionate and butyrate concentrations. The ANNs effectively 
captured nonlinear relationships existing between operational 
and monitoring variables in a complex multi-input/output 
system. The proposed ANN based model reliably predicts H2 
production rates and can be used as a predictive controller for 
management and operation of large scale H2-fermenting 
systems. 
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