
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

783

Abstract—This paper proposes a system to extract images from

web pages and then detect the skin color regions of these images. As
part of the proposed system, using BandObject control, we built a
Tool bar named “Filter Tool Bar (FTB)” by modifying the Pavel
Zolnikov implementation. The Yahoo! Team provides us with the
Yahoo! SDK API, which also supports image search and is really
useful. In the proposed system, we introduced three new methods for
extracting images from the web pages (after loading the web page by
using the proposed FTB, before loading the web page physically
from the localhost, and before loading the web page from any
server). These methods overcome the drawback of the regular
expressions method for extracting images suggested by Ilan Assayag.
The second part of the proposed system is concerned with the
detection of the skin color regions of the extracted images. So, we
studied two famous skin color detection techniques. The first
technique is based on the RGB color space and the second technique
is based on YUV and YIQ color spaces. We modified the second
technique to overcome the failure of detecting complex image’s
background by using the saturation parameter to obtain an accurate
skin detection results. The performance evaluation of the efficiency
of the proposed system in extracting images before and after loading
the web page from localhost or any server in terms of the number of
extracted images is presented. Finally, the results of comparing the
two skin detection techniques in terms of the number of pixels
detected are presented.

Keywords—Browser Helper Object, Color spaces, Image and
URL extraction, Skin detection, Web Browser events.

I. INTRODUCTION
HE first project to address the accessible browser issue
was initiated in 1997 under the supervision of Jon

Gunderson. It introduced the concept of using Microsoft's
Component Object Model (COM) objects and the C++
programming language to interface with Internet Explorer
(IE). Most groups used the Active Template Library to
simplify the programming of COM objects, the Microsoft
Foundational Classes to develop their window managers, and
Microsoft Visual Studio to develop their code [13].

Browser Helper Object (BHO) is an IE Accessible,
meaning that it runs in the background whenever IE runs. It
has the ability to monitor user commands and manipulate what
IE downloads and displays. BHOs are used to essentially
create a new web browser without having to recreate IE's
existing features, or encountering the incompatibility that

Moheb R. Girgis is with the Computer Science Dept., Faculty of Science,
Minia University, El-Minia, Egypt (e-mail: mrgirgis@mailer.eun.eg).

Tarek M. Mahmoud is with the Computer Science Dept., Faculty of
Science, Minia University, El-Minia, Egypt (e-mail: tarek_2ms@yahoo.com).

Tarek Abd-El-Hafeez is with the Computer Science Dept., Faculty of
Science, Minia University, El-Minia, Egypt (e-mail: tarek_1_2@yahoo.com).

normally comes with using a standard browser. The toolbar
functionality of IE Accessible was created more to aid the
developers and users that can use a mouse to navigate through
web pages. The optional toolbar allows the users to fully
customize any components of IE Accessible they want to be
represented with buttons in the toolbar. This allows for an
easier access to different components in IE Accessible.

The primary goal of IE Accessible is to make a web
browser usable by people with disabilities that make using IE
difficult. This can be achieved with two strategies: more
options in IE's controls, and more options in IE's display. The
idea is to give the user as much control as possible using only
the keyboard. Display options are intended to let users
specialize web page design for their needs. Whereas standard
IE is primarily focused on giving options to designers about
how to display a page, control of the same options to the user
will be given. The secondary goal of IE Accessible is to help
designers make their pages more accessible to general users
(including those who are not using IE Accessible). HTML
contains many elements, which the typical user will never see,
but they are essential for people who can't see the standard
images or table layouts [4,5]. BHO will give designers a quick
way to check things like table headers and image descriptions.

With the development of WWW, the dramatically falling
cost of data storage and the advancing in coding technology
are generating dazzling array of photography, animation,
graphics, sound and video. Filter the adult images is very
important for search engines to avoid offensive content on the
web. Now, there are some ways to stop naked images arriving
on computers, such as blocking unwanted sites, identifying
images depicting naked or scantily dressed people. “X-Stop”
is a tool to block pornographic sites. It provides the parents
with necessary method to safeguard their children who are
using Internet. Another way to identify pornographic images
is by means of text analysis or computer vision. Forsyth and
Fleck designed software to detect naked people [18]. This
software begins by analyzing the color and texture of a
photograph. When it finds matches for skin colors, it runs an
algorithm that looks for cylindrical areas that might be
corresponds to an arm or leg. It then seeks other flesh-colored
cylinders, positioned at certain angles, which might confirm
the presence of limbs.

Skin color has proven to be a useful and robust cue for face
detection, localization and tracking. Image content filtering,
contentaware video compression and image color balancing
applications can also benefit from automatic detection of skin
in images. Numerous techniques for skin color modelling and
recognition have been proposed during several past years.
Most existing skin segmentation techniques involve the
classification of individual image pixels into skin and non-

An Approach to Image Extraction and Accurate
Skin Detection from Web Pages

Moheb R. Girgis, Tarek M. Mahmoud, and Tarek Abd-El-Hafeez

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

784

skin categories on the basis of pixel color [24]. It is not an
easy task to extract regions of specific color from a given
color image, since the color of an object varies with changes
in illumination color, illumination geometry, and
miscellaneous sensor parameters [25]. A few papers
comparing different approaches have been published [21],
[22], [23].

The proposed system is a Browser Helper Object, which
runs in the background whenever the IE runs. It reads the web
page as an HTML document, extracts all images and links
(URLs) from it and saves them before and after displaying the
web page. We compared the number of extracting images
before and after loading the web page from the localhost and
any server. The system toolbar contains a button called "skin
recognition" that can be used to detect the skin color region of
human images. We studied two skin color images detection
techniques. The first one is based on the RGB color space and
the second is based on the YUV and YIQ color spaces. We
modified the second technique to overcome the failure of
detecting complex image’s background by using the saturation
parameter to obtain an accurate skin detection results. This
system is a part of a large system that is being developed to
filter undesirable images from web pages.

This paper is organized as follows: section II describes the
Internet Explorer methods, events, and prosperities. Section
III describes HTML Screen Scraping. In section IV, the
Regular Expression for Extracting URLs is presented. Section
V describes extracting images after loading the web page by
using our tool bar. Section VI describes extracting images
before loading the web page from the Localhost. In section
VII, we describe extracting images before loading the web
page from any server. Filter Tool Bar (FTB) interface is
described in section VIII. Skin recognition techniques are
described in section IX. Finally, the experimental results are
presented in section X.

II. THE WEB BROWSER PROPERTIES, METHODS AND EVENTS
To display an HTML code, we need a web browser. IE is

one of the most commonly used web browsers and it has a
decent API. So we will use IE to display our reports. The
WebBrowser control fires a number of different events to
notify user applications —and browser— about the generated
activity. When the browser is about to navigate to a new
location, it triggers a BeforeNavigate2 event that specifies the
URL or path of the new location and any other data that will
be transmitted to the Internet server through the http
transaction. The data can include the http header, http post
data, and the URL of the referrer. The BeforeNavigate2 event
also includes a flag that can be set to cancel the pending
navigation request. This event can be useful for checking the
requested URL against a database of unauthorized World
Wide Web sites or local and network folders, and for
canceling the navigation request. The WebBrowser control
fires the NavigateComplete2 event after it has navigated to a
new location. This event includes the same information as
BeforeNavigate2, except NavigateComplete2 does not include
the cancel flag.

Whenever the browser is about to begin a download
operation, it triggers the DownloadBegin event. The control
also generates a number of ProgressChange events as the
operation progresses, and then it triggers the
DownloadComplete event after completing the operation.
Applications typically use these three events to indicate the
progress of the download operation, often by displaying a
progress bar. An application would show the progress bar in
response to DownloadBegin, update the progress bar in
response to ProgressChange, and hide the progress bar in
response to DownloadComplete. More details about the
properties, methods and events of the web browser can be
found in [9].

In the proposed system, a new instance of the IE is created.
Then we make this instance visible. The events of this
instance are determined. After this step, the specified home
page is navigated and the images are extracted. Fig. 1 gives
the steps of the proposed system which runs in the
background of the IE.

public void Run()
{
 1- Start the browser.
 2- Set the browser events.
 3- Go to the specified home page and extract images.
 4- Start navigating to different URL.
}

Fig. 1 The proposed system steps

III. HTML SCREEN SCRAPING
Screen Scraping means reading the contents of a web page.

When we visit any site, such as yahoo.com, we see the
interface which includes buttons, links, images, …, etc. What
we don't see is the target URL of the links, the name of the
images, the method used by the button which can be POST or
GET. To extract an image from a web page, we create an
HttpWebRequest object from the Image URL, which is
basically a class that manages the request to the given URL. If
we're behind a proxy, then we will have to create a WebProxy
object and assign it to wReq's Proxy property. Calling
GetResponse will get the resulting response from the request
we made. What we're really interested in is the data stream of
the URL, which we obtain from the GetResponseStream
method of the HttpWebResponse class. Once we have the
stream, it's a simple matter to create an Image object from the
data stream. Also, by default the HttpWebRequest method is
GET. At this point, nothing has hit the network because an
object needs to be created in order to set properties before the
request is initiated.

The next step is to issue the request and receive the
response from the destination. This is done by calling the
GetResponse method, which returns a WebResponse object
that can be cast to an HttpWebResponse object if we need to
access the HTTP-specific properties [10].

Screen Scraping pulls the HTML code of the web page.
This HTML code includes every HTML tag that is used to
make up the page. Extracting images from the web page using
the proposed system is based on the following steps:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

785

public Image GetImage(string URL)
{
 1- Create a web request to the URL containing the image.
 2- Gets the response from the web request.
 3- Return the image stream from the URL specified earlier.
}

Fig. 2 Extracting image steps

IV. EXTRACTING INFORMATION FROM THE RETRIEVED HTML
CODE USING REGULAR EXPRESSIONS

We can easily view the HTML code that was generated
when a request for a web page was made, by just viewing the
source code of the web page. In the IE, we select View ->
Source or click the “view source” on the proposed FTB
described in section VIII. The notepad will open with the
complete HTML code generated of the page. This
HTML code is quite complex. It will be really useful if we can
extract out all the links from the generated source to upgrade
the list of undesirable URLs automatically. First we need to
introduce a regular expression that can extract all URLs from
the generated HTML code. There are many regular
expressions already made which can be found in [11]. The
regular expression would look like this:

Regex r = new Regex("((((http[s]?|ftp)[:]//)([a-zA-Z0-9.-]+([:][a-zA-Z0-9.&%$-
]+)*@)?[a-zA-Z][a-zA-Z0-9.-]+|[a-zA-Z][a-zA-Z0-9]+[.][a-zA-Z][a-zA-Z0-9.-
]+)[.](com|edu|gov|mil|net|org|biz|pro|info|name|museum|ac|ad|ae|af|ag|ai|al|a
m|an|ao|aq|ar|as|at|au|aw|az|ax|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|
bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|de|dj|dk|dm|do|d
z|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr
|gs|gt|gu|gw|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|k
m|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|mg|mh|mk|ml|mm|mn|
mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|o
m|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|ru|rw|sa|sb|sc|sd|se|sg|sh|s
i|sj|sk|sl|sm|sn|so|sr|st|sv|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|u
m|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)([:][0-9]+)*(/[a-zA-Z0-
9.,;?'\\+&%$#=~_-]+)*)",RegexOptions.IgnoreCase |
RegexOptions.Compiled);

Using the regular expression, the URLs are extracted from the
web page by clicking the “Extract Links” at the “Filter Tool
Bar”, and displayed as shown in Fig. 3.

Fig. 3 The URLs which are extracted from the web page when we

click the “Extract Links” in the FTB

The HTML code is parsed to extract the number of available
results for the user query as well as information about the
retrieved images. Ilan Assayag [12] used Google patterns that
accurately allow us to locate each of these interesting
information bits in the HTML code after analyzing it. But the
problem with these patterns is that if Google changes the
format of the returned HTML code the parsing will fail!

To overcome this problem, we introduced three new
methods to extract images before and after loading the web
page as described in sections 5, 6, and 7.

Following are the different patterns used in the API:

1. Regex imagesRegex = new Regex(@"(\x3Ca\s+href=/imgres\" +

@"x3Fimgurl=)(?<imgurl>http" + @"[^&>]*)([>&]{1})" +
@"([^>]*)(>{1})(<img\ssrc\"@"x3D)""{0,1})(?<images> /images"
+@"[^""\s>]*)([\s])+(width=)"+@"(?<width>[0-9,]*)\s+
(height=)" + @"(?<height>[0-9,]*)");

This pattern is used to retrieve information about each image.
The URL of the original image is captured into the "imgurl"
group, the URL of the thumbnail is captured into the "images"
group and the width and height of the thumbnail image are
captured in the "width" and "height" groups, respectively.

2. Regex dataRegex = new Regex(@"([^>]*)(>)\s{0,1}(
) {0,1}\s

{0,1}" + @"(?<width>[0-9,]*)\s+x\s+(?<height>[0-
9,]*)" + @"\s+pixels\s +-\s+(?<size>[0-9,]*)(k)");

This pattern is used to retrieve additional information about
each image - the original images' widths, heights and sizes (in
groups "width", "height" and "size", respectively). Ilan
Assayag could not find a way to use the same pattern for all
the images' information.

V. EXTRACTING IMAGES AFTER LOADING THE WEB PAGE
USING THE FILTER TOOL BAR

To stream images from the web, we need to use classes
from the System.Net and System.IO classes, and we need an
Internet access as well. Fig. 4 shows the steps of extracting
image after loading the web page by clicking on the “Image
Data” of the FTB.

protected void ImageData(ButtonEntry frm_in)
 {
 1- Attach the Internet Explorer document.
 2- Get the current URL.
 3- Call GetImage method and save its data.
 4- Display the Image Data Window as shown in Fig. 10.
 }

Fig. 4 The steps of extracting image after loading the web page by
clicking on the “Image Data” of FTB

VI. EXTRACTING IMAGES BEFORE LOADING THE WEB
PAGE FROM THE LOCALHOST SERVER

The System.DirectoryServices namespace provides access
to the Active Directory. The classes in this namespace can be
used with any of the Active Directory service providers
including Internet Information Services (IIS), the Lightweight
Directory Access Protocol (LDAP), the Novell Directory
Services in NetWare (NDS), and WinNT.

The core of this Active Directory Service is creating an
instance of the DirectoryEntry object. This object can be used
to manipulate any Active Directory Entry stored in an IIS,
LDAP, NDS, or NT Metabase. In order to understand the
syntax for binding to IIS objects, we need to understand the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

786

components of the paths to the IIS Metabase. The metabase is
organized in a hierarchical structure that mirrors the structure
of our IIS installation. Each node in the metabase structure is
called a key, and each key can contain one or more IIS
configuration values, called metabase properties.

Before manipulating entries on IIS with DirectoryEntry
class we need to know basic ideas about how IIS manage
these entries. Each IIS entry (web site, web virtual directory,
ftp virtual directory,..) has a schema name and a collection of
properties. All entries follow a hierarchy, with parent entries
and children entries. This hierarchy is defined by its metabase
path, which means that every entry has a corresponding
physical path. To instantiate a DirectoryEntry we basically
need its metabase path, as follows:
DirectoryEntry directoryEntry = new

DirectoryEntry("IIS://localhost/w3svc/1/root");

Indexers should access the most of the DirectoryEntry
properties.

Console.Write(directoryEntry.Properties["Path"].Value.ToString());

Let's look at the following IIS Metabase path and break it
down into its key components:

IIS://ComputerName/WebService/Server/Root/VirtualDirectoryName

IIS:// Lets the DirectoryEntry Object know that we are dealing
with an IIS directory rather than an LDAP or NDS entry.

ComputerName Simply reflects the Web server we will be accessing. This
can be a name or IP address.

WebService
Can be W3SVC which indicates that we are dealing with the
Web service or MSFTPSVC, which would indicate we
wanted to use the FTP service [1,2,3,7].

Server

Is typically an integer value that allows us to attach to
different Web servers on the same server, each with its own
unique IP: Port Address combination. Typically the default
Web server has a value of 1.

VirtualDirectory

Name
Is the name of our virtual directory?

The steps of extracting and saving all images of the current
web page before loading it from the localhost are as follows:

static void LocalHost()
 {
 1- Read the contents of the web page.
 2- Read the HTML code into an html document to enable parsing
 3- Get Image Data from the HTML document..
 4- foreach (HTMLImgClass image in doc.images)
 {
 4.1 Get the Virtual path of the image.
 4.2 Convert the virtual path to the physical path.
 4.3 Save image data.
 }
 }

Fig. 5 The steps of extracting all images before loading the web page
from the localhost

VII. EXTRACTING IMAGES BEFORE LOADING THE WEB
PAGE FROM ANY SERVER

The WebClient class in the System.NET namespace has two
pretty neat methods that let us download data from the
internet:

• public byte[] DownloadData(string address) –
downloads to an in-memory buffer.

• public void DownloadFile(string address, string
fileName) – downloads to the hard drive.

We used the DownloadFile method to download data from the
URI specified by the address parameter to a local file. Fig. 6
shows the steps of extracting all images of the current web
page before loading it from any server.

static void Extract_Image()
 {
 1- Read the contents of the web page.
 2- Read the HTML code into an HTML document to enable parsing
 3- Get Image Data from the HTML document..
 4- foreach (HTMLImgClass image in doc.images)
 {
 4.1 Download the image from the server.
 }
 }

Fig. 6 The steps of extracting all images before loading the web page
from any server

VIII. FILTER TOOL BAR

As shown in Fig. 7, the proposed FTB contains six buttons
with captions “Extract Links”, “Thumbnail Image”, “Skin
Recognition”, “View Source”, “Image Data”, and “Internet
Options”. Fig. 10 shows the IE browser with the proposed
FTB. The purpose of the “Extract links” button is to extract all
URLs in the current web page and save these links after
loading the web page. The elapsed time of the extraction
process is computed after clicking this button. The purpose of
“Thumbnail Image” button is to display all the extracted
images in the web page as a photo album, as shown in Fig.
11. The purpose of “Skin Recognition” button is to recognize
the skin in every image of the current web page. We will use
this button to determine the skin percentages of each image of
the current web page. Some filter techniques can be used with
these images to prevent the undesirable images from
displaying. The purpose of the “view source” button is to
display the HTML source code of the current web page. The
purpose of the “Image Data” button is to display the Image
Data window as shown in Fig. 12. Finally, the purpose of the
“Internet Options” button is to display the Internet Options
window.

Fig. 7 The “Filter Tool Bar” buttons

IX. SKIN COLOR DETECTION
Skin color detection is a very important step in many vision

systems, like gesture recognition, hand tracking, video
indexing, region of interest, face detection, etc. Pixel based
skin detection can narrow the search space prior to high-level

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

787

layers, however this is not an easy task. Skin pixels can vary
with ambient light, such as color lamps acting as filters,
brightness and specularities, shadows, daylight, etc. Since
different cameras return different values for the same scene,
pixel-based skin detection becomes a cumbersome task [17].

The main goal of skin color detection is to build a decision
rule that will discriminate between skin and skin pixels.
Identifying skin colored pixels involves finding the range of
values for which most skin pixels would fall in a given color
space. The purpose of a color space is to facilitate the
specification of colors in some standard, generally accepted
manner. A color space is a specification of a coordinate
system and subspace within a system where each color is
represented by a single point. Most color spaces today are
oriented toward hardware such as color monitors or toward
applications where color manipulation is a goal such as the
creation of color graphics or animation [16]. Various color
spaces are used for processing digital images. For some
purposes, one color space may be more appropriate than
others. For skin detection, researchers do not quite agree on
whether the choice of color space is critical to the overall
performance of the detection system. One obvious reason for
this is the lack of a standard set of images that can be used as
a benchmark for algorithms using different color spaces. This
may be as simple as explicitly classifying a pixel as a skin
pixel if R>G or R>B or both [19] or may be as complex as
models using neural networks and Bayesian methods [20]. In
general, a good skin color model must have a high detection
rate and a low false positive rate. That is, it must detect most
skin pixels while minimizing the amount of skin pixels
classified as skin. This section presents two techniques for
detecting skin color as a first step to filter undesirable images.

A. The RGB Skin Detection Technique

The RGB color space is one of the most widely used color
spaces for storing and processing digital image. However, the
RGB color space alone is not reliable for identifying skin-
colored pixels since it represents not only color but also
luminance. Skin luminance may vary within and across
persons due to ambient lighting so it is not dependable for
segmenting skin and skin regions. Chromatic colors are more
reliable and these are obtained by eliminating luminance
through some form of transformation.

In the RGB space each color appears in its primary spectral
component of red, green, and blue. Images represented in the
RGB space consist of three component images, one for each
primary color. When fed into an RGB monitor, these images
combine on the phosphor screen to produce a composite color
image [16]. The RGB True Color is an additive color system
based on tri-chromatic theory. It is one of the most commonly
used color spaces, with a lot of research activities being based
on it. Therefore, skin color is classified by heuristic rules that
take into account two different conditions: uniform daylight
and flash or lateral illumination. The chosen skin cluster for
RGB is [14]:

(R,G,B) is classified as skin if:

R > 95 and G > 40 and B > 20
max{R,G,B}−min{R,G,B} > 15
|R−G| > 15 and R > G and R > B,

In case of flashlight or daylight lateral illumination:

(R,G,B) is classified as skin if:
R>220 , G>210 , B>170
| R-G | ≤ 15 , B<R , B<G.
where R,G,B = [0 .. 255].

B. YUV - YIQ Skin Detection Technique

Duan et al. [15] convert the pixels’ value from RGB to
YUVand YIQ respectively. The RGB values are transformed
into YUV values using the formulation.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

V
U
Y

0.1000- -0.51480.6148
0.4359 -0.2888 0.1471-
0.1140 0.5870 0.2990

The chromaticity information is encoded in the U and V
components. Hue and saturation are obtained by the following
transformation.

 UVVUch /(1tan,22 −=+= θ) * (180 / 3.14)

Whereθ represents hue, which is defined as the angle of
vector in YUV color space. Ch represents saturation, which is
defined as the modulus of U and V. Like YUV color space,
YIQ is the color primary system adopted by NTSC for color
TV broadcasting. Conversion from RGB to YIQ may be
accomplished using the color matrix:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

Q
I
Y

0.3111 0.5226- 0.2115
0.3213- -0.2745 0.5957

0.1140 0.5870 0.2990

where I is the red-orange axis, and Q is roughly orthogonal to
I. The less I value means the less blue-green and the more
yellow.

Duan et al. [15] found that the combination of YUV and
YIQ color space is more robust than each other. The most
people’s skin varies in the range from 20 to 90 in the term of
I.

Fig. 8 illustrates the result of the implementation of Duan et
al. used to detect skin color.

(a) (b)

Fig. 8 (a) Original image (b) Result with Duan et al. method

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

788

The drawback of Duan et al. method is that, if the image
background contains pixels similar to human skin pixels (i.e.
20 ≤ I ≤ 90) and these pixels doesn't belong to the skin
region, the method fails to detect it (see Fig. 8).

To overcome this drawback we use the saturation parameter
(ch). More accurate detected skin can be produced by varying
the saturation parameter as shown in Fig. 9.

If we change the value of saturation, we get various values
of images under test. Fig. 9 shows the original image and
different skin images by changing the saturation values:

(a) (b) (c) (d)
Fig. 9 (a) original image (b) Result with ch ≥ 20
 (c) Result with ch ≥ 30 (d) Result with ch ≥ 40

We found that, If a pixel satisfies the condition

]220,20[]75,30[]90,20[∈∈∈ saturationandhueandI
 it is possible to be relevant to skin color.

X. EXPERIMENTAL RESULTS
The main purpose of the proposed system is extracting the

images and URLs from the current web page and then
detecting the skin color regions of these images. In our
implementation, images can be extracted before and after
loading the web page from the localhost or any server. Using
the FTB, we can obtain different data about the extracted
images. The implementation of the proposed system is based
on C#. Net.

As shown in Fig. 11, the image thumbnail of the extracted
images can be obtained after clicking the "Thumbnail Image"
button in the FTB.

Fig. 10 The IE browser with the proposed FTB showing the web

page to be analyzed

Fig. 11 The image thumbnail of the extracted images

Fig. 12 The data of the extracted image after loading using FTB

Fig. 13 The data of the extracted image before loading the web page

All image data of the extracted images, such as image

name, type, physical path …etc., can be obtained after loading
the web page. Fig. 12 shows the image data obtained after

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

789

clicking the "Image Data" button. Fig. 13 shows the data of
every extracted image before loading the web page. It will
appear automatically at the IE background.

A. Image Extracting Results
Firstly, we present the performance evaluation of the

proposed system in terms of the number of the extracted
images before and after loading the web page. The
performance evaluation was carried out on 8 URLs using
localhost and different web servers.

TABLE I
THE NUMBER OF EXTRACTED IMAGES FROM THE LOCALHOST AND ANY

SERVER BEFORE AND AFTER LOADING THE WEB PAGE

In Table I, the first four URLs are representing the localhost
results and the last four URLs are representing the results of
any server. As can be seen in Table I:

1. The number of extracted images after loading the web page
from the localhost is more than the number of extracted
images after loading the web page from any server.

2. The number of extracted images before loading the web
page from the localhost is more than the number of extracted
images before loading the web page from any server.

3. The total number of extracted images before loading the
web page from the localhost and any server is more than the
number of extracted images after loading the web page from
the localhost and any server.

In our proposed filtering system, we will employ the

method for extracting images before loading the web page
from any server, which is more relevant to the main purpose
of the system.

B. Skin Recognition Results
Finally, we present a comparison between the two skin

recognition techniques described in section IX. For each
method we present a table showing the number of skin pixels,
the total number of pixels, the skin percentage, and the skin
pixels for each image. Each technique is applied on a wide
variety of images taken under different lighting conditions and
with different backgrounds.

The images also have areas containing skin from other parts
of the body like hands, and areas with color very similar to
that of skin. These areas get classified as skin and they form
skin regions accordingly. Table II describes the first technique

(YUV-YIQ) results for some variety images. Each row
contains the results of an image data.

TABLE II

THE FIRST TECHNIQUE (YUV-YIQ) WITH CH ≥ 30 RESULTS FOR VARIOUS
IMAGES

Skin
Pixels

Non– skin
pixels

Total number of
pixels

Skin
percentage

Non - skin
percentage

2373 7655 10028 23.66 76.33
2721 7307 10028 27.13 72.86
896 9774 10670 8.397 91.6
4694 7406 12100 38.79 61.2
5515 6585 12100 45.57 54.4
8226 3874 12100 67.983 32.016
5445 7055 12500 43.56 56.44
5941 6559 12500 47.528 52.472
2406 10398 12804 18.79 81.20
3864 9816 13680 28.24 71.75
1249 12751 14000 8.92 91.07
4131 10299 14430 28.62 71.37
3856 10904 14760 26.12 73.87
2866 12374 15240 18.80 81.19
4025 12004 16029 25.110 74.88
4119 11910 16029 25.69 74.30
5993 10036 16029 37.38 62.61
7349 10801 18150 40.49 59.50

13 19187 19200 0.067 99.93
1515 17685 19200 7.8 92.10
1707 17493 19200 8.89 91.109
4432 17348 21780 20.348 79.65

13499 10801 24300 55.55 44.44
299 28501 28800 1.038 98.96
6706 22094 28800 23.28 76.71
7688 21112 28800 26.69 73.305

12634 17559 30193 41.84 58.15
18113 28523 46636 38.83 61.16
2107 4533 6640 31.73 68.26

17095 59705 76800 22.25 77.74

In Table III, the second technique (RGB) results for the

same set of images are presented.

TABLE III

THE SECOND TECHNIQUE (RGB) RESULTS FOR THE SAME IMAGES
CONSIDERED IN TABLE II

Skin
Pixels

Non – skin
pixels

Total number of
pixels

Skin
percentage

Non - skin
percentage

1640 8388 10028 16.3 83.6
2565 7463 10028 25.57 74.42
1074 9596 10670 10.06 89.93
2680 9420 12100 22.14 77.85
4094 8006 12100 33.83 66.16
5932 6168 12100 49.02 50.97
3707 8793 12500 29.656 70.344
5443 7057 12500 43.544 56.456
2330 10474 12804 18.19 81.80
3319 10361 13680 24.261 75.738
1496 12504 14000 10.68 89.31
3861 10569 14430 26.75 73.2
3196 11564 14760 21.653 78.3468
2711 12529 15240 17.78 82.21
2463 13566 16029 15.365 84.634
2480 13549 16029 15.47 84.528
4341 11688 16029 27.082 72.
5560 12590 18150 30.633 69.36

26 19174 19200 0.13 99.864
1200 18000 19200 6.25 93.75
1579 17621 19200 8.223 91.776
2614 19166 21780 12.0018 87.99
12300 12000 24300 50.61 49.38

289 28511 28800 1.00 98.99
4543 24257 28800 15.77 84.22
4939 23861 28800 17.14 82.850
10912 19281 30193 36.1408 63.859

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

790

Skin
Pixels

Non – skin
pixels

Total number of
pixels

Skin
percentage

Non - skin
percentage

12989 33647 46636 27.85 72.148
1596 5044 6640 24.0361 75.967
16505 60295 76800 21.490 78.50

Fig. 14 shows sample of accurate results of the (YUV-YIQ)
with ch ≥ 30 and (RGB) techniques. Fig. 15 shows sample of
inaccurate results of both techniques. The first column shows
the original images, the second column shows the skin images
using YUV-YIQ technique, and the last column shows the
skin images using RGB technique.

As can be seen in Table II, III and Figs. 14, 15:
1- Using a single color space may limit the performance of

the skin color filter. This study shows that better
performance can be achieved by using two or more color
spaces.

2- Contrary to some studies, experimental results in this study

indicate that chrominance values still significantly differ for
light and dark skin even if the luminance component is
removed through a normalization or transformation of RGB
values. Thus, a skin color model should not treat light and
dark skin in the same manner. This may be more
computationally expensive but it allows for more skin pixels
to be labeled correctly.

3- The YUV-YIQ technique is more efficient than the RGB

technique in terms of skin pixels detected.

Accordingly, we will employ the modified (YUV-YIQ)
technique for skin color detection in our proposed system for
detecting and filtering undesirable images.

RGB YUV-YIQ Original

RGB YUV-YIQ Original

Fig. 14 Samples of accurate results of the (YUV-YIQ) and (RGB)
techniques

Original YUV-YIQ RGB

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

791

Original YUV-YIQ RGB

Fig. 15 Samples of inaccurate results of the (YUV-YIQ) and (RGB)

techniques

XI. CONCLUSION
This paper suggests a system containing two major parts.

The purpose of the first part is detecting and extracting images
and URLs from web pages. A new Filter Tool Bar is created
in the Internet Explorer interface. We presented three new
methods for extracting the images from the web page. These
methods overcome the drawback of the regular expression
method suggested by Ilan Assayag. The performance
evaluation of the proposed system in terms of the number of
extracted images before and after loading the web page from
local host and any server is presented. The purpose of the
second part of this system is detecting skin color. So, we
studied two famous skin detection techniques for color
images. The first technique is based on the RGB color space
and the second technique is based on YUV and YIQ color
spaces. We modified the second technique to overcome the
failure of detecting complex image’s background by using the
saturation parameter to obtain accurate results. Finally, the
results of the two skin detection techniques, (YUV-YIQ) and
(RGB), are presented. Future extension of this work includes
more studies on the images background and lighting similar to
skin color pixels to increase the accuracy of the skin color
detection. Another extension of this work consists of using the
proposed system as a filter to prevent the undesirable images
and URLs of any web page from displaying.

REFERENCES
[1] Postel, J., "Simple Mail Transfer Protocol", RFC 821, USC/Information

Sciences Institute, August 1982.
[2] Postel, J., and Reynolds, J., "File Transfer Protocol (FTP), RFC 959,

USC/Information Sciences Institute, October 1985.
[3] Postel, J., and Reynolds, J., "TELNET Protocol Specification", RFC

854, USC/Information Sciences Institute, May 1983.
[4] Postel, J.,"Media Type Registration Procedure", RFC

1590,USC/Information Sciences Institute, March 1994.
URL:ftp://ds.internic.net/rfc/rfc1590.txt>

[5] Borenstein, N., and Freed, N., "MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Specifying and Describing
the Format of Internet Message Bodies", RFC1521, Bellcore, Innosoft,
September 1993. URL:ftp://ds.internic.net/rfc/rfc1521.txt>

[6] Fielding, R.,"Relative Uniform Resource Locators", RFC 1808, June
1995 <URL:ftp://ds.internic.net/rfc/rfc1808.txt>

[7] Frank, H., and Mayer, S., "The Dexter Hypertext Reference Model",
Communications of the ACM, pp. 30-39, vol. 37 no. 2, Feb 1994.

[8] http://msdn.microsoft.com/library/default.asp? url=/workshop/
browser/webbrowser/reflist_vb.asp

[9] http://www.microsoft.com/isapi/redir.dll?prd=ie&pver
=6&ar=msnhome

[10] Anthony, J., Jim, O., and Lance, O., “Microsoft Network Programming
for the Microsoft .NET Framework”, Published By Microsoft Press,
A Division of Microsoft Corporation, One Microsoft Way Redmond,
Washington 98052-6399, Copyright © 2004.

[11] http://www.regexlib.com/
[12] Ilan, A., “An API for Google Image Search”,

http://www.codeproject.com.
[13] http://slappy.cs.uiuc.edu/fall03/team2/Final/.
[14] P. Peer, F. Solina, “An automatic human face detection method”, in

Proc. 4th Computer Vision Winter Workshop (CVWW), Rastenfeld,
Austria, Feb. 1999, pp. 122-130.

[15] Duan, L., Cui, G., Gao, W., and Zhang, H., “Adult image detection
method base-on skin color model and support vector machine”. In Asian
Conference on computer Vision, pages 797-800, Melbourne, Australia,
2002.

[16] Gonzales R. and Woods R. E., “Digital Image Processing,” Prentice
Hall, Inc, New Jersey, 2002.

[17] Brand J., Mason J. S., Roach M., Pawlewski M..”Enhancing face
detection in colour images using a skin probability map". Int. Conf. on
Intelligent Multimedia, Video and Speech Processing, pp. 344-347,
2001.

[18] Forsyth D. A.. Fleek M., and Bregler C.. “Finding naked people”. In
Proc.Forth European Conference on Computer Vision. pp 593-602.
1996.

[19] Brown, D., Craw, I., & Lewthwaite, J.” A SOM Based Approach to Skin
Detection with Application in Real Time Systems”. In Proc. Of the
British MachineVision Conference, 2001.

[20] Chai, D. & Bouzerdoum, A. “A Bayesian Approach to Skin Color
Classification in YCbCr Color Space”. In Proc. Of IEEE Region Ten
Conference, vol. 2, 421- 4124, 1999.

[21] Zarit, B. D., Super, B. J., and Quek, F. K. H. “Comparison of Five Color
Models in Skin Pixel Classification”. In ICCV’99 Int’l Workshop on
recognition, analysis and tracking of faces and gestures in Real-Time
systems, 58–63, 1999.

[22] Terrillon, J.-C., Shirazi, M. N., Fukamachi, H., and Akamatsu, S.
“Comparative Performance Of Different Skin Chrominance Models and
Chrominance Spaces for The Automatic Detection of Human Faces in
Color Images”. In Proc. of the International Conference on Face and
Gesture Recognition, 54–61, 2000.

[23] Brand, J., and Mason, J. “A Comparative Assessment of Three
Approaches to Pixel level Human Skin-Detection”. In Proc. of the
International Conference on Pattern Recognition, vol. 1, 1056–1059,
2000.

[24] Phung, S. L., Bouzerdoum, A. and Chai, D. “Skin Segmentation Using
Color Pixel Classification: Analysis and Comparison” , IEEE Tran. On
Pattern Analysis and Machine Intelligence, Vol. 27, No. 1, Jan. 2005.

[25] Cho, K. M., Jang, J. H. and Hong, K. S. “Adaptive Skin Color Filter”,
Pattern Recognition, Vol. 34, pp. 1067-1073, 2001.

