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Abstract—In the automotive industry test drives are being con-
ducted during the development of new vehicle models or as a part of
quality assurance of series-production vehicles. The communication
on the in-vehicle network, data from external sensors, or internal
data from the electronic control units is recorded by automotive
data loggers during the test drives. The recordings are used for fault
analysis. Since the resulting data volume is tremendous, manually
analysing each recording in great detail is not feasible.

This paper proposes to use machine learning to support domain-
experts by preventing them from contemplating irrelevant data and
rather pointing them to the relevant parts in the recordings. The
underlying idea is to learn the normal behaviour from available
recordings, i.e. a training set, and then to autonomously detect
unexpected deviations and report them as anomalies.

The one-class support vector machine “support vector data descrip-
tion” is utilised to calculate distances of feature vectors. SVDDSUB-
SEQ is proposed as a novel approach, allowing to classify subse-
quences in multivariate time series data. The approach allows to
detect unexpected faults without modelling effort as is shown with
experimental results on recordings from test drives.

I. INTRODUCTION

EVEN though various test phases are conducted for each
electronic control unit (ECU) and for each vehicle func-

tion [1], the integration of all ECUs inside a vehicle, with
real sensors, actuators and the real in-vehicle network, is
challenging – often unexpected problems occur. Hence, the
conduction of test drives is inevitable.

The importance of test drives as a measure for quality
assurance is widely accepted, in [2] a vehicle manufacturer
stated, that before one of its premium class models came
to market in 2009, 34 million kilometres of test drives were
conducted.

The in-vehicle network communication, data from external
sensors, or internal ECU data is recorded by automotive
data loggers during the test drives. During fault analysis the
recordings allow to reconstruct the situation the vehicle was in,
e.g. steering manoeuvres, the vehicle’s velocity, its yaw rate or
the battery voltage can be determined from the data. This kind
of recordings are conducted by manufacturers with prototype
vehicles, before start of production, or with series-production
vehicles as part of the end of line tests.

The authors identified the following approaches to be cur-
rently followed by vehicle manufacturers in order to detect
abnormal behaviour occurring in test drives:
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Fig. 1. Excerpt of a recording of a test drive with faults, showing five signals
over 2000 seconds.

1) Illegal constellations of the signals are pre-configured
and the measured data is observed during the test drive.

2) Diagnostic testers are used to read out the ECUs’
diagnostic trouble codes [3].

3) After the test drive, the recordings are searched for
known, pre-configured fault patterns.

4) A test driver manually flags erroneous vehicle behaviour
during the test drive.

5) A fraction of the recordings is manually investigated by
an expert after the test drive by random inspection.

The first three points rely on pre-configured knowledge,
meaning that only those faults are detected, that were thought
of during the definition of the test strategy. The fourth and fifth
point solely rely on the experience of human beings. None of
the listed measures handles unexpected faults.

A. Motivation

A vehicle is a high-technology product with a high fraction
of vehicle electronics. The gross of innovations is achieved by
the means of vehicle electronics. Only by effective means of
analysing the recordings, can one make sure that the effort put
in the conduction of test drives pays off.

The amount of data to be analysed is huge, depending on
the logging device a recording can contain hundreds of signals.
The chance to manually find unexpected or unmodelled faults
is low. An example of a recording of a test drive with faults
is shown in Fig. 1. Visually detecting the errors is almost
infeasible.

This paper contributes by proposing an approach that
• uses available recordings and extracts the relevant knowl-

edge to be able to find abnormal deviations in new
recordings
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• autonomously points the expert to potential errors by
reporting anomalies in recordings from test drives

From the reported anomalies, the expert can start investi-
gating the data base of recordings in a goal-oriented way.

II. FROM FAULT DETECTION TO ANOMALY DETECTION

Detecting unmodelled or unexpected faults in the recordings
is in this paper done by means of anomaly detection. In this
paper, the terms fault, error, and failure are used as defined
by ISO 26262-1 [4]. A fault is an “abnormal condition that
can cause an element or an item to fail”. An error is the
“discrepancy between a computed, observed or measured value
or condition, and the true, specified or theoretically correct
value or condition” [4]. A failure is the “termination of the
ability of an element, to perform a function as required” [4].
A fault may manifest itself as an error, which in turn may
cause a failure [5].

Fault detection is one part of fault diagnosis which com-
prises fault detection and fault isolation [6]. The authors
in [7] subdivide fault locations in vehicle electronics into
sensors/actuators, electric, buses, and ECUs.

In [8] two important properties of a fault diagnostic system
are identified: the modelling effort should be as minimal as
possible, and the detection system should be able to identify
novelties, i.e. faults, that were not modelled. It is further stated
that the identification of novelties is challenging, because
typically no data set exists, that includes all faults in order
to fully model the abnormal region. On the other hand, data
sets with normal behaviour are usually available [8].

These assessments substantiate using anomaly detection
based on a training set, as done in this paper.

In [4] the term anomaly is defined as a “condition that devi-
ates from expectations, based, for example, on requirements,
specifications, design documents, user documents, standards,
or on experience”. [9] defines an anomaly more general as a
deviation from expected behaviour, other terms are novelty or
outlier [10]. An anomaly is considered a potential error in this
paper.

The detection of anomalies can be automated by teaching
an anomaly detection system normal and abnormal behaviour
by the means of a labelled training set and have the system
classify unseen data. This corresponds to a two-class classifi-
cation problem. The task is to assign an unclassified instance
to either the normal class ωn or the abnormal class ωa based
on a set of features f . For fault-detection two major drawbacks
of such a traditional classification approach were identified:

1) Often no abnormal data sets exist beforehand. On the
other hand normal data can be obtained by recording
data from a system in normal operation mode.

2) Even if abnormal data exists, it is highly likely that it is
not representative, because many faults in a system are
not known. The decision boundary is heavily influenced
by the choice of the abnormal data. Using a non-
representative training data set of anomalies, an incorrect
decision function is learned.

An alternative is to only learn the normal behaviour and
classify deviations as abnormal. In other words, the training

Fig. 2. A hypersphere in a 2-dimensional feature space with radius R and
center �a is described by the three support vectors SV1 . . . SV3.

period is exclusively conducted using a training set of normal
instances.

Support vector machines (SVM)[11], [12] have shown to
yield good results on classification tasks and have widely been
used. In [13] the one-class SVM “support vector data descrip-
tion” (SVDD) was introduced to cope with the problem of one-
class classification. SVDD finds a closed decision boundary,
a hypersphere, around the normal instances in the training
data set using a so-called kernel function. It is therefore ideal
for anomaly detection. In [14], the authors of this paper have
applied SVDD to analysing data from a DC motor.

III. THE ONE-CLASS SUPPORT VECTOR MACHINE SVDD

In [13] the one-class support vector machine “support vector
data description” (SVDD) was introduced. As a decision func-
tion, SVDD forms a hypersphere around the normal instances
in the training data set. The hypersphere is determined by the
radius R and the center �a, as illustrated in Fig. 2, and is found
by solving the optimisation problem of minimising the error
on the normal class and the chance of misclassifying data from
the abnormal class.

The error on the normal class is minimised by adjusting
R and �a in a way that all instances of the training data set
are contained in the hypersphere. Minimising the chance of
misclassifying data from the abnormal class is done by min-
imising the hypersphere’s volume. The trade-off F between
the number of misclassified normal instances and the volume
of the normal region is optimised by minimising

F (R,�a) = R2 (1)

subject to

‖�xi − �a‖2 ≤ R2 ∀i i = 1, ..,M (2)

where �xi denotes the instances and M the number of
instances in the training data set, �a is the hypersphere’s center,
and ‖�xi − �a‖ is the distance between �xi and �a.

The hypersphere is described by selected instances from
the training data set, so-called support vectors. The center �a
is implicitly described by a linear combination of the support
vectors. The remaining instances are discarded.

If all instances are contained in the hypersphere, outliers
contained in the training data set massively influence the
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decision boundary. So SVDD in this form is very sensitive to
outliers, which is not desired. Slack variables ξi are introduced,
which allow for some instances �xi in the training data set to
be outside the hypersphere. The parameter C is introduced
controlling the influence of the slack variables and thereby
the error on the normal class and the hypersphere’s volume.
So the optimisation problem of eq. (1) and eq. (2) changes
into minimising

F (R,�a, ξi) = R2 + C
M∑
i=1

ξi (3)

subject to

‖�xi − �a‖2 ≤ R2 + ξi ∀i (4)

and

ξi ≥ 0 ∀i (5)

As described in [15], the constrained optimisation problem
is transformed into an unconstrained one by integrating the
constraints into the equation using the method of Lagrange
[16]. The partial derivatives w.r.t. R, �a, �ξ are set to 0 and the
resulting equations are resubstituted, yielding the following
optimisation problem to be maximised:

L(�α) =
M∑
i=1

αi(�xi · �xi)−
M∑

i,j=1

αiαj(�xi · �xj) (6)

subject to

0 ≤ αi ≤ C ∀i (7)

Since strictly spherical-shaped decision boundaries are not
appropriate for most data sets, non-spherical decision bound-
aries are introduced by mapping the data into a higher-
dimensional space by the so-called kernel trick [11].

As indicated by eq. (6), �xi and �xj are solely incorporated as
the inner products (�xi · �xi) and (�xi · �xj) respectively. Instead of
actually mapping each instance to a higher-dimensional space
using a mapping function φ(), the so-called kernel trick is
used to replace the inner products (φ(�xi) · φ( �xj)) by a kernel
function K(�xi, �xj). The mapping is implicitly done by solving
K(�xi, �xj). So eq. (6) becomes:

L(�α) =
M∑
i=1

αiK(�xi, �xi)−
M∑

i,j=1

αiαjK(�xi, �xj) (8)

The radial basis function (RBF) kernel is used, because it
is reported to be most suitable to be used with SVDD in [17].
The RBF kernel is given by

K(�xi, �xj) = e−
‖ �xi− �xj‖2

σ2 (9)

The kernel function can take on values from the interval
(0, 1] and converges to 0 for high distances ‖�xi − �xj‖. Since

K(�xi, �xi) = e−
‖ �xi− �xi‖2

σ2 = 1 and
∑M

i=1 αi = 1, eq. (8) can be
simplified for the RBF kernel:

L(�α) = 1−
M∑

i,j=1

αiαjK(�xi · �xj) (10)

subject to

0 ≤ αi ≤ C ∀i (11)

An approach to autonomously tune the parameters C and
σ in the absence of faults in the training set was proposed by
this paper’s authors in [18].

IV. ENHANCING SVDD TO MULTIVARIATE TIME SERIES

Based on SVDD, in this section a novel approach is
proposed, that enhances SVDD to work with multivariate time
series. The approach shall be named SVDDSUBSEQ.

A. Feature extraction
A recording is a list of time-stamped signal values recorded

during tests. A recording may contain multiple signals, i.e. it
corresponds to multivariate time series data [19].

SVDD is trained with instances in feature space, i.e. feature
vectors. So from the time series, features need to be extracted.
Transforming the multivariate time series to feature vectors is
conducted by transforming the values at each time point Ti

to one feature vector �xi. Thereby, a N ×M multivariate time
series

YT =

⎛
⎜⎜⎝

x1,t1 x1,t2 . . . x1,tN

x2,t1 . . . . . . x2,tN

. . . . . . . . . . . .
xM,t1 xM,t2 . . . xM,tN

⎞
⎟⎟⎠ (12)

is transformed to N feature vectors of length M

�xi = (x1,ti , x2,ti , . . . , xM,ti) ∀i (13)

B. Forming subsequences
Since time series data from vehicles are recordings from

technical systems, the time series data can be considered noisy.
Measuring identical situations, it is likely to observe similar
but not identical values. As a consequence, it is very likely
that a fraction of individual data points of previously unseen
data lie outside the decision boundary without actually being
abnormal, which is confirmed by experiments.

The aim of this work is pointing domain-experts to ab-
normal subsequences in the recordings. Instead of classifying
feature vectors, subsequences Ytj ...t(j+W−1)

in the original time
series are formed using a fixed-width non-overlapping window
of length W .

Ytj ...t(j+W−1)
=

⎛
⎝ x1,tj . . . x1,tj+W−1

. . . . . . . . .
xM,tj . . . xM,tj+W−1

⎞
⎠ (14)

Working with feature vectors, the order of the data is
ignored. In other words, shuffling the feature vectors (the
columns in (12)) prior to applying SVDD yields the same
results. By combining neighbouring values to subsequences,
the local order of the data is taken into account.
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Fig. 3. Subsequence with window length 5 formed from a multivariate time
series with M = 2. The highlighted feature vectors xt1 . . .xt5 belong to one
subsequence.

C. Assigning distances to subsequences

In order to classify subsequences, a distance measure for
the subsequences has to be defined. Informally spoken, the
distance measure should yield a big distance for a subsequence
if many data points lie outside the decision boundary or if few
data points lie far outside the decision boundary.

As a first step, for every feature vector �xtk , the distance to
the center is calculated by

dist �xtk
= ‖ �xtk − �a‖ (15)

which is squared to be able to apply the RBF kernel

dist2�xtk
= ‖ �xtk − �a‖2 (16)

Solving the binomial, replacing �a by its linear combination
of support vectors, and replacing the inner products by the
RBF kernel function yields:

dist2�xtk
= 1− 2

M∑
i=1

αiK( �xk, �xi)+
M∑

i,j=1

αiαjK(�xi, �xj) (17)

As can be seen from eq. (17), classification is very fast.
It involves basic vector algebra and the application of the
kernel function. Based on this distance measure, a distance is
assigned to each subsequence. The distance of a subsequence
is calculated by averaging the distances of the window’s
feature vectors.

distsubseq =
1

W

W∑
k=1

dist �xtk
(18)

The proposed distance measure does not indicate the dis-
tance between two arbitrary subsequences, but indicates how
abnormal a subsequence is. The formation of a subsequence
is illustrated in Fig. 3 for a contrived multivariate time series
containing two univariate time series.

Fig. 4. Histogram of subsequence distances in a training set from recordings
of test drives.

D. Training and test

Being able to calculate distances for subsequences allows
to classify them. The procedure during training is as follows:

1) train SVDD with feature vectors in training set
2) calculate the distances dist �xtk

of the feature vectors
3) form subsequences according to (14)
4) calculcate distsubseq for all subsequences as given by

(18)
5) from all distsubseq determine the threshold thrsubseq

A first approach to determine the threshold thrsubseq could
be to use the maximum distance in the training set as the
threshold for classifying subsequences. However, this is highly
sensitive to outliers in the training set since the threshold
would be determined solely by the most distant subsequence.

It is proposed to not necessarily include all subsequences
in the determination of the threshold, and thereby be robust
against outliers. The distances of all subsequences in the
training set are calculated and those that are considered outliers
are not used to determine the threshold.

The outliers in the training set could be identified based on
the statistical distribution of the distances by cutting off at the
upper tail of the distribution. Experiments have shown that the
distribution does not correspond to a normal distribution (see
Fig. 4), so the type of the distribution has to be determined,
the parameters have to be estimated and a threshold has to be
specified.

It is proposed to use a more applicable way of determining
the threshold using box plots known from statistics (see
e.g. [20]). For a box plot the first and the third quartile (Q1

and Q3) of the data are calculated. The margin between Q1

and Q3 is referred to as the inter-quartile range, which holds
50% of the data and corresponds to the box in Fig. 5. Based on
the inter-quartile range, the so-called whiskers are calculated
by Q3 + 1.5(Q3 − Q1) and Q1 − 1.5(Q3 − Q1). The data
outside the whiskers are regarded as outliers. This has been
successfully applied on real-world data in [21] to identify
outliers in medical data.

In this work, outlier distances are the ones that are greater
than the upper whisker. Those distances are discarded accord-
ing to

distoutlier > 1.5(Q3 −Q1) +Q3 (19)

The maximum of the remaining distances is used as the
threshold for classification. Fig. 5 shows the box plot for the
distances shown in Fig. 4, where the distances above the upper
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Fig. 5. Box plot of subsequence distances in training set. The distances
above the upper horizontal line are regarded as outliers and are not included
for the determination of the threshold.

horizontal line (whisker) are discarded resulting in a threshold
of 0.9214 for the investigated test drives.

Testing instances from a test set works by applying the
threshold determined during training:

1) calculate the distances dist �xtk
of the feature vectors in

test set
2) form subsequences according to (14)
3) calculcate distsubseq for all subsequences
4) classify subsequences as abnormal if distsubseq >

thrsubseq

Based on (18), an anomaly score ε for subsequences si is
defined as

εsi =

{
distsubseqsi − thrsubseq : if si is abnormal
0 : if si is normal

This anomaly score allows to rank the reported anomalies.

E. Determining the classification results

In the test set, consecutive fixed-length subsequences with
the same label are grouped together as variable-length sub-
sequences, slabωa

for abnormal subsequences and slabωn
for

normal ones respectively.
The aim is to point the expert to abnormal subsequences

slabωa
. If some or all feature vectors contained in slabωa

are
reported as abnormal, the anomaly is detected, i.e. the system
detected one true negative.

The classification results are determined as follows, where
sclassωa

is a fixed-length subsequence classified as abnormal
and sclassωn

a subsequence classified as normal.

• true negative (TN), i.e. anomaly detected:
if slabωa

contains at least one sclassωa

• false positive (FP), i.e. anomaly not detected:
if slabωa

does not contain a sclassωa

• false negative (FN), i.e. falsely reported as anomaly:
for each sclassωa

contained in a slabωn

• true positive (TP):
for each group of consecutive sclassωn

contained in
slabωn

Id Date of Engine Engine Weightmanufacture displacement power
Tw1 2002 1149 ccm 43 kW 895 kg
Tw2 2002 1149 ccm 43 kW 895 kg
Tw3 2011 1149 ccm 55 kW 1019 kg
Tw4 2012 1149 ccm 55 kW 994 kg

TABLE I
VEHICLES USED FOR THE EXPERIMENTS: FOUR DIFFERENT RENAULT

TWINGOS.

Signal OBD PID
Short Term Fuel Trim (Bank 1) 06 hex
Engine RPM 0C hex
Vehicle Speed 0D hex
Ignition Timing Advance (Cylinder 1) 0E hex
Absolute Throttle Position 11 hex

TABLE II
OBD-SIGNALS RECORDED FOR THE EXPERIMENTS.

V. EXPERIMENTAL RESULTS

The approach was validated on real data sets from vehicles.
Over 250 test drives were conducted in different traffic situ-
ations ranging from urban traffic to motorways over a time
span of one year to capture recordings from different weather
conditions. This data acquisition phase started with one vehicle
and one driver and was later extended to ten drivers and four
vehicles (see Table I) to become more representative. The
reason for choosing “Renault Twingo” as test vehicles was just
the availability. The results are transferable to other vehicles
as well.

The data was recorded using the on-board diagnostics
(OBD-II or EOBD) interface, which allows to approximately
read 10-15 emission-related signals in a standardised way. The
signals in Table II were analysed.

Recordings from in-vehicle networks are highly confidential
and could therefore not be used. However, recordings from
in-vehicle networks were available to the author but not for
publishing purposes. So the authors could assure that the data
is comparable, has a lower sample rate though. The results
presented here on data from OBD apply to recordings from
an in-vehicle network as well.

The first experiments were conducted with the vehicle in
idle mode to gain confidence in the approach. Then recordings
from test drives were used.

A. Vehicle in idle mode

The first experiment was conducted with recordings of the
vehicle in idle mode. The signals speed and throttle position
were discarded for this experiment because they remain un-
changed. The vehicle “Tw1” was used as the test vehicle and
the following errors were provoked:

� In order to simulate a cable break in the spark plug lead or
a damaged spark plug, the spark plug lead was removed
several times. One recording is shown in Fig. 6.

• The sensor measuring the engine coolant temperature was
manipulated. A negative temperature coefficient (NTC)
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Fig. 6. Recordings of vehicle in idle mode, with 10 injected faults (class=1).
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Fig. 7. False negatives for varied size of training set and fixed size of test
set (2423 seconds) with normal data only.

thermistor is used as the sensor in the test vehicles, i.e.
low resistance corresponds to high temperature [22]. By
means of a potentiometer, an erroneous sensor, a loose
contact, and a short circuit were simulated.

In the absence of abnormal data it is recommended to start
by testing with normal data. If the number of false negatives,
i.e. falsely detected anomalies, on normal data is too high, the
detection system will not be useful.

To investigate the affect of the size of the training set, the
size was varied with a fixed test set size as shown in Fig. 7.
While for very small training sets the number of false negatives
acts non-deterministically between very low and very high
values, for larger training sets, the training set becomes more
representative and the number of false negatives stabilises at
low values. This type of experiment can be used as an indicator
of how representative the training set is.

A test set with faults was used in Fig. 8. It can be seen that,
as the ratio between the size of the training set and the size
of the test set increases, the false negative rate and the false
positive rate decreases.

After the initial experiments, the maximal training set from
Fig. 8 was selected and tested with a test set containing faults.
As shown in Table III, the results are very good, 92.9% of the
faults were detected. This was expected, as the faults could
easily be visually identified in the plots in Fig. 6.
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Fig. 8. TPR, FPR, FNR, TNR w.r.t. the ratio between the size of the training
set and the size of the test set.

index training test TN prec
FN

0 7056 s 3958 s 26 (92.9%) 78.8%
vehicle: Tw1 vehicle: Tw1 7

TABLE III
RESULTS ON RECORDINGS FROM VEHICLE IN IDLE MODE WITH FAULTS.

B. Test drives

For the further experiments recordings from test drives were
used. As a next step, the affect of different drivers and different
vehicles were investigated.

In Table IV the number of false negatives are shown for
different constitutions of fault-free test sets with training on
recordings of approximately 6 hours from various test drives
with vehicle “Tw1” and driver “dr1”.

The first row indicates, that testing on test drives from
the same vehicle and the same driver yields good results. 10
falsely detected anomalies in recordings of approx. 3 hours is
viewed as acceptable.

The affect of different drivers is shown in the second row,
training on recordings from just one driver and testing on
recordings from different drivers yields very poor results as
indicated by the 84 false negatives.

The affect of different vehicles of the same model series is
not as dramatic as shown in the third row.

Conclusively, an ideal training set should
1) be large enough to contain common driving situations

and conditions, and different traffic situations
2) contain recordings from different test drivers
3) contain recordings from various vehicles
What is encountered in practice is that different drivers test

different vehicles.
For different training sets, the accuracy was evaluated for

one test drive with vehicle “Tw1”, driver “dr1”, and 10 faults,
shown in Fig. 9. The following constitutions of the training
set were used:

� same vehicle and same driver (index 4 in Table V)
• same vehicle and various drivers including “dr1” (index

5 in Table V)
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index training test FN
1 22664 s 10242 s 10

vehicle: Tw1 vehicle: Tw1
driver: dr1 driver: dr1

2 22664 s 10981 s 84
vehicle: Tw1 vehicle: Tw1
driver: dr1 drivers: dr2-9

3 22664 s 10933 s 17
vehicle: Tw1 vehicle: Tw2
driver: dr1 driver: dr1

TABLE IV
RESULTS ON RECORDINGS FROM TEST DRIVES IN FAULT-FREE OPERATION

MODE.

Fig. 9. Recording of a test drive with vehicle “Tw1” and driver “dr1”. The 10
injected faults are difficult to manually detect, the detection system detected
between 9 and 10.

• various vehicles including “Tw1” and different drivers not
including “dr1” (index 6 in Table V)

All three scenarios show very good results as shown in
Table V, between 90% and 100% of the faults were detected.
This indicates that the proposed approach is applicable as the
integral part of an anomaly detection system for test drive
recordings.

In addition to the detection algorithm, data selection and
pre-processing facilities, as well as intelligent ways to analyse
the reported anomalies are required, which has not been
discussed in this paper. The authors discussed efficient ways
of user-driven data exploration in [23].

index training test TN prec
FN

4 22664 s 1997 s 9 (90%) 90.0%
vehicle: Tw1 vehicle: Tw1 1
driver: dr1 driver: dr1

5 11975 s 1997 s 10 (100%) 90.9%
vehicle: Tw1 vehicle: Tw1 1
drivers: dr1-9 driver: dr1

6 19443 s 1997 s 10 (100%) 90.9%
vehicles: Tw1-4 vehicle: Tw1 1
drivers: dr2-10 driver: dr1

TABLE V
RESULTS ON RECORDINGS FROM TEST DRIVES WITH FAULTS (SEE FIG. 9).

VI. CONCLUSION

The paper addressed the problem of having to cope with
huge data volumes resulting from vehicle tests. The aim was
to report potential errors in the recordings. The key point was
to be able to detect unexpected faults without modelling effort.
This was achieved by learning from a training set of error-free
recordings, and then autonomously reporting deviations in the
test set as anomalies.

The classification technique SVDD was enhanced to work
on multivariate time series data and the approach was shown
to work with the help of experimental results. Even if misclas-
sifications occur, which is inevitable for classification systems
based on learning from sample data, the detection system is
very useful. Based on the reported anomalies the expert can
conduct the analysis in a goal-oriented manner in contrast to
random inspection.

The proposed approach offers benefits in many steps of a
vehicle’s life cycle ranging from the development phase to
the after sales service period. During test drives conducted
before start of production the vehicle’s behaviour on the road
is evaluated. Utilising the proposed approach, the analysis
becomes more thorough with a smaller chance of overseeing
abnormal behaviour. After start of production sporadic test
drives are being conducted with chosen vehicles to ensure the
vehicles’ quality. At that point in time many recordings with
that type of vehicle exist from earlier phases. Therefore the
system shall be able to offer good results for this step of the
vehicle’s life cycle. Even after a vehicle has gone through all
of the manufacturer’s steps, such a system can offer benefits,
during the analysis of field data.

The approach was developed and successfully used in the
authors’ research project on detecting anomalies in recordings
from test drives [14].
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