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Abstract—This work deals with the initial applications and 

formulation of an anisotropic plastic-damage constitutive model 
proposed for non-linear analysis of reinforced concrete structures 
submitted to a loading with change of the sign. The original 
constitutive model is based on the fundamental hypothesis of energy 
equivalence between real and continuous medium following the 
concepts of the Continuum Damage Mechanics. The concrete is 
assumed as an initial elastic isotropic medium presenting anisotropy, 
permanent strains and bimodularity (distinct elastic responses 
whether traction or compression stress states prevail) induced by 
damage evolution. In order to take into account the bimodularity, two 
damage tensors governing the rigidity in tension or compression 
regimes are introduced. Then, some conditions are introduced in the 
original version of the model in order to simulate the damage 
unilateral effect. The three-dimensional version of the proposed 
model is analyzed in order to validate its formulation when compared 
to micromechanical theory. The one-dimensional version of the 
model is applied in the analyses of a reinforced concrete beam 
submitted to a loading with change of the sign. Despite the 
parametric identification problems, the initial applications show the 
good performance of the model. 
 

Keywords—Damage model, plastic strain, unilateral effect. 

I. INTRODUCTION 
HE Continuum Damage Mechanics (CDM) has already 
proved to be a suitable tool for simulating the material 

deterioration in equivalent continuous media due exclusively 
to microcracking process. In this work, for modeling the 
concrete behaviour, it can be assumed that the concrete 
belongs to the category of materials which can be considered 
initially isotropic and unimodular presenting different 
behaviours in tension and compression when damaged. A 
formulation of constitutive laws for isotropic and anisotropic 
elastic materials presenting different behaviours in tension and 
compression under small deformations was proposed in [1] for 
two and three-dimensional cases. The authors have considered 
a bimodular hyperelastic material defining an elastic potential 
energy density W which must be once continuously 
differentiable (whole wise), but only piecewise twice 
continuously differentiable. In this way, the model is able to 
produce different response in tension and compression. 
Reference [2] has extended the formulation [1] in order to take 
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into account the damage effects. Accordingly with, the bulk 
(λab) and shear (μa) modulus are considered as functions of the 
damage state, so that the stress-strain relationship would be 
influenced by damage variables. Moreover, the hypersurface 
g(ε, Di) adopted as the criterion for identification of the 
constitutive responses in compression or tension would be 
also influenced by the damage variables. Then, a constitutive 
model for the concrete was derived from the formulation [2]. 
The concrete is initially considered as an isotropic continuous 
medium with anisotropy (transverse isotropy) and 
bimodularity induced by the damage. On one side the class of 
anisotropy induced and considered in the model elapses from 
the assumption that locally the loaded concrete always 
presents damage distribution oriented diffusely as appointed 
by experimental observations. 

In this work, an improved version of the damage model 
taking into accounting the unilateral effect is proposed and 
critically discussed. The original version of the damage model 
is bimodular in the sense that presents different elasticity 
tensors in tension and compression. Thus, the model is 
potentially capable to simulate the stiffness recovery when the 
medium is submitted to a loading with change of the sign that 
evidences the transition from predominant regimes of tension 
to compression, i. e., the so-called unilateral behavior of the 
damaged concrete. However, the model is not capable to 
simulate the influence of the previous damage processes in 
compression (diffuse damage) when there is the transition 
from predominant regimes of compression to tension [3]. 
Therefore, to avoid this problem a new elasticity tensor is 
proposed in this work. Many different strategies are possible 
and have been proposed in the literature to model the stiffness 
recovery as [3]-[8]. From a micromechanics point of view this 
is due to the partial closure of micro-cracks loaded in 
compression which affect less the elasticity moduli in 
compression than in tension [6]. On the other hand, [7] and [8] 
suggest that despite the recent progresses in the macroscopic 
modeling of the unilateral effect, this subject still remains as 
an open research field when it deals with induced anisotropy 
damage models. Indeed, this work intends to contribute to the 
modeling of damage unilateral effect. However, it must be 
noted that the proposed model is not capable to take into 
account the friction effects, namely blocking and dissipative 
sliding of closed microcrack lips. This feature can be 
discussed in future works. 
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II.  UNILATERAL DAMAGE MODEL 
The original damage model formulation is built from the 

formalism presented in [2]. Moreover, the model respects the 
principle of energy equivalence between damaged real 
medium and equivalent continuous medium established in the 
CDM. In this work the definition of that tensor follows a so-
called scalar form expressed as: D = fj(Di) Mj , where fj(Di) 
are scalar valued functions of the damage scalar variables Di 
and Mj are anisotropic tensors. In the case of this model, the 
particular adopted tensors to Mj are the ones that allow 
representing the transverse isotropy. Then, for dominant 
tension states, a scalar damage tensor is proposed: 

 
DT=f1(D1,D4,D5) )( AA⊗ +2f2(D4,D5) 

)]()[( AAAIIA ⊗−⊗+⊗
−

−

−

−
                       (1) 

 
where f1(D1, D4, D5) = D1 – 2 f2(D4, D5) and f2(D4, D5) = 1 – 

(1-D4) (1-D5). The variable D1 represents the damage in 
direction orthogonal to the transverse isotropy local plane of 
the material, while D4 is representative of the damage due to 
the sliding movement between the crack faces. The third 
damage variable, D5, is only activated if a previous 
compression state accompanied by damage has occurred. In 
(1), the tensor I is the second-order identity tensor and the 
tensor A, is formed by dyadic product of the unit vector 
perpendicular to the transverse isotropy plane for himself. 
Those products are given in [2]. For dominant compression 
states, it is proposed the other damage tensor: 

 

DC= *
1f (D2,D4,D5) )( AA⊗ +f2(D3) )]()[( AAII ⊗−⊗

−
 

+2f3(D4,D5) )]()[( AAAIIA ⊗−⊗+⊗
−

−

−

−
              (2) 

 
where *

1f (D2, D4, D5) = D2 – 2f3(D4, D5) ,f2(D3) = D3 and 
f3(D4,D5)=1–(1-D4)(1-D5). Note that the compression damage 
tensor introduces two additional scalar variables in its 
composition: D2 and D3. The variable D2 (damage 
perpendicular to the transverse isotropy local plane) reduces 
the Young's modulus in that direction and in conjunction to D3 
(that represents the damage in the transverse isotropy plane) 
degrades the Poisson's ratio throughout the perpendicular 
planes to the one of transverse isotropy. 

On the other hand, the constitutive tensor is written as: 
 

E (ε) := 
⎩
⎨
⎧

+

−
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ε
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Note that for null values of the damage variables, the 

material behaves as isotropic and unimodular medium, where 
011 λλ =  and 01 μμ =  are Lamè constants. The remaining 

parameters will only exist for no-null damage [2]. 
The hyperplane g(ε,D) is defined by the unit normal N and 

characterized by its dependence of both the strain and damage 
states [2]. To simplify the presentation, the hyperplane will be 
here expressed as the one obtained by enforcing the direction 
1 in the strain space to be perpendicular to the transverse 
isotropy local plane. Thus, the hyperplane is given by: 

 

g(ε,DT,DC)=N(DT,DC).εe=γ1(D1,D2)
e
Vε +γ2(D1,D2)

e
11ε      (6) 

 
where γ1(D1,D2)={1+H(D2)[H(D1)-1]}η(D1)+{1+H(D1) 
[H(D2)-1]}η(D2) and γ2(D1,D2)=D1+D2. The H(Di) are 
Heaveside functions (H(Di)=1 for Di > 0 and H(Di) = 0 for Di 
= 0 (i = 1, 2)). The η(Di) functions are defined, respectively, 
for the tension and compression cases, assuming for the first 
one that there was no previous damage of compression 
affecting the present damage variable D1 and analogously, for 
the second one that has not had previous damage of tension 
affecting variable D2 and they are given by: 
 

η (D1) = 
3

D23D 2
11 −+−

; η (D2) = 
3

D23D 2
22 −+−

   (7) 

 
Due to anisotropy induced by damage, it is convenient to 

separate the damage criteria into two: the first one is only used 
to indicate damage beginning, or that the material is no longer 
isotropic and the second one is used for loading and unloading 
when the material is already considered as transverse 
isotropic. This second criterion identifies if there is or not 
evolution of the damage variables. That division is justified by 
the difference between the complementary elastic strain 
energies of isotropic and transverse isotropic material. For 
more details see [2] and [9]. 

If there is damage evolution, i. e., when 0DT ≠  or 

0DC ≠ , the evolution laws of the damage variables are 
written as associated variables functions. Considering just the 
case of monotonic loading, the evolution laws proposed for 
the scalar damage variables are resulting of fittings on 
experimental results and present similar characteristics to 
those one described in [4]. The general form proposed is: 
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[ ])YY(BexpA
A1

1D
i0iii

i
i −+

+
−=   i = 1, 5                   (8) 

 
where Ai, Bi and Y0i are parameters of the model that must be 
identified through the uniaxial tension and compression tests 
and biaxial compression tests. 

When the damage process is activated, the formulation 
starts to involve the tensor A that depends on the normal to the 
transverse isotropy plane. Therefore, it is necessary to 
establish some rules to identify its location for an actual strain 
state. Initially, it is established a general criterion for the 
existence of the transverse isotropy plane. In [9] is proposed 
that the transverse isotropy due to damage only arises if 
positive strain rates exist at least in one of the principal 
directions. After assuming such proposition as valid, some 
rules to identify its location are defined. 

The one-dimensional version of the model takes into 
account permanent strains induced by damage evolution. 
Assuming, for simplicity, that the permanent strains are 
composed exclusively by volumetric strains, as it has already 
been considered in others works [3], and taking into account 
the unilateral effect, the evolution law results: 

 

=pε
( ) ( ) ⎟

⎟
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⎞
⎜
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⎝
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2
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D
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Observe that β1 and β2 are parameters directly related to the 

evolutions of permanent strains induced by damage in tension 
and in compression, respectively. 

The original version of the damage model [2] is bimodular, 
however it is necessary to take into account the diffuse 
damage generated in previous compression regimes when 
dealing to tension regimes. This problem can be solved by 
introduction of a new elasticity tensor in dominant tension 
regimes. Therefore, respecting the principle of energy 
equivalence, the new constitutive tensor is written as: 

 
)DI)(DI(E)DI)(DI(E *

CTT
*
CT −−−−= 0         (10) 

 
Note that the damage tensor in compression *

CD  should be 
in the composition of the constitutive tensor in dominant 
tension regimes. In this work, an alternative form for the 
damage tensor *

CD  is presented in order to take into account 
the damage processes generated in previous compression. This 
tensor is given by: 

*
CD =f1(D2,) )AA( ⊗ +f2(D3) )]AA()II[( ⊗−⊗

−
       (11) 

 
where f1(D2) = D2 and f2(D3) = D3. It is important to observe 
that the damage tensor *

CD  provides the diffuse damage in 
previous compression states through the changing of the 
volumetric modulus, as proposed in [3]. Then, following the 

formalism presented in [2], the unilateral damage model 
proposed in this work is written as: 
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Now, the parameters λij and μI are given by: 
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The stress tensor is obtained from the gradient of the elastic 

potential, as follows: 
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The constitutive tensor is also obtained from the elastic 
potential, i. e.: 
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Taking into account the unilateral effects and assuming that 

direction 1 in the strain space be perpendicular to the 
transverse isotropy local plane, the complementary elastic 
energy of the damaged medium in dominant tension regimes 
is now expressed by: 
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The variables associated to damage variables in tension 

with damage activated in previous compression will also be 
modified, because they are obtained from the elastic potential 
(22). Therefore, the following relationships are valid: 
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Note that just Y1 must to take into account the diffuse 

damage represented by D2 and D3. In this case, that damage 
variables are constants because there is no energy release rates 

during the damage evolution in dominant tension regimes 
related to D2 and D3. 

In the case of dominant tension regimes without activation 
of damage processes in previous compression the original 
version of the damage model [2] is recovered. 

It can be verified that the unilateral damage model satisfies 
two basic requirements of this modeling kind: 
1) The model does not produce spurious energy dissipation 

upon closed load paths which do not activate damage [4]. 
2) The continuity of the stress-strain law across the tension-

compression interface is assured (hiperplano g(ε,DT,DC)), 
because the damage model is derived from the 
formulation proposed in [2], following the requirements 
of [1] and [8]. The continuity of the stress-strain law 
between two damage states imposes that the elastic 
potential must be once continuously differentiable (whole 
wise), but only piecewise twice continuously 
differentiable. 

According to [1], other problem related to this kind of 
modeling concerns the loss of isotropy of the elasticity tensor 
in the transition through the tension-compression interface. 
The isotropy is preserved only if the interface is defined in the 
same group of symmetry of the elasticity tensor. In the 
proposed model the hyperplane and elasticity tensor belong to 
the group of isotropic material if there is not damage process. 
On the other hand, if there is activation of damage processes, 
the hyperplane starts to present the symmetry of the transverse 
isotropic material as well as the elasticity tensor. Anyway, the 
model always preserves the isotropy of the elasticity tensor. 

III. DISCUSSION ABOUT MICROMECHANICAL THEORY 
Despite the proposed model has been based on the 

macromechanical behaviour of the concrete, it presents strong 
connection to the micromechanical theory. The description of 
the damage activation-deactivation process as part of 
macroscopic modelling requires to know when the transition 
between these two states of damage occur and how damage 
deactivation affect the elastic properties of the material [8]. It 
is noted that the formulation for bimodular anisotropic 
damaged media proposed in [2] replies the first question (see 
(6)). Besides, the continuity of the stress-strain law was 
assured. In this context, this section aims to point out the 
influence of the opening-closure of microdefects on the elastic 
properties of the microcracked concrete. 

Consider the simple case of a material weakened by a single 
array of parallel microcracks with unit normal n as in Fig. 1 
and parameter ( ) ( )0

2
0 36/116A νν −−= . This case is 

interesting for the damage model proposed in this work 
because the effective medium exhibits the symmetry 
associated with the geometric shape of the microcracks with 
the privileged direction n (transverse isotropic material). 
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Fig. 1 Material weakened by an array of parallel microcracks 

 
Then, the elastic moduli are fully determined by five 

independent coefficients for any vectors t and k forming with 
n an orthonormal basis of R3. 
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The Heaviside function H depending on the normal stress to 

each microcrack is open ( 0k
n ≥σ ) or closed ( 0k

n <σ ). 
The particular nature of the microdefects contribution 

allows to extend these considerations for any of N 
microcracks with different normal vectors. In [8] are 
described some conclusions about (26)-(30) that are useful for 
a discussion about the proposed model. In general way, the 
damage unilateral effect should no longer be considered only 
by the single restoration of the Young modulus in the 
direction normal to closed microcracks. In this context, let us 
compare the damaged elastic moduli given by the proposed 
model to those ones given by the micromechanical equations. 
Then, considering Fig. 1 and assuming, for instance, that the 
transversal isotropy local plane is coincident with the 2-3 
plane, the elastic moduli given by the proposed model in 
dominant compression (subscript C) and in tension (subscript 
T) regimes are written as: 
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( )( )
( )3

21
013T12T D1

D1D1
−

−−
== ννν ;

( )
( )3

2
013C12C D1

D1
−
−

== ννν

(32) 
( )2303T2T D1EEE −== ; 2

303C2C )D1(EEE −==     (33) 

023C23T ννν ==                                   (34) 

( ) ( )25
2
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The longitudinal elastic moduli in tension and in 
compression in the direction 1 depend on the dominant state, i. 
e., of the opening-closure criterion. This is also valid for the 
Poisson ratio in the 12 and 13 planes. On the other hand, the 
Poisson ratio in the 23 plane (transversal isotropy local plane) 
is not affected by the damage process. The shear moduli are 
not changed in the transition from the tension to compression 
regimes and vice-versa. Observe (33) and consider the 
transition from dominant tension regime (damage process in 
tension activated or not) to the compression regime without 
previous compression. In this case one has: 

03C2C3T2T EEEEE ==== . This result is in 
correspondence with the form described by (28). Indeed, the 
( )23D1− coefficient is necessary to take into account the 
diffuse damage in previous compression when the current 
dominant state is tension. 

Finally, it is observed that despite the proposed model has 
macromechanical motivations in the macroscopic behaviour of 
the concrete, the model assists to the requirements suggested 
by [8] for the micromechanical analysis of the unilateral effect 
in materials. 

IV. NUMERICAL APPLICATIONS 
Initially, Fig. 2 shows that the consideration of the 

permanent strains improves the capture of the transverse 
strains by the model. Besides, the model predicts the change 
in sign of the volumetric strain. 

 

Fig. 2 Uniaxial compression test: a) axial e transverse strains; b) 
volumetric strain 

 
In the second application, the unilateral model is used in the 

simulation of a uniaxial test in concrete specimens upon 
reversal load. Observe that the permanent strains are important 
in the definition of the hyperplane, in the sense that the total 
strains start to compose the criterion (6). The initial stiffness 
recovery can be clearly observed taking into account 
permanent strain in the dominant tension regime. It is noted 
the contribution of the diffuse damage generated in previous 
compression regimes when dealing to tension regimes. 
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Fig. 3 Uniaxial test in concrete specimens upon reversal load 

 
The one-dimensional version of the unilateral damage 

model was implemented in a program for bars structures 
analysis with finite layered elements. The damage model is 
assumed to simulate the concrete layers behaviour and for the 
longitudinal reinforcement bars, an elastoplastic behaviour is 
admitted. This example deals with a test [4] that corresponds 
to a reinforced concrete beam, in a configuration of three 
point cyclic flexion. The beam is subject cyclic loading at the 
mid span. Table I contains the parameters values. 

In the numerical analysis, displacements increments were 
enforced in the mid span. Using the advantage of symmetry, 
only half of the beam is discretized into 20 finite elements. 
The transversal sections were divided into 16 layers. The 
numerical and experimental responses are displayed in Fig. 5. 

 

 
Fig. 4 Geometry, reinforcement details and history of loading 

 
TABLE I 

PARAMETERS OF THE UNILATERAL DAMAGE MODEL 

Tension Compression 

Y01=6.0x10-5MPa Y02=3.0x10-3MPa 
A1=-0.93 A2=1.50 

B1=110 MPa-1 B2=10.01 MPa-1 
β1=8x10-5MPa β2=1.0x10-3MPa 
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Fig. 5 Global response of the reinforced concrete beam 
 

The results obtained by the model have shown to be 
satisfactory despite the limited parametric identification of the 
parameters related to permanent strains. Therefore, the 
ultimate loads are computed more accurately than the 
permanent strains in the unloading processes. Note that the 
damage processes in the compression regimes are not so 
important in this example, according to observations in [6]. 
Besides, the damage profile is also close to test observations. 
The obtained results encourage us to proceed in the 
improvement of the model to deal with more complex 
phenomena in future works, e. g., blocking and dissipative 
sliding of closed microcracks lips, non-local version of the 
model and a more efficient parametric identification of β1 and 
β2, among others. 
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