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An Analytical Solution for Vibration of Elevator
Cables with Small Bending Stiffness

R. Mirabdollah Y ani, E. Darabi

Abstract—Responses of the dynamical systems are highly
affected by the natural frequencies and it has a huge impact on design
and operation of high-rise and high-speed eevators. In the present
paper, the variationa iteration method (VIM) is employed to
investigate better understanding the dynamics of elevator cable as a
single-degree-of-freedom (SDOF) swing system. Comparisons made
among the results of the proposed closed-form analytical solution, the
traditional numerical iterative time integration solution, and the
linearized governing equations confirm the accuracy and efficiency
of the proposed approach. Furthermore, based on the results of the
proposed closed-form solution, the linearization errors in calculating
the natural frequenciesin different cases are discussed.
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|. INTRODUCTION

ABLES are the structural elements of diverse engineering

applications and are utilized in many machines and
apparatuses. Cables and ropes resist relatively large axid
loads, thus they are widely used in towing operations to carry
and transmit high loads such as elevators, suspension bridges
and marine towing systems. High flexibility and low intrinsic
damping are the most important reason of cable vibrations.
Mechanica properties of cables have been studied by many
researchers. Stevin in 1586 instituted the triangle of forces by
experimenting with loaded string, Beeckman in 1615 solved
the suspension bridge problem, and John Bernoulli and James
between 1690 and 1691 established the foundation of the
catenary theory[1].

Several researchers studied the vibration of elevator cables.
Chi and Shu calculated the natural frequencies of longitudinal
vibration of a stationary cable and car system[2]. Y amamoto
et a. analyzed the free and forced lateral vibration of a
stationary string with slowly, linearly varying length[3].
Terumichi et a. examined the lateral vibration of atravelling
string with dowly, linearly varying length and a mass-spring
termination[4]. Zhu and Xu studied the vibration of elevator
cables with small bending stiffness with different boundary
conditiong[5].

Vibration of hoist cableis awell known nonlinear problem.
Exact solution of nonlinear equations is the most critica
concern of researchers and mathematicians. Interpretation of a
nonlinear phenomenais largely depends on these sol utions.
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The Variational lteration Method (VIM)-proposed by Jin-
Huan He in 1999-has been extensively used by arbitrary
number of authors due to its flexibility and accuracy.
Variationad iteration method is a simple and efficient
procedure for finding a solution of various nonlinear
problems. Recently, virtues of the method attract engineers to
utilize it in most of sophisticated fields. Numerous studies
have been made in the area of vibration problems and new
techniques was developed such as finite element method,
finite difference method, perturbation techniques and etc to
handle a more exact solution[6].

I1.ANALYSIS

A.Basic Equations for Sationary Cable Models

Consider three models of stationary hoist cable with
different boundary conditions. Fig.1 shows these three models.
In Fig.1a and Fig.1b, since there is no sag, a taut string and a
tensioned beam are used to model it. Suspension of the car in
its guide rails is assumed to berigid. In all the cases the mass
of the car is denoted by m, car has afinite dimensions and the
length of the cableisl. In Fig.1c, dueto string modeling of the
cable, the bending stiffness El is neglected.
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Fig. 1 Stationary hoist cable with the suspension of the car in rigid
guiderails: (a) fixed—fixed beam model, (b) pinned—pinned beam
model, and (c) string model

When the cable is modeled as a tensioned beam, as it
illustrated in Fig.1la and Fig.1b, the governing equation of free
|ateral vibration is extracted as

pYee(x,£) — [Py (x, )] + Elyexxx (x,t) = 0, (1)
0<x<l
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Where the subscripts x and t denote the lateral displacement
of the cable and corresponding time, respectively. p is the
mass per unit length, | is the length of the cable, El is the
bending stiffness, and P(x) is the tension at position x given by

P(x) = [m, + p(I — x)]g, )

Where g denotes the gravity acceleration.
As shown in Fig.1a, the boundary conditions for fixed ends
are

y(0,t) = yx(0,8) =0, (3
y@Lt) =y:(L,t) =0,

Similarly, the boundary conditions for pinned ends, as
shownin Fig.1(b) are

¥(0,t) = ,x(0,t) = 0, 4
v, t) = yex (L, ) = 0,

The boundary conditions for the last model asiillustrated in
Fig.1(c) are
y(0,)=0, y(,t) =0, (5)

For the cable modelsin Fig. 2(a) and (b), the boundary
conditions at x = 0 are the same asthosein (3) and (4),
respectively, and the boundary conditionsat x = [ are

V(L E) =0 (6)
Ely(1,t) = PDy, (L, t) + meyee (L 1) + coye(Lt) + ke y(L t)
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Fig. 1 Stationary hoist cable where the car is modeled as a point mass
me and its suspension against the guiderails has a resultant stiffness
ke and damping coefficient c.: (@) beam modd with afixed end at x =
0; (b) beam model with apinned end at x = 0; and (c) string model

I11. ANALYTICAL SOLUTION PROCEDURE
In this part of this paper, a brief description of an anaytical
technique that is going to be used to find approximate
analytical solutions for vibration problem described in section
2 is given. There are many numerica but a few analytica
methods for solving the nonlinear equations. In this paper
variational iteration method (VIM) is used because it is a fast

and easy method in finding an appropriate solution for
nonlinear problems.

A.Variational Iteration Method Concept

To illustrate the basic concepts of this method, consider the
following nonlinear equation:

Llu(x, t)] + R[u(x, t)] + N[u(x,t)] = g(x,t) @)

Where R is alinear operator partial derivatives with respect to
x, L is the linear time derivative operator, N is a nonlinear
termand g(x, t) isaninhomogeneousterm.

According to variational iteration method, the following
correction function must be constructed:

Uns1 (6, 8) = Un(x,0) + [ A[Ltty + Rl + Nt — g ]ds (8)

Where 1 is a general Lagrange multiplier which can be
identified optimally via variationa theory, Rii, and Nu,
denote restricted variations, i.e., §ii,, = 0.

IV. APPLICATION OF THE VARIATIONAL ITERATION METHOD
TOFIND A SOLUTION FOR THE GOVERNING DIFFERENTIAL
EQUATIONS

In this section, the analytical technique is employed in each
of the mentioned three boundary conditions of cable vibration
to gain the solutions of the governing equations.

A. Governing Equation for Fixed-Fixed Beam Model

To find a solution for the governing equation of beam with
fixed boundaries, at first (1) is expanded into the following
equation:

Py (x, 6) + pgyx (x, t) — [me + p(l = )1 gysx (x, 1)
+ ElYexx(x,t) =0, 0 <x <l (9)

In developing a solution to a partia differential equation by
separation of variables, one assumes that it is possible to
separate the contributions of the independent variables into
separate functions that each involve only one independent
variable. To solve (1) by separation of variables, y(x,t) can
be factored:

y(x,6) =Y (x).T(t) (10)

Where the function T depends only on t and the function Y
depends only on x. Substituting (9) into the (1) gives

pY ()T(t) + pgT ()Y’ (x) —
[me 4+ p(l — x)1gT(@®)Y" (x) + EIT()Y P (x) = 0, (11)
0<x<l
Now separate all the x’s on one side and the t’s on the
other:
(12
EIY®(x) = [m, + p(1 = )]gY" (x) + pg¥'(x) _—T(0)

pY (%) T
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It isimpossible for a function of an independent variable x
to be identically equal to a function of an independent variable
t unless both are constant. Therefore, for some constant4?,
two separate ordinary differentia equations are constructed as:

EIY®(x) = [me + p(l = 0)]gY "(x) + pg¥ ' (x) — (13
pA2Y(x) =0 T(t)+ 22T(t) =0
Begin by using the restrictions on the independent variable
that generated the periodic functions.
Inthis case, that will be T(t):

T(t) = Asin(At) + Bcos(At) (14)

where A and B are constants which depend on initia
conditions. In (13), Y (x) could not be found easily because it
is a nonlinear eguation. There are many ways to find an
approximate solution for nonlinear equations. Among the
methods of nonlinear solution, variational iteration method is
exclusve and individua. He [8] proposed the Lagrange
multiplier for equations similar to (13) as (s — t), thus the
correction function of (13) may be constructed as:
X

T @) = 10 + [ = 0EN () -
0

[m, +p(L—)]g¥"(s) + pg¥ '(s) — pA2Y (s) |ds

(15

By considering the initial conditions and solving the linear
part of (13), first answer will be as:

Yo (x) = sin(x)?.sin (x — 1)? (16)

By continuing the iteration equations, following solutions
for fixed boundaries obtained as:

Y,(x) = 38 ((32(x Dg + 82%)p — 128EI — 32gm,)Cos(2l — 2x)
+—(((161 = 16x)g — 42)p + 256EI + 16gm, ) Cos(—4x +
21) — 2 pgSin(2l - 2x) + — pgSin(—4x + 21) + —(((161 -
32x)g + 84%x% — 72%)p — 128EI + 16gme) Cos(21) +
((( 321 — 32x)g + 81%)p — 128E1 — 32gme) Cos(2x) +
E((lZg — 12x4?)p — 768EIx)Sin(2l) + = pgSLn(Zx) +
64x)g + 16A%x? — 8A%)p + EI + nge) a7

128

— (-

128

B. Governing Equation for Pinned-Pinned Beam Model

The solution procedure for pinned-pinned boundary
conditions is the same for the previous part. Solving of the
(13) begins with construction of correction function as

EIY® (x) —
pA%Y(x) =0,

) — [me + p(L = 2)]gY" (x) + pg¥’' (x) —
T(t) + AZT(t) =0 (18)

By considering theinitial conditions and solving the linear
part of (23), iteration solution begins with:

Yy (x) = sin(x)3.sin (x — 1)3 (29

By continuing the iteration equations, following solutions
for pinned boundaries determined as:

Yl(x) =138 ((32(x Dg + 84%)p — 128EI — 32gm,)Cos(2l — 2x)

+8 (((161 — 16x)g — 2%)p + 2561 + 16gm, ) Cos(—4x + 21)

1 1
+—pgSin(21 —2x) — —pgSin(—4x +20)

128 ((16gl +22(8x2 — 7))p — 128E + 16gm, ) Cos(21)

+ T8 ((( 321+ 32x)g + 84%)p — 128E1 — 32gme) Cos(2x)

1
+ 138 —((-12g9 - 12x/12)p 768E1x)Sin(21) — —pgSm(Zx)
ﬁ(32gl + (16x% — 8)A%)p + EI + nge)
(20)
C.Governing Equation for Sring Model

The only difference between the current model and previous
models is the stiffness of the beam which is neglected in string
model. The governing equation of free latera vibration for
string model is asfollows

[me + p(L = )]gY" (x) — pg¥'(x) + pA2¥(x) =0 (21)

Similar to previous procedure of finding an approximate
solution, correction function is constructed as

= Yo () + [(s = D)[(m, + p(l = ))g¥"'(s) -
pgY'(s) + pA%Y(s)] (22)

Vg1 ()

The most important and critical step of variationa iteration
method is finding the first answer of the iteration solution
according to boundary conditions. For string model governing
equation, iteration solution begins with:

Yy (x) = sin(x)?.sin (x — [)? (23)

By continuing the iteration equations, following solutions
for string model determined as:

K =—
22) + = (((161 = 16x)g — 2%)p + 16gm, ) Cos(—4x + 21) —

(((—321 +32x)g +8242)p — 3nge) Cos(2l —

%pgSin(Zl —-2x) + ipgSin(—4x + 2D+ L(((16[ —32x)g +
8A%x? — 74%)p + 16gm, ) Cos(21) + —(((=32L + 32x)g +
842)p — 32gme) Cos(2x) + E((lZg — 12xA%)p)Sin(21) +

—pgSln(Zx) + —(((321 64x)g + 16A%x2 — 8A%)p + %gme)

(24)
V/.RESULTS AND DISCUSSIONS

The two numericd examples verify that the vibration
problem can be solved by using He's variational iteration
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method, accurately and efficiently. To validate results of
current research, results of analytical solution are compared
with results obtained by iterative Newmark’s time integration
methods. Since the governing equations are time consuming,
an updating method is employed in conjunction with Picard-
type iterative method. The parameters used here are: p =
1.005kg/m,EIl = 1.39 Nm?,m = 782 kg, g = 9.81 and
[ = 182m. Although both He's variationa iteration method
and the Newmark’s time integration method are efficient and
powerful methods for solving the beam problem, He's method
leads to fewer calculations compared to the Newmark’s time
integration method.

Using the material iteration functions and various numbers
of iterations, the first three natura frequencies of the models
inFigs. 1 and 2 are calculated as shown in Table 1.

TABLEI
THE FIRST THREE NATURAL FREQUENCIES (IN RAD/S) OF THE MODELSIN
FIGS. 1 AND 2 CALCULATED USING ARBITRARY NUMBER OF ITERATIONS FOR
THE UNTENSIONED BEAM EIGENFUNCTIONS

Number
of 0 1 2 3 4
iterations
1% natural
frcuency 2021 1710 1682 1682 1682
Fig. 1(a) f”at“ra' 4143 3784 3421 3421 3421
St
3 natur
froqeney 4345 4963 5002 5002 5092
1% natural
froquengy 2021 1710 1682 1682 1682
) 2" natural
Fig. 1(b) frduency 4143 3784 3421 3421 3421
nawd 4345 4963 5001 5001 5001
reguency
1% natural
T ?quem; 2021 1710 1682 1682 1682
) 2™ natur
Fig. 10) | ey 4143 3784 342 342 342
S%nawa o5 4963 5001 5001 5001
frequency
st
flnat“ra' 1623 1548 1512 1512 1512
rauency
Fig. 2(3) f”at“”” 2001 1879 1872 1872 1872
o uency
stnaurd 4006 3760 3453 3453 3453
frequency
st
flnat“ra' 1623 1548 1512 1512 1512
reguency
nd
Fig. 2(b) f”at“ra' 2001 1879 1872 1872 1872
requency
f’”at“'a' 4126 3760 3451 3451 3451
requency
1% natural
frequengy 1623 154 1511 1511 1511
. 2" natural
FIg20)  foqeny 2001 1870 1872 1872 1872
rd
SPnawa .56 3760 3453 3453 3453
frequency

The tria functions for the models in Figs. 1(a), and 2(a)
and (b) is referred to as the untensioned beam e genfunctions.
The values of natural frequency for fixed-fixed models are
slightly higher than those of the pinned-pinned modd due to
rotational constraints at the fixed ends. The natural frequencies
for string model are identical to those of pinned-pinned model
due to small bending stiffness. If ke approaches infinity, the

natural frequencies of models with spring and damper
boundary conditions would be the same as the corresponding
models with rigid guide rails boundary conditions.

The initial displacements for the current models in Figs (1)
and (2) for the maximum displacement of d = 0.08 at the
point x = 103.7m are shown in Fig (3).
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0 50 100 150 200

x(m)

Fig. 2 Theinitial displacementsfor the modelsin: Figs. 1(a) and 2(a)

This initial displacement is calculated through simulating
of the current models with the static deflection of a beam with
the same boundary condition under uniform tensionm,g,
subjected to a concentrated force at x = a resulting in a
displacement d at x = a, where a estimated by experimental
procedures. Note that the small bending stiffness leads to the
boundary layers in the deflections of the beams in the vicinity
of the fixed ends and concentrated force to ensure satisfaction
of the boundary and internal conditions.

Fig. 4(a) depicts the transverse force a the lower end
(i.e,x =1) of each model in Fig.1 under mentioned initial
conditions.
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Fig. 3 (a) The transverse force at the lower enelgh model in Fig.
1 under the corresponding initial displacement showFig. 3 (b)
The bending moment at the upper end of the modeign1(a)

While y,(x,t) induces the shear forceEly,,,(l,t) at
x =1 for the model in Fig. 1(a), term-Ely,(l,t) +

Elyxx(0,t) (Nm)

t(s)

(b)
Fig. 4 The transverse force at the upper end df esmel in Fig. 2

under the corresponding initial displacement showrig. 3 (b) The
bending moment at the upper end of the model in XK

The untensioned beam eigenfunctions can be used to

calculate the transverse force at an interior pofrthe model

P(Dy,(Lt) for the model in Fig. 1(b) and the transversd Fig- 2(2) and any point of the model in Fig. )2(Beam

component of tensioR (1)y,(l,t) for the model in Fig. 1(c),

the values of these models are the same. Fig.shid)ys the
bending moment at the lower end of the model irdibeam
model in rigid guide rails but, the bending momanthe two
ends of the fixed-fixed beam model vanishes. Irhbobdels,
the bending moment at an interior point of the ni®de
eliminated due to smaller orders of magnitude imgarison

to those at the fixed ends of the modéie untensioned beam

eigenfunctions can be used to determine the trassyerce at
an interior point of the fixed-fixed beam model aady point
of the pinned-pinned model because it is domindigdhe
transverse component of the tension, which invothesfirst
order derivativey,.

Under the above initial conditions the transvemed at the

eigenfunctions can be used to determine the trassvJerce at
the lower end of the models in Fig. 2(a) and (avse they
satisfy a more realistic boundary conditidiy,.,(l,t) = 0.
The transverse force at the lower end of the miwdElg. 2(c)
cannot be determined here because the trial
satisfyy'(1) = 0.

VI. CONCLUSION

In the current paper the variational iteration roetifViM)
is employed to investigate the characteristics té free
vibration of elevator cables with small bendingffsgss.
Responses of a dynamical system are remarkablgtaffdy
the modal responses of the system, an idea thdideasled to
the appearance of mode superposition techniques

furgctio

upper end (i.ex, = [) of each model in Fig. 2 is shown in Fig.determining the dynamic responses of the multi-t®gems.

5(a). Similar to the case in Fig. 4(a), the transeeforce at Although behavior of stationary cables is propgytedicted

x=0; though given by different expressions, hageigslly the by the string and beam models, the maximum bending

same value for the three models. The bending mometite moment occurs at the fixed ends of the beam models.

upper end of the model in Fig. 2(a) is shown in Bigp). addition,y,,. andy,,, cannot be extracted for the untensioned
beameigenfunctions.
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