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Abstract—Responses of the dynamical systems are highly 

affected by the natural frequencies and it has a huge impact on design 
and operation of high-rise and high-speed elevators. In the present 
paper, the variational iteration method (VIM) is employed to 
investigate better understanding the dynamics of elevator cable as a 
single-degree-of-freedom (SDOF) swing system. Comparisons made 
among the results of the proposed closed-form analytical solution, the 
traditional numerical iterative time integration solution, and the 
linearized governing equations confirm the accuracy and efficiency 
of the proposed approach. Furthermore, based on the results of the 
proposed closed-form solution, the linearization errors in calculating 
the natural frequencies in different cases are discussed. 
 

Keywords—variational iteration method (VIM); cable vibration; 
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I. INTRODUCTION 

 ABLES are the structural elements of diverse engineering 
applications and are util ized in many machines and 

apparatuses. Cables and ropes resist relatively large axial 
loads, thus they are widely used in towing operations to carry 
and transmit high loads such as elevators, suspension bridges 
and marine towing systems. High flexibility and low intrinsic 
damping are the most important reason of cable vibrations. 
Mechanical properties of cables have been studied by many 
researchers. Stevin in 1586 instituted the triangle of forces by 
experimenting with loaded string, Beeckman in 1615 solved 
the suspension bridge problem, and John Bernoulli and James 
between 1690 and 1691 established the foundation of the 
catenary theory[1]. 

Several researchers studied the vibration of elevator cables. 
Chi and Shu calculated the natural frequencies of longitudinal 
vibration of a stationary cable and car system[2]. Yamamoto 
et al. analyzed the free and forced lateral vibration of a 
stationary string with slowly, linearly varying length[3]. 
Terumichi et al. examined the lateral vibration of a travelling 
string with slowly, linearly varying length and a mass-spring 
termination[4]. Zhu and Xu studied the vibration of elevator 
cables with small bending stiffness with different boundary 
conditions[5]. 

Vibration of hoist cable is a well known nonlinear problem. 
Exact solution of nonlinear equations is the most critical 
concern of researchers and mathematicians. Interpretation of a 
nonlinear phenomena is largely depends on these solutions.  
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The Variational Iteration Method (VIM)-proposed by Jin-

Huan He in 1999-has been extensively used by arbitrary 
number of authors due to its flexibility and accuracy. 
Variational iteration method is a simple and efficient 
procedure for finding a solution of various nonlinear 
problems. Recently, virtues of the method attract engineers to 
utilize it in most of sophisticated fields. Numerous studies 
have been made in the area of vibration problems and new 
techniques was developed such as finite element method, 
finite difference method, perturbation techniques and etc to 
handle a more exact solution[6]. 

II. ANALYSIS 

A. Basic Equations for Stationary Cable Models 

Consider three models of stationary hoist cable with 
different boundary conditions. Fig.1 shows these three models. 
In Fig.1a and Fig.1b, since there is no sag, a taut string and a 
tensioned beam are used to model it. Suspension of the car in 
its guide rails is assumed to be rigid. In all the cases the mass 
of the car is denoted by m, car has a finite dimensions and the 
length of the cable is l. In Fig.1c, due to string modeling of the 
cable, the bending stiffness EI is neglected. 

 
Fig. 1 Stationary hoist cable with the suspension of the car in rigid 
guide rails: (a) fixed–fixed beam model, (b) pinned–pinned beam 

model, and (c) string model 

When the cable is modeled as a tensioned beam, as it 
illustrated in Fig.1a and Fig.1b, the governing equation of free 
lateral vibration is extracted as 

 
������, �� 	 
��������, ��
� � ���������, �� � 0,    

0 � � � � (1) 
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Where the subscripts x and t denote the lateral displacement 
of the cable and corresponding time, respectively. ρ is the 
mass per unit length, l is the length of the cable, EI is the 
bending stiffness, and P(x) is the tension at position x given by 

 
���� � 
�� � ��� 	 ��
�,  (2) 

 
Where g denotes the gravity acceleration. 
As shown in Fig.1a, the boundary conditions for fixed ends 

are 
 

��0, �� � ���0, �� � 0,   
���, �� � ����, �� � 0,  

(3) 

 
Similarly, the boundary conditions for pinned ends, as 

shown in Fig.1(b) are 
 

��0, �� � ����0, �� � 0,  
 ���, �� � �����, �� � 0,  

(4) 

 
The boundary conditions for the last model as illustrated in 

Fig.1(c) are 
��0, �� � 0,   ���, �� � 0,  (5) 

 
For the cable models in Fig. 2(a) and (b), the boundary 

conditions at � � 0 are the same as those in (3) and (4), 
respectively, and the boundary conditions at � � � are 

�����, �� � 0                                                         (6) 

�������, �� � ��������, �� � �������, �� � ������, �� � �����, �� 

 

 
Fig. 1 Stationary hoist cable where the car is modeled as a point mass 
me and its suspension against the guide rails has a resultant stiffness 

ke and damping coefficient ce: (a) beam model with a fixed end at x = 
0; (b) beam model with a pinned end at x = 0; and (c) string model 

III. ANALYTICAL SOLUTION PROCEDURE 
In this part of this paper, a brief description of an analytical 

technique that is going to be used to find approximate 
analytical solutions for vibration problem described in section 
2 is given. There are many numerical but a few analytical 
methods for solving the nonlinear equations. In this paper 
variational iteration method (VIM) is used because it is a fast 

and easy method in finding an appropriate solution for 
nonlinear problems. 

A. Variational Iteration Method Concept 

To il lustrate the basic concepts of this method, consider the 
following nonlinear equation: 
 

�
���, ��
 � �
���, ��
 � �
���, ��
 � ���, ��  (7) 
 
Where � is a linear operator partial derivatives with respect to 
�, � is the linear time derivative operator, � is a nonlinear 
term and ���, ��  is an inhomogeneous term. 

According to variational iteration method, the following 
correction function must be constructed: 
 

�� !��, �� � ����, �� � " #
��� � ��$� � ��$� 	 � 
%&�
'   (8) 

 
Where # is a general Lagrange multiplier which can be 
identified optimally via variational theory, ��$� and ��( � 
denote restricted variations, i.e., )�$� � 0. 

IV. APPLICATION OF THE VARIATIONAL ITERATION METHOD 

TO FIND A SOLUTION FOR THE GOVERNING DIFFERENTIAL 

EQUATIONS 

In this section, the analytical technique is employed in each 
of the mentioned three boundary conditions of cable vibration 
to gain the solutions of the governing equations.  

A. Governing Equation for Fixed-Fixed Beam Model 

To find a solution for the governing equation of beam with 
fixed boundaries, at first (1) is expanded into the following 
equation: 
 

������, �� � ������, �� 	 
�� � ��� 	 ��
������, ��
� ���������, �� � 0,   0 � � � � (9) 

 

 
In developing a solution to a partial differential equation by 

separation of variables, one assumes that it is possible to 
separate the contributions of the independent variables into 
separate functions that each involve only one independent 
variable. To solve (1) by separation of variables, ���, �� can 
be factored: 

���, �� � *���. ,���  (10) 
 

Where the function , depends only on � and the function * 
depends only on �. Substituting (9) into the (1) gives 

 
�*���,- ��� � ��,���*.��� 	 


�� � ��� 	 ��
�,���*..��� � ��,���*�/���� � 0, 
   0 � � � � 

 
   (11) 

Now separate all the �’ s on one side and the �’ s on the 
other: 

(12) 
��*�/���� 	 
�� � ��� 	 ��
�*..��� � ��*.���

�*��� � 	,- ���
,���  
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It is impossible for a function of an independent variable � 
to be identically equal to a function of an independent variable 
� unless both are constant. Therefore, for some constant#0, 
two separate ordinary differential equations are constructed as: 

 

��*�/���� 	 
�� � ��� 	 ��
�*′′��� � ��*′��� 	
�#0*��� � 0 ,- ��� � #0,��� � 0 

(13) 

 
Begin by using the restrictions on the independent variable 

that generated the periodic functions. 
In this case, that will be T(t): 

 
,��� � 1&23�#�� � 4�5&�#��  (14) 

 
where A and B are constants which depend on initial 
conditions. In (13), Y(x) could not be found easily because it 
is a nonlinear equation. There are many ways to find an 
approximate solution for nonlinear equations. Among the 
methods of nonlinear solution, variational iteration method is 
exclusive and individual. He [8] proposed the Lagrange 
multiplier for equations similar to (13) as �& 	 ��, thus the 
correction function of (13) may be constructed as: 

*� !��� � *���� � 6 �& 	 ��
��*�/��&� 	
�

'
 


�� � ��� 	 &�
�*′′�&� � ��*′�&� 	 �#0*�&� 
%& 
(15) 

 
By considering the initial conditions and solving the linear 

part of (13), first answer will be as: 
 

*'��� � &23���0 . &23 �� 	 ��0  (16) 
 

By continuing the iteration equations, following solutions 
for fixed boundaries obtained as: 

 

*!��� � 1
128 :�32�� 	 ��� � 8#0�� 	 128�� 	 32���<=5&�2� 	 2�� 

� !
!0> ?:�16� 	 16��� 	 #0<� � 256�� � 16���B =5&�	4� �

2�� 	 !
> ��D23�2� 	 2�� � !

E0 ��D23�	4� � 2�� � !
!0> ?:�16� 	

32��� � 8#0�0 	 7#0<� 	 128�� � 16���B =5&�2�� �
!

!0> ?:�	32� 	 32��� � 8#0<� 	 128�� 	 32���B =5&�2�� �
!

!0> :�12� 	 12�#0�� 	 768���<D23�2�� � !
> ��D23�2�� �

!
!0> ���2� 	 64��� � 16#0�0 	 8#0�� � �� � !

/ ����   (17) 

 

B. Governing Equation for Pinned-Pinned Beam Model 

The solution procedure for pinned-pinned boundary 
conditions is the same for the previous part. Solving of the 
(13) begins with construction of correction function as 
 

��*�/���� 	 
�� � ��� 	 ��
�*..��� � ��*.��� 	
 �#0*��� � 0,     ,- ��� � #0,��� � 0                              (18) 

 

 
By considering the initial conditions and solving the linear 

part of (23), iteration solution begins with: 

 
*'��� � &23���E . &23 �� 	 ��E  (19) 

 
By continuing the iteration equations, following solutions 

for pinned boundaries determined as: 
 

*!��� � 1
128 :�32�� 	 ��� � 8#0�� 	 128�� 	 32���<=5&�2� 	 2�� 

� 1
128 ?:�16� 	 16��� 	 #0<� � 256�� � 16���B =5&�	4� � 2�� 

� 1
8 ��D23�2� 	 2�� 	 1

32 ��D23�	4� � 2�� 
� 1

128 ?:16�� � #0�8�0 	 7�<� 	 128�� � 16���B =5&�2�� 
� 1

128 ?:�	32� � 32��� � 8#0<� 	 128�� 	 32���B =5&�2�� 
� 1

128 :�	12� 	 12�#0�� 	 768���<D23�2�� 	 1
8 ��D23�2�� 

� 1
128 �32�� � �16�0 	 8�#0�� � �� � 1

4 ���� 

                            (20) 

C. Governing Equation for String Model 

The only difference between the current model and previous 
models is the stiffness of the beam which is neglected in string 
model. The governing equation of free lateral vibration for 
string model is as follows 

 

�� � ��� 	 ��
�*..��� 	 ��*.��� � �#0*��� � 0  (21) 

 
Similar to previous procedure of finding an approximate 

solution, correction function is constructed as 
 

*� !��� � *���� � " �& 	 ��
:�� � ��� 	 &�<�*..�&� 	�
'

��*.�&� � �#0*�&�
            (22) 

 
The most important and critical step of variational iteration 

method is finding the first answer of the iteration solution 
according to boundary conditions. For string model governing 
equation, iteration solution begins with: 

 
*'��� � &23���0 . &23 �� 	 ��0  (23) 

 
By continuing the iteration equations, following solutions 

for string model determined as: 
 

*!��� � !
!0> ?:�	32� � 32��� � 8#0<� 	 32���B =5&�2� 	

2�� � !
!0> ?:�16� 	 16��� 	 #0<� � 16���B =5&�	4� � 2�� 	

!
> ��D23�2� 	 2�� � !

E0 ��D23�	4� � 2�� � !
!0> ?:�16� 	 32��� �

8#0�0 	 7#0<� � 16���B =5&�2�� � !
!0> ?:�	32� � 32��� �

8#0<� 	 32���B =5&�2�� � !
!0> :�12� 	 12�#0��<D23�2�� �

!
> ��D23�2�� � !

!0> G:�32� 	 64��� � 16#0�0 	 8#0<� � !
/ ���H  

(24) 
V. RESULTS AND DISCUSSIONS 

The two numerical examples verify that the vibration 
problem can be solved by using He's variational iteration 

(18)
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method, accurately and efficiently. To validate results of 
current research, results of analytical solution are compared 
with results obtained by iterative Newmark’s time integration 
methods. Since the governing equations are time consuming, 
an updating method is employed in conjunction with Picard-
type iterative method. The parameters used here are: � �
1.005 �� �⁄ , �� � 1.39 ��0, � � 782 ��, � � 9.81 and 
� � 182�. Although both He's variational iteration method 
and the Newmark’s time integration method are efficient and 
powerful methods for solving the beam problem, He's method 
leads to fewer calculations compared to the Newmark’s time 
integration method.  

Using the material iteration functions and various numbers 
of iterations, the first three natural frequencies of the models 
in Figs. 1 and 2 are calculated as shown in Table 1. 

 
TABLE I 

THE FIRST THREE NATURAL FREQUENCIES (IN RAD/S) OF THE MODELS IN 

FIGS. 1 AND 2 CALCULATED USING ARBITRARY NUMBER OF ITERATIONS FOR 

THE UNTENSIONED BEAM EIGENFUNCTIONS 
Number 

of 
iterations 

 0 1 2 3 4 

Fig. 1(a) 

1st natural 
frequency 

2.021 1.710 1.682 1.682 1.682 

2nd natural 
frequency 

4.143 3.784 3.421 3.421 3.421 

3rd natural 
frequency 

4.345 4.963 5.092 5.092 5.092 

Fig. 1(b) 

1st natural 
frequency 

2.021 1.710 1.682 1.682 1.682 

2nd natural 
frequency 

4.143 3.784 3.421 3.421 3.421 

3rd natural 
frequency 

4.345 4.963 5.001 5.001 5.001 

Fig. 1(c) 

1st natural 
frequency 

2.021 1.710 1.682 1.682 1.682 

2nd natural 
frequency 

4.143 3.784 3.42 3.42 3.42 

3rd natural 
frequency 

4.345 4.963 5.001 5.001 5.001 

Fig. 2(a) 

1st natural 
frequency 

1.623 1.548 1.512 1.512 1.512 

2nd natural 
frequency 

2.001 1.879 1.872 1.872 1.872 

3rd natural 
frequency 

4.126 3.760 3.453 3.453 3.453 

Fig. 2(b) 

1st natural 
frequency 

1.623 1.548 1.512 1.512 1.512 

2nd natural 
frequency 

2.001 1.879 1.872 1.872 1.872 

3rd natural 
frequency 

4.126 3.760 3.451 3.451 3.451 

Fig. 2(c) 

1st natural 
frequency 

1.623 1.548 1.511 1.511 1.511 

2nd natural 
frequency 

2.001 1.879 1.872 1.872 1.872 

3rd natural 
frequency 

4.126 3.760 3.453 3.453 3.453 

 

and (b) is referred to as the untensioned beam eigenfunctions. 
The values of natural frequency for fixed-fixed models are 
slightly higher than those of the pinned-pinned model due to 
rotational constraints at the fixed ends. The natural frequencies 
for string model are identical to those of pinned-pinned model 
due to small bending stiffness. If ke approaches infinity, the 

natural frequencies of models with spring and damper 
boundary conditions would be the same as the corresponding 
models with rigid guide rails boundary conditions. 

The initial displacements for the current models in Figs (1) 
and (2) for the maximum displacement of % � 0.08 at the 
point � � 103.7� are shown in Fig (3). 

 

 

 This initial displacement is calculated through simulating 
of the current models with the static deflection of a beam with 
the same boundary condition under uniform tension ���, 
subjected to a concentrated force at � � K resulting in a 
displacement d at � � K, where K estimated by experimental 
procedures. Note that the small bending stiffness leads to the 
boundary layers in the deflections of the beams in the vicinity 
of the fixed ends and concentrated force to ensure satisfaction 
of the boundary and internal conditions. 

Fig. 4(a) depicts the transverse force at the lower end 
(i.e.,� � �) of each model in Fig.1 under mentioned initial 
conditions. 
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Fig. 2 The initial displacements for the models in: Figs. 1(a) and 2(a) 
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Fig. 3 (a) The transverse force at the lower end of each model in Fig. 
1 under the corresponding initial displacement shown in Fig. 3 (b) 

The bending moment at the upper end of the model in Fig. 1(a)  

While ����, �� induces the shear force 	��������, �� at 
� � � for the model in Fig. 1(a), term 	��������, �� �
��������, �� for the model in Fig. 1(b) and the transverse 
component of tension ��������, �� for the model in Fig. 1(c), 
the values of these models are the same. Fig. 4(b) shows the 
bending moment at the lower end of the model in fixed beam 
model in rigid guide rails but, the bending moment at the two 
ends of the fixed-fixed beam model vanishes. In both models, 
the bending moment at an interior point of the models is 
eliminated due to smaller orders of magnitude in comparison 
to those at the fixed ends of the model. The untensioned beam 
eigenfunctions can be used to determine the transverse force at 
an interior point of the fixed-fixed beam model and any point 
of the pinned-pinned model because it is dominated by the 
transverse component of the tension, which involves the first 
order derivative  ��. 

Under the above initial conditions the transverse force at the 
upper end (i.e.,� � �) of each model in Fig. 2 is shown in Fig. 
5(a). Similar to the case in Fig. 4(a), the transverse force at 
x=0; though given by different expressions, has essentially the 
same value for the three models. The bending moment at the 
upper end of the model in Fig. 2(a) is shown in Fig. 5(b). 
 

 

 
Fig. 4 The transverse force at the upper end of each model in Fig. 2 

under the corresponding initial displacement shown in Fig. 3 (b) The 
bending moment at the upper end of the model in Fig. 2(a) 

The untensioned beam eigenfunctions can be used to 
calculate the transverse force at an interior point of the model 
in Fig. 2(a) and any point of the model in Fig. 2(b). Beam 
eigenfunctions can be used to determine the transverse force at 
the lower end of the models in Fig. 2(a) and (b) because they 
satisfy a more realistic boundary condition, ��������, �� � 0. 
The transverse force at the lower end of the model in Fig. 2(c) 
cannot be determined here because the trial functions 
satisfy*.��� � 0. 

VI.  CONCLUSION 

In the current paper the variational iteration method (VIM) 
is employed to investigate the characteristics of the free 
vibration of elevator cables with small bending stiffness. 
Responses of a dynamical system are remarkably affected by 
the modal responses of the system, an idea that has been led to 
the appearance of mode superposition techniques in 
determining the dynamic responses of the multi-body systems. 
Although behavior of stationary cables is properly predicted 
by the string and beam models, the maximum bending 
moment occurs at the fixed ends of the beam models. In 
addition, ��� and ���� cannot be extracted for the untensioned 
beam eigenfunctions. 
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