
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1922

Abstract—A real time distributed computing has

heterogeneously networked computers to solve a single problem. So
coordination of activities among computers is a complex task and
deadlines make more complex. The performances depend on many
factors such as traffic workloads, database system architecture,
underlying processors, disks speeds, etc. Simulation study have been
performed to analyze the performance under different transaction
scheduling: different workloads, arrival rate, priority policies,
altering slack factors and Preemptive Policy. The performance metric
of the experiments is missed percent that is the percentage of
transaction that the system is unable to complete. The throughput of
the system is depends on the arrival rate of transaction. The
performance can be enhanced with altering the slack factor value.
Working on slack value for the transaction can helps to avoid some
of transactions from killing or aborts. Under the Preemptive Policy,
many extra executions of new transactions can be carried out.

Keywords—Real distributed systems, slack factors, transaction
scheduling, priority policies.

I. INTRODUCTION
distributed system is one where data are located on
several computers that are linked together by a

heterogeneous network. The advantages of such system are
increased availability of resources, increased reliability, and
increased execution speed in less time. The coordination of
activities among computers is a complex task. If a transaction
runs across two sites, it may commit at one site and may
failure at another site, leading to an inconsistent transaction.
Two-phase commit protocol is most widely used to solve
these problems [1]. To ensure transaction atomicity, commit
protocols are implemented in distributed database system. A
uniform commitment is guarantee by a commit protocol in a
distributed transaction execution to ensure that all the
participating sites agree on a final outcome. Result may be
either a commit or an abort condition.

Many real time database applications in areas of
communication system, stock trading, threat analysis, process
control and military systems are distributed in nature. In a real
time database system the transaction processing system that is
designed to handle workloads where transactions have
complete deadlines. To ensure transaction atomicity, commit
protocol are implemented in distributed database system. For

Y. J. Singh is with Faculty of Information Technology, 7th October
University. Misurata, Libya (e-mail: y_jayanta@yahoo.com).

S. C. Mehrotra is with Dept of Information Technology and Computer Sc.
Dr. B. A. Marathwada University, India (e-mail: mehrotrasc@rediffmail.com)

such a system a high coordination are required between
distributed processing, other database issues, and real-time
processing. Performance measures of the real time system
concentrated towards overall optimization of transactions
completed prior to the deadlines.

This paper shows a series of simulation study have been
performed to analyze the performance under different
transaction scheduling condition such as different workloads,
arrival rate, CPU priority policies, altering slack factors and
Preemptive Policy. The performance metric of the
experiments is MissPercent that is the percentage of input
transaction that the system is unable to complete before their
deadline. The section II describes the concept of a real time
database system. In section III, detail simulation model and
simulation parameters are given. The detail experiment results
and analysis are given in section IV. The overall conclusions
are discussed in section V.

II. REAL TIME DATABASE CONCEPT
Database researchers have proposed varieties of commit

protocols like Two phase commit, Nested two phase commit
[2,3], Presumed commit and Presume abort [4], Broadcast
Two phase commit, Three phase commit [5,6] etc. These
require exchanges of multiple messages, in multiple phases,
between the participating sites where the distributed
transaction executed. Several log records are generated to
make permanent changed to the data disk, demanding some
more transaction execution time [4,6,7]. Proper scheduling of
transactions and management of its execution time are
important factors in designing such systems.

Transactions processing in any database systems can have
real time constraints. The scheduling transactions with
deadlines on a single processor memory resident database
system have been developed and evaluated the scheduling
through simulation [8]. A real time database system is a
Transaction processing system that designed to handle
workloads where transactions have complete deadlines. A
centralized timed Two-phase Commit protocol has been
designed where the fate of a transaction is guaranteed to be
known to all the participants of the transaction by a deadline
[9]. In case of faults, it is not possible to provide such
guarantee. Real actions such as Firing a weapon or dispensing
cash may not be compensatable at all [10]. Proper scheduling
of transactions and management of its execution time are the
important factors in designing such systems. In such a
database, the performance of the commit protocol is usually

An Analysis of Real-Time Distributed System
under Different Priority Policies

Y. Jayanta Singh, and Suresh C. Mehrotra

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1923

measured in terms of number of Transactions that complete
before their deadlines. The transaction that miss their
deadlines before the completion of processing are just killed
or aborted and discarded from the system without being
executed to completion [11].

III. SIMULATION DETAILS
A. Simulation Model
Many researchers have evaluated performance of database

system. Literatures have been collected from the study of the
real time processing model [11] and transaction processing
addressing timeliness [12]. Such model consists of a database
that is distributed in a non-replicated manner, over all the
available sites (say 8 sites in this study) connected by a
network [13,14,15]. This system will have six components: (i)
a source: generate transactions, (ii) a transaction manager:
models the execution behavior of the transaction, (iii) a
concurrency control manager: implements the concurrency
control algorithm, (iv) a resource manager: models the
physical resources, (v) a recovery manager: implements the
details commit protocol and (vi) a sink: collects statistics on
the completed transactions. A network manager models the
behavior of the communications network.

Fig. 1 Real time distributed database model

A typical real time database model is shown in Fig. 1. The

definition of the components of the model is given below. The
study is concentrated in managing the transaction scheduling
under different environments. The study has concentrated to
minimized numbers of the percentage of miss transactions
under different conditions in order to optimize performance of
the system.

The transaction manager: The transaction manager is
responsible for accepting transaction from the source and
modeling their execution. This deals with the execution
behavior of the transaction. Each transaction in the workload
has a general structure consist of a master process and a

number of cohorts. The master resides at the sites where the
transaction was submitted. Each cohort makes a sequence of
read and writes requests to files that are stored at its sites. A
transaction has one cohort at each site where it needs to access
data. To choose the execution sites for a transaction’s cohorts,
the decision rule is: if a file is present at the originating site,
use the copy there; otherwise, choose uniformly from among
the sites that have remote copies of the files. The trans-action
manager also models the details of the commit and abort
protocols.

The concurrency control manager: It deals with the
implementation of the concurrency control algorithms. In this
study, this module is not fully implemented. The effect of this
is dependent on algorithm that chooses during designing the
system. The resource manager: The resource manager models
the physical resources like CPU, Disk, and files etc for writing
to or accessing data or messages from them. The sink: The
sink deals for collection of statistics on the completed
transactions. The Network Manager: The network manager
encapsulates the model of the communications network. It is
assuming a local area network system, where the actual time
on the wire for messages is negligible.

B. Execution: Simulation Parameters and its Set Values
In a common model of a distributed transaction, there is one

process, called as Master, which is executed at the site where
the transaction is submitted, and a set of processes, called
Cohorts, which executes on behalf of the transaction at these
various sites that are accessed by the transaction. In other
words, each transaction has a master process that runs at its
site of origination. The master process in turn sets up a
collection of cohort’s processes to perform the actual
processing involved in running the transaction. When cohort
finishes executing its portion of a query, it sends an execution
complete message to the master. When the master received
such a message from each cohort, it starts its execution
process.

When a transaction is initiated, the data items that will
access are chosen by the source. The master is then loaded at
its originating site and initiates the first phase of the protocol
by sending PREPARE (to commit) messages in parallel to all
the cohorts. Each cohort that is ready to commit, first force-
writes a prepared log record to its local stable storage and then
sends a YES vote to the master. At this stage, the cohort has
entered a prepared state wherein it cannot unilaterally commit
or abort the transaction but has to wait for final decision from
the master. On other hand, each cohort that decides to abort
force-writes an abort log record and sends a NO vote to the
master. Since a NO vote acts like a veto, cohort is permitted
unilaterally abort the transaction without waiting for a
response from the master.

After the master receives the votes from all the cohorts, it
initiates the second phase of the protocol. If all the votes are
YES, it moves to a committing state by force-writing a
commit log record and sending COMMIT messages to all the
cohorts. Each cohort after receiving a COMMIT message

Resource Manger

•Disk/CPU
•File

Transaction
Manager

Load Master/
Cohort
Read/Write
•Abort/Commit

Source
Create
Transaction

Sink
Statistics
Collection

CC Manager

Transa
ctions

Service
Done

Network Manager

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1924

moves to the committing state, force-writes a commit log
record, and sends an acknowledgement (ACK) message to the
master. If the master receives even one NO vote, it moves to
the aborting state by force writing an abort log record and
sends ABORT messages to those cohorts that are in the
prepared state. These cohorts, after receiving the ABORT
message, move to aborting state, force-write an abort log
record and send an ACK message to the master. Finally, the
master, after receiving acknowledgement from all the
prepared cohorts, writes an end log record and then forgets
and made free the transaction. Then the statistics are collected
in the Sink [11,13,14,15]

The database is modeled as a collection of Database size
(Bsize) pages that are uniformly distributed across all the
number of sites (NumSites). At each site, transactions arrive
under Poisson stream with rate ArrivalRate, and each
transaction has an associated firm deadline. The deadline is
assigned using the formula. DT, AT, SF and RT are the
deadline, arrival rate, Slack factor and resource time
respectively, of transaction T. The Resource time is the total
service time at the resources that the transaction requires for
its execution. The Slack factor is a constant that provides
control over the tightness or slackness of the transaction
deadlines.

DT=AT+SF*RT (1)

In this model, each of the transaction in the supplied
workload has the structure of the single master and multiple
cohorts. The number of sites at which each transaction
executes is specifying by a parameter called the File selection
time (DistDegree). At each of the execution sites, the number
of pages accessed by the transaction’s cohort varies uniformly
between 0.5 and 1.5 times of Cohort size. These pages are
chosen randomly from among the database pages located at
that site. A page that is read is updated with probability of
WriteProb value. The CPU time to process a page is 10
milliseconds while disk access times are 20 milliseconds.
Summary of the simulation parameters and its set values are
given in Table I.

TABLE I

 SIMULATION PARAMETERS AND ITS SET VALUES
Parameters Description Set values
NumSites or
Selectfile

Number of sites in the Database 8

Dbsize Number of pages in the
database.

Vary
(max.2400)

ArrivalRate Transaction arrival rate/site 6 to 8
job/sec

Slackfactor Slack factor in Deadline
formula

4

FileSelection
Time

Degree of Freedom
(DistDegree)

3

WriteProb Page update probability 0.5
PageCPU CPU page processing time 10ms
PageDisk Disk page access time 20ms

Terminal
Think

Time between completion of
one transaction and submission
of another

0 to 0.5sec

Numwrite Number of Write Transactions -

Number
ReadT

Number of Read Transactions -

IV. EXPERIMENTS AND RESULTS
The study for performance evaluation starts by first

developing a base model. Further experiments were
constructed around the base model experiments by varying a
few parameters at a time. The experiment has been performed
using different simulation language such as, in study [13]
using C++Sim, and in study [11] using DeNet. Literatures are
also collected from several recent studies [16,17,18,19,20,21].
 For this study, GPSS World [22] is used as a simulator.
Multiple database sites can be simulated in a single physical
program through establishment of virtual sites. Simulation
also allows one to expand the research to study a very large
database system comprised of several database sites by setting
certain parameters in the simulator. The database system is
assumed to consist of several data nodes. The data are
logically arranged as pages of memory.
 The performance metric of the experiments is
MissPercent that is the percentage of input transaction that the
system is unable to complete before their deadline. If the
transaction’s action deadline expires either before completion
of its local processing, or before the master has written the
global decision log record, the transaction are killed and
discarded. The MissPercent values in range of 0% to 20% are
taken to represent system performance under “Normal” loads,
while ranges of 21% to 100% represent system performance
under “heavy” loads.

A. Traffic Analysis under Different Environments
This section discusses the statistical results of this

simulation under different environments-Centralized and
Distributed systems. As cohorts are kept at different locations,
the distributed systems have higher percentage of miss
transactions than that of centralized system. The higher miss
percentage of transaction creates problem in managing
atomicity of the transaction in such a system. This leads to
design of a new distributed commit-processing protocol to
have a real-time committing performance. The comparison of
Centralize and distributed performances is shown in Figs. 2.
Rest of the study will report on how the system will bring to
optimized condition

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1925

 Centralized and Distributed performance

0
10
20
30
40
50
60
70
80
90

100

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

--->Arival Rates

--
--

>M
is

s % Central

Distributed

Fig. 2 Comparison of Centralize and distributed performances

B. Impact of Arrival Rates to Individual Sites
In this set of experiments, the impact of increasing the

arrival rates was observed on the performances of the each of
sites under normal load and heavy load. Fig. 3 presents the
results obtained. Here s1, s2 etc are representing the 8 sites.
Under both conditions, the miss percentage is reduced at the
lower values of arrival rate of the transactions for each of the
sites. In both the normal and heavy load the arrival rate play
an important role to give a minimized miss percentage. The
success ratios of the transaction are also increase by lowering
the arrival rate.

Impact of arrival rates to Individual sites

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
--->arrival rate

--
--

>M
iss

ed
 %

s1% s2% s3%

s4% s5% s6%

s7% s8%

Fig. 3 Impact of arrival rates to Individual sites

C. Impact of Arrival Rates to Throughput
In this set of experiments, the impact of the arrival rates

was observed on the throughput of the system. The throughput
is the number of transactions completed prior to the deadline
divided by the simulation clock elapsed. Fig. 3 presents the
results obtained. The study represents the data for all the
participating 8 different sites. The throughput initially
increases with increase in arrival rate under normal workload.
But it drops rapidly at very high loads. So the lowering arrival
rates of transactions are recommended to have a less number
of missed transactions.

Impact of arrival rates to Throughput

10

15

20

25

30

35

40

45

50

55

1.0 2.0 3.0 4.0 5.0 6.0
--->arrival rate

--
--

>C
om

itt
ed

 (T
hr

ou
gh

pu
t)

%

s1% s2%
s3% s4%
s5% s6%
s7% s8%

Fig. 4 Impact of arrival rates to Throughput

D. Impact of CPU Priority Policies
In this set of experiments, system behavior was studied

under impact of CPU priority assignment policies. The
transactions in the CPU queue were prioritized depending on a
FIFO basis. A very similar type of Figure 4 is obtained as
output. This study shows that there is no effect on the
performance of the system by altering CPU priority policies.

E. Impact of Slack Factor

The Slack factor is a constant that provides control over the
tightness or slackness of the transaction deadlines. Calculate
the estimated slack value for the transaction that is the
difference between the deadline and the estimated processing
time. Normally the system kills or aborts all transactions
which are unlikely to be completed before their deadlines. If
the slack factor value is negative, it aborts the transaction and
removed it from the queues.

This set of experiment is conducted to safe some of the
transactions before killing or aborting them. After computing
the slack value of all transactions, the system will know
possible total number of transactions which have +ve and -ve
slack values. If there is large number of Transaction with +ve
slack value means that the system will have some relaxed time
or bonus time. If the system is not having firm slack condition,
alter the slack value to next higher level to safe some of the
dying transactions. During alteration of slack value, it should
initiate to execute same number of –ve slack value truncation
to that of +ve slack value. In other words, it is going to
comprised some –ve slack transactions if there remains some
extra time for transactions with +ve slack value. The Fig. 4
shows the outcomes of the study. The constant slack value
gives normal performance. By increasing the slack value, it
gives low values of missed percentage of transaction.
Lowering the slack value gives large value of missed
percentage. However the system can safe some losing

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1926

transaction depending on number transaction which have +ve
slack value.

Impact of Slack Factor

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8
--->Sites

--
->

m
is

se
d

%

Low ering Slack Factor

Normal Slack Factor

Highering Slack Factor

Fig. 5 Impact of Slack factor to Individual sites

F. Impact of Preemptive Policy
In most of previous study, the slack value is given as hard

value. Other options are not provided to alter this value. So
even the system has a large number of transactions with +ve
slack value, system does not do anything extra, simply waits
to ends its allotted time. This set of experiment is setup to
carry out extra execution of new transaction with
compromising with that numbers of transactions which have
+ve slack value. If there is considerable large number of
transactions with +ve slack factor value, then same number of
new transaction can be scheduled. The study can observe
some of the transactions with +ve slack value and it could
help in generating some new transactions. In this way, extra
execution of transactions can be carried out with the same
amount of system time.

V. CONCLUSION
The real time distributed processing system has been

simulating under different environments and conditions. The
arrival rate of transaction plays a major role in reducing
number of miss percentage and improved performance. The
throughput of the system initially increases with increase in
arrival rate. But it drops rapidly at very high work loads. So
the more studies are required to observe the correlation
between missed % and the throughput to have an optimized
performance.

There is no effect on the performance of the system by
altering CPU priority policies. Calculating the estimated slack
value for the transaction can helps to avoid some of
transactions from killing or aborts. If the system is not having
firm slack condition, altering the slack value to next higher
level can safe some of the dying transactions. If a system has
considerable number of transaction with +ve slack factor,
many extra executions of transactions can be carried out.
Execution of new transaction can be done with compromising
with that numbers of transactions which have +ve slack value
and –ve slack value.

ACKNOWLEDGMENT
It is gratefully acknowledge Minuteman Software, P.O. Box

131, Holly Springs, North Carolina, 27540-0131, USA for
providing free Study materials in their site.
www.minutemansoftware.com.

REFERENCES
[1] Silberschatz, Korth, Sudarshan-2002, Database system concept,4th (I.E),

McGraow-Hill Pub. 698-709,903
[2] Gray. J,978 “Notes on Database Operating Systems”, Operating

Systems: An Advanced Course, Lecture notes in Computer Science, 60
[3] Mohan, C, Lindsay B and Obermark R, 1986,Transaction Management

in the R* Distributed Database Management Systems, ACM TODS,
11(4)

[4] Lampson B and Lomet D, 1993, A new Presumes Commit Optimization
for Two phase Commit, Pro.of 19th VLDB Conf

[5] Oszu M, Valduriez P, 1991, Principles of Distributed Database Systems,
Prentice-Hall,1991

[6] Kohler W, 1981,survey of Techniques for Synchronization and
Recovery in Decentralized Computer System, ACM Computing Surveys,
13(2)

[7] Ramamritham,Son S. H, and DiPippo L, 2004, Real-Time Databases and
Data Services, Real-Time Systems J., vol.28,179-216

[8] Robert A and Garcia-Molina H, 1992, Scheduling Real-Time
Transactions, ACM Trans. on Database Systems, 17(3)

[9] Davidson S., Lee I and Wolfe V.,1989, A protocol for Times Atomic
Commitment, Proc. of 9th Intl. Conf. On Distributed Computing System

[10] Levy E., Korth H and Silberschatz A.1991, An optimistic commit
protocol for distributed transaction management, Pro.of ACM SIGMOD
Conf.

[11] Haritsa J., Carey M, Livney M,’92, Data Access Scheduling in Firm
Real time Database Systems, Real Time systems J, 4(3)

[12] Han Q, 2003, Addressing timeliness /accuracy/ cost tradeoffs in
information collection for dynamic environments, IEEE Real-Time
System Symposium,Cancun, Mexico

[13] Haritsa J., Ramesh G. Kriti.R, S. Seshadri, 1996, ”Commit processing in
Distributed Real-Time Database Systems”, Tech. Report-TR-96-01, Pro.
Pro. Of 17th IEEE Real-Time Systems Symposium, USA

[14] Haritsa J., Carey M and Livney M, 1990,“Dynamic Real-Time
Optimistic Concurrency Control”, Proc. of 11th IEEE Real-Time
Systems Symp.

[15] Haritsa J. 1991, “Transaction Scheduling in Firm Real-Time Database
Systems”, Ph.D. Thesis, Computer Science Dept. Univ. of Wisconsin,
Madison

[16] Xiong M. and Ramamritham K., 2004, Deriving Deadlines and Periods
for Real-Time Update Transactions, IEEE Trans. on Computers, vol.
53,(5)

[17] Kang W, Son, S., Stankovic J, and Amirijoo M, 2007, I/O Aware
Deadline Miss Ratio Management in Real-Time Embedded Databases,
IEEE RTSS

[18] Gustavsson S and Andler S, 2005, Decentralized and continuous
consistency management in distributed real-time databases with multiple
writers of replicated data, Workshop on parallel and distributed real-
time systems, Denver, CO

[19] Xiong M, Han S., and Lam K, 2005, A Deferrable Scheduling for Real-
Time Transactions Maintaining Data Freshness, IEEE Real-Time
Systems Symposium, FL

[20] Jan Lindstrom, 2006, "Relaxed Correctness for Firm Real-Time
Databases," rtcsa,pp.82-86, 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA'06)

[21] Idoudi, N. Duvallet, C. Sadeg, B. Bouaziz, R. Gargouri, F,2008,
Structural Model of Real-Time Databases: An Illustration, 11th IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2008)

[22] Minutesmansoftware, GPSS world, North Carolina, U. S. A. 2001(4E).
[GPSS-Book]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1927

Y. Jayanta Singh is working as a Lecturer in Faculty of Information
Technology, 7th October University, Misurata, (Libya). He obtained his M.Sc,
Ph.D in Computer Science from Dr. B.A.Marathwada University, (India) in
2000 and 2004 respectively. He had worked with Keane (Canada&India),
Skyline University College (UAE), TechMahindra (India). His research papers
are published in International and National Journals and in conference
proceedings. His areas of interest are Simulation and modeling, Real time
Database, parallel and high speed computing and Software Engineering etc.

Suresh. C. Mehrotra, F.N.A,Sc., FIETE is working as a professor in Dr.
Babasaheb Ambedkar Marathwada University, Aurangabad (India). He
received his master degree in Physics from Allahabad University (India) in
1970 and Ph.D. in Physics from Austin (USA) in 1975. He is recipient of
Welch Foundation Fellowship (1975), Alexander Von Humboldt Foundation
Fellowship (1983-85), FOM (Netherland). He has published more than 150
papers in areas of Time Domain Reflectometery, Speech Processing, and
Network Simulation.

