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An Analysis of Global Stability of a Class of
Neutral-Type Neural Systems with Time Delays

Ozlem Faydasicok and Sabri Arik

Abstract—This paper derives some new sufficient conditions for
the stability of a class of neutral-type neural networks with discrete
time delays by employing a suitable Lyapunov functional. The
obtained conditions can be easily verified as they can be expressed
in terms of the network parameters only. It is shown that the results
presented in this paper for neutral-type delayed neural networks es-
tablish a new set of stability criteria, and therefore can be considered
as the alternative results to the previously published literature results.
A numerical example is also given to demonstrate the applicability
of our proposed stability criterion.
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I. INTRODUCTION

In recent years, the analysis of dynamical behavior of
Hopfield neural networks, Cohen-Grossberg neural networks,
cellular neural networks, bidirectional associative memory
neural networks have been paid much attention due to their
potential applications in various engineering problems re-
garding image and signal. It is known that, in the analysis
of dynamical behavior of neural networks, the class of the
activation functions employed in the design and time delays
are two key parameters. In the classical neural network models
such as Hopfield neural networks, Cohen-Grossberg neural
networks, cellular neural networks, bidirectional associative
memory neural networks, the time delays are in the states
of the neural system. However, since the time derivatives of
the states are the functions of time, in order to completely
determine the stability properties of equilibrium point, some
delay parameters must be introduced into the time derivatives
of states of the system. The neural network model having
time delays in the time derivatives of states is called delayed
neutral-type neural networks. In the recent literature, many
researchers have studied the equilibrium and stability proper-
ties of standard neural networks and neural networks of neutral
type with a single delay and many delays and presented various
sufficient conditions for the global asymptotic stability of the
equilibrium point [1]-[28]. The most of the previous literature
results are basically expressed in the linear matrix inequality
(LMI) forms. The LMI approach to the stability problem of
neutral type neural networks involves some difficulties with
determining the constraint conditions on the network parame-
ters as it requires to test positive definiteness of high dimen-
sional matrices. In the current paper, by employing a suitable
Lyapunov functional, we will present new delay-independent
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sufficient conditions for global asymptotic stability of the
equilibrium point for the class of neutral-type neural networks
with many delays. Our results establish various relationships
between the network parameters only. Therefore, the results
of this paper can be easily verified when compared with the
previously reported literature results in the LMI forms.

II. PROBLEM STATEMENT

In this paper, we consider the following class of delayed
neural network model described by a set of nonlinear neutral
delay differential equations :

ẋi(t) = di(xi(t))

[
− ci(xi(t)) +

n∑

j=1

aijfj(xj(t))

+
n∑

j=1

bijfj(xj(t− τj)) + ui

]

+
n∑

j=1

eij ẋj(t− τj) (1)

for i = 1, .., n, where n is the number of the neurons
in the network, xi denotes the state of the ith neuron,
di(xi) represents an amplification function, and ci(xi) is
a behaved function that keeps the solution of system (1)
bounded. The constants aij denote the strengths of the neuron
interconnections within the network, the constants bij denote
the strengths of the neuron interconnections with time delay
parameters τj(t). eij are coefficients of the time derivative
of the delayed states. Finally, the functions fj(·) denote the
neuron activation functions, and the constants ui are some
external inputs. In system (1), τj≥0 represents the delay
parameter with τ = max(τj), 1 ≤ j ≤ n. Accompanying
the neutral system (1) is an initial condition of the form :
xi(t) = φi(t) ∈ C([−τ, 0], R), where C([−τ, 0], R) denotes
the set of all continuous functions from [−τ, 0] to R.

In what follows, we give the usual assumptions on the
functions di, ci and fi :

A1 : The functions di(x), are continuously bounded, and
there exist positive constants mi and Mi such that

0 < mi≤ di(x) ≤Mi, i = 1, 2, ..., n, ∀x ∈ R

A2 : The functions ci(x) are continuous and there exist
positive constants γi and ψi such that

0 < γi≤
ci(x)− ci(y)

x− y
=

|ci(x)− ci(y)|

|x− y|
≤ψi, i = 1, 2, ..., n,
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∀x, y ∈ R, x 6=y.

A3 : The activation functions are Lipschitz continuous, i.e.,
there exist positive constants Li > 0 such that

|fi(x)− fi(y)|≤Li|x− y|, i = 1, 2, ..., n, ∀x, y ∈ R, x 6=y

We note here that if E = 0, then system (1) describes a Cohen-
Grossberg neural network. If di(xi) = 1 and ci(xi) = xi,
i = 1, 2, ..., n, in a Cohen-Grossberg neural network, this
Cohen-Grossberg neural network describes a Hopfield-type
neural network. If a Hopfield-type neural network uses a
piecewise-wise linear activation function, then this Hopfield-
type neural network describes a cellular neural network. There-
fore, stability analysis of system (1) can be easily specialized
for standard neural network models.

III. STABILITY ANALYSIS

In this section,we obtain sufficient conditions for global
stability of the equilibrium point of neutral system defined
by (1). To this end, we will first shift the equilibrium point
x∗ = [x∗1, x

∗
2, ..., x

∗
n]

T of system (1) to the origin. By using
the transformation z(t) = x(t)− x∗, the equilibrium point x∗

can be shifted to the origin. The neutral-type neural network
model (1) can be rewritten as :

żi(t) = αi(zi(t))

[
− βi(zi(t)) +

n∑

j=1

aijgj(zj(t))

+

n∑

j=1

bijgj(zj(t− τj))

]
+

n∑

j=1

eij żj(t− τj) (2)

which can be written in the form :

ż(t) = α(z(t))
[
− β(z(t)) +Ag(z(t)) +Bg(z(t− τ))

]

+Eż(t− τ)

where

z(t) = [z1(t), z2(t), ..., zn(t)]
T

A = (aij)n×n, B = (bij)n×n, E = (eij)n×n

g(z(t)) = [g1(z1(t)), g2(z2(t)), ..., gn(zn(t)]
T

α(z(t)) = diag(α1(z1(t)), α2(z2(t)), ..., αn(zn(t)))

β(z(t)) = [β1(z1(t)), β2(z2(t)), ..., βn(zn(t))]
T

g(z(t− τ))

= (g1(z1(t− τ1)), g2(z2(t− τ2)), ..., gn(zn(t− τn)))
T

For the transformed system (2), the functions αi, βi and gi
are of the form :

αi(zi(t)) = di(zi(t) + x∗i ), i = 1, 2, ..., n

βi(zi(t)) = ci(zi(t) + x∗i )− ci(x
∗
i ), i = 1, 2, ..., n

gi(zi(t)) = fi(zi(t) + x∗i )− fi(x
∗
i ), i = 1, 2, ..., n

Assumptions A1, A2, A3 respectively imply that

0 < mi≤ αi(zi(t)) ≤Mi, i = 1, 2, ..., n

γiz
2
i (t)≤zi(t)βi(zi(t))≤ψiz

2
i (t), i = 1, 2, ..., n

|gi(zi(t))|≤Li|zi(t)|, i = 1, 2, ..., n

We also note the following facts :

Fact 1 : If a, b, c and d are real vectors of dimension n,
then the following equality holds :

[−a+ b+ c+ d]T [a+ b+ c+ d]

= −aT a+ bT b+ cT c+ dT d+ 2bT c+ 2bT d+ 2cT d

Fact 2 : If a and b are real vectors of dimension n, then
the following inequality holds :

2aT b≤
1

ε
aTa+ εbT b

where ε is any positive real number.

We now present the main result of this paper :

Theorem 1 : For the neutral system defined by (2), let
A1 − A3 hold. Then, the origin of system (2) is globally
asymptotically stable if there exist a positive constants ε such
that the following conditions hold :

ρ =
γ2

L2
− 2(1 +

1

ε
)(||A||22 + ||B||22) > 0

ξ =
1

M2
−
ε+ 1

m2
||E||22 > 0

where m = min
1≤i≤n

(mi), M = max
1≤i≤n

(Mi), γ = min
1≤i≤n

(γi),

L = max
1≤i≤n

(Li).

Proof : We construct the following positive definite Lya-
punov functional :

V (z(t)) = 2
n∑

i=1

∫ zi(t)

0

βi(s)

αi(s)
ds

+

n∑

i=1

∫ t

t−τi

1

α2
i (zi(s))

ż2i (s)ds

+k
n∑

i=1

∫ t

t−τ

g2i (zi(s))ds

where k is a positive constant to be determined later. The time
derivative of V (z(t)) along the trajectories of the system (2)
is obtained as follows :

V̇ (z(t)) = 2
n∑

i=1

βi(zi(t))

αi(zi(t))
żi(t) +

n∑

i=1

1

α2
i (zi(t))

ż2i (t)

−

n∑

i=1

1

α2
i (zi(t− τi))

ż2i (t− τi)

+k

n∑

i=1

g2i (zi(t))− k

n∑

i=1

g2i (zi(t− τi))

which can be written as

V̇ (z(t)) = 2βT (z(t))α−1(z(t))ż(t)

×[α−1(z(t))ż(t)]T [α−1(z(t))ż(t)]

−[α−1(z(t− τ))ż(t− τ)]T

×[α−1(z(t− τ))ż(t− τ)]

+kgT (z(t))g(z(t))− kgT (z(t− τ))g(z(t− τ))
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We can write the following :

2βT (z(t))α−1(z(t))ż(t)

= 2βT (z(t))[−β(z(t)) +Ag(z(t)) +Bg(z(t− τ))]

+2βT (z(t))α−1(z(t))Eż(t− τ)

[α−1(z(t))ż(t)]T [α−1(z(t))ż(t)]

= [−β(z(t)) +Ag(z(t)) +Bg(z(t− τ))

+α−1(z(t))Eż(t− τ)]T×

[−β(z(t)) +Ag(z(t)) +Bg(z(t− τ))

+α−1(z(t))Eż(t− τ)]

Hence, it follows that

2βT (z(t))α−1(z(t))ż(t) + [α−1(z(t))ż(t)]T [α−1(z(t))ż(t)]

= [β(z(t)) +Ag(z(t)) +Bg(z(t− τ)) + α−1(z(t))Eż(t− τ)]T

×[−β(z(t)) +Ag(z(t)) +Bg(z(t− τ)) + α−1(z(t))Eż(t− τ)]

In the light of Fact 1, we obtain

2βT (z(t))α−1(z(t))ż(t) + [α−1(z(t))ż(t)]T [α−1(z(t))ż(t)]

= −βT (z(t))β(z(t))

+gT (z(t))ATAg(z(t)) + gT (z(t− τ))BTBg(z(t− τ))

+żT (t− τ)α−2(z(t))ETEż(t− τ)

+2gT (z(t))ATBg(z(t− τ))

+2gT (z(t))ATα−1(z(t))Eż(t− τ)

+2gT (z(t− τ))BTα−1(z(t))Eż(t− τ)

which, when used in the time derivative of V (z(t)), yields :

V̇ (z(t)) =−βT (z(t))β(z(t)) + gT (z(t))ATAg(z(t))

+gT (z(t− τ))BTBg(z(t− τ))

+żT (t− τ)α−2(z(t))ETEż(t− τ)

+2gT (z(t))ATBg(z(t− τ))

+2gT (z(t))ATα−1(z(t))Eż(t− τ)

+2gT (z(t− τ))BTα−1(z(t))Eż(t− τ)

−[α−1(z(t− τ))ż(t− τ)]T

×[α−1(z(t− τ))ż(t− τ)]

+kgT (z(t))g(z(t))− kgT (z(t− τ))g(z(t− τ))

from which it follows that

V̇ (z(t)) ≤ −||β(z(t))||22 + ||A||22||g(z(t))||
2
2

+||B||22||g(z(t− τ))||22

+||α−1(z(t))||22||E||22||ż(t− τ)||22

+2||A||2||B||2||g(z(t))||2||g(z(t− τ))||2

+2||A||2||α
−1(z(t))||2||E||2

×||g(z(t))||2||ż(t− τ)||2

+2||B||2||α
−1(z(t))||2||E||2

×||g(z(t− τ))||2||ż(t− τ)||2

−||α−1(z(t− τ))||22||ż(t− τ)||22

+k||g(z(t))||22 − k||g(z(t− τ))||22

Assumption A1 implies that

1

M
≤||α−1(z(t− τ))||2≤

1

m

and
1

M
≤||α−1(z(t)||2≤

1

m

where m = min
1≤i≤n

(mi), M = max
1≤i≤n

(Mi).

Assumption A2 implies that

||β(z(t))||2≥γ||z(t)||2

where γ = min
1≤i≤n

(γi).

Assumption A3 implies that

1

L
||g(z(t))||2≤||z(t)||2

where L = max
1≤i≤n

(Li). Thus, we obtain

||β(z(t))||2≥
γ

L
||g(z(t))||2

Therefore, we can now write

V̇ (z(t)) ≤ −
γ2

L2
||g(z(t))||22 + ||A||22||g(z(t))||

2
2

+||B||22||g(z(t− τ))||22

+
1

m2
||E||22||ż(t− τ)||22

+2||A||2||B||2||g(z(t))||2||g(z(t− τ))||2

+
2

m
||A||2||E||2||g(z(t))||2||ż(t− τ)||2

+
2

m
||B||2||E||2||g(z(t− τ))||2||ż(t− τ)||2

−
1

M2
||ż(t− τ)||22 + k||g(z(t))||22

−k||g(z(t− τ))||22 (3)

We note the following inequalities :

2||A||2||B||2||g(z(t))||2||g(z(t− τ))||2 ≤

||A||22||g(z(t))||
2
2 + ||B||22||g(z(t− τ))||22

2
1

m
||A||2||E||2||g(z(t))||2||ż(t− τ)||2≤

2

ε
||A||22||g(z(t))||

2
2 +

ε

2m2
||E||22||ż(t− τ)||22

2
1

m
||B||2||E||2||g(z(t− τ))||2||ż(t− τ)||2≤

2

ε
||B||22||g(z − τ(t))||22 +

ε

2m2
||E||22||ż(t− τ)||22
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where ε is a positive constant. Using the above inequalities in
(3) results in :

V̇ (z(t)) ≤ −
γ2

L2
||g(z(t))||22 + ||A||22||g(z(t))||

2
2

+||B||22||g(z(t− τ))||22

+
1

m2
||E||22||ż(t− τ)||22 + ||A||22||g(z(t))||

2
2

+||B||22||g(z(t− τ))||22

+
2

ε
||A||22||g(z(t))||

2
2

+
ε

2m2
||E||22||ż(t− τ)||22

+
2

ε
||B||22||g(z − τ)||22

+
ε

2m2
||E||22||ż(t− τ)||22

−
1

M2
||ż(t− τ)||22 + k||g(z(t))||22

−k||g(z(t− τ))||22

= (−
γ2

L2
+ 2(1 +

1

ε
)||A||22)||g(z(t))||

2
2

+2(1 +
1

ε
)||B||22||g(z(t− τ))||22

+ (
ε+ 1

m2
||E||22 −

1

M2
)||ż(t− τ)||22

+k||g(z(t))||22 − k||g(z(t− τ))||22

Let
k = 2(1 +

1

ε
)||B||22

Then

V̇ (z(t)) ≤ (−
γ2

L2
+ 2(1 +

1

ε
)(||A||22 + ||B||22))||g(z(t))||

2
2

(
ε+ 1

m2
||E||22 −

1

M2
)||ż(t− τ)||22

= −ρ||g(z(t))||22 − ξ||ż(t− τ)||22

Clearly, ρ > 0 and ξ ≥ 0 implies that V̇ (z(t)) < 0 for all
g(z(t)) 6= 0 (note that if g(z(t)) 6= 0 then z(t) 6= 0). Now let
g(z(t)) = 0. In this case V̇ (z(t)) is of the form :

V̇ (z(t)) ≤ −γ2||z(t)||22 − ξ||ż(t− τ)||22

≤ −γ2||z(t)||22

from which it follows that V̇ (z(t)) < 0 for all z(t) 6= 0. Now
let g(z(t)) = z(t) = 0. We have hence

V̇ (z(t)) ≤ −ξ||ż(t− τ)||22

ξ > 0 implies that V̇ (z(t)) < 0 for all ż(t − τ) 6= 0. If
g(z(t)) = z(t) = ż(t− τ) = 0, then

V̇ (z(t)) ≤ −||B||22||g(z − τ)||22

V̇ (z(t)) < 0, for all g(z − τ) 6= 0 as B 6= 0. Therefore,
z(t) converges asymptotically to zero [29] and [35], hence
meaning that the equilibrium point of neutral system (1)
is asymptotically stable. On the other hand, the Lyapunov
function used for the stability analysis is radially unbounded,
it can be concluded that the equilibrium point of neutral

system (1) is globally asymptotically stable.

We will compare our results with a previous stability given
in [28] which is restated in the following theorem :

Theorem 2 [28] : For the neutral system defined by (2),
assume that ||E||2 < 1. Then, the origin of (2) is globally
asymptotically stable if the following condition holds :

δ = mγ − LM ||A||2(1 + ||E||2)

−LM ||B||2(1 + ||E||2)−Mψ||E||2 > 0

where m = min
1≤i≤n

(mi), M = max
1≤i≤n

(Mi), γ = min
1≤i≤n

(γi),

ψ = max
1≤i≤n

(ψi), L = max
1≤i≤n

(Li).

Remark : Note that the condition of Theorem 2 in [28]
depends on the constant ψ while our result in Theorem 1
is expressed independently of ψ. Therefore, the result of
Theorem 1 can be considered to be less conservative than the
result of Theorem 2.

In order to show applicability and advantages of our results,
we consider the following example :

Example 1 : Assume that the network parameters of neural
system (1) are given as follows :

A = B =
1
√
2

[
c 0
0 c

]
, E =

√
2

[
c 0
0 c

]

with m = M = 1, L = 1, γ = ψ = 1, where c is a positive
constant. We can calculate

||A||2 = ||B||2 =
c
√
2
, ||E||2 =

√
2c

For ε = 1, applying the result of Theorem 1 to this example,
we obtain

ρ =
γ2

L2
− 2(1 +

1

ε
)(||A||22 + ||B||22) = 1− 4c2 > 0

ξ =
1

M2
−
ε+ 1

m2
||E||22 = 1− 4c2 > 0

Clearly, c < 1
2 implies that ρ > 0 and ξ > 0. When checking

the applicability of the condition of Theorem 2, one can see
that the following condition must be satisfied

δ = mγ − LM ||A||2(1 + ||E||2)

−LM ||B||2(1 + ||E||2)−Mψ||E||2

= 1−
2c
√
2
(1 +

√
2c)−

√
2c

= 1− 2
√
2c− 2c2 > 0

Hence, according to Theorem 2, for the network parameters
given in this example, the sufficient condition for the stability
of system (2) is obtained follows :

c < 1−
1
√
2

Therefore, if
1−

1
√
2
≤c <

1

2
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then the results of [28] does not hold whereas the result of
Theorem 1 is still applicable to this example. Thus, the result
we obtained in Theorem 1 can be considered an alternative
result to the previous stability result given in Theorem 2 of
[28].

IV. CONCLUSIONS

By employing a simple and suitable Lyapunov functional,
we have derived a new delay-independent sufficient condition
ensuring the global asymptotic stability of a class of neutral-
type neural networks with discrete time delays. The proposed
condition establishes a relationship between the network pa-
rameters of the neural systems. The obtained result can be
applied to Cohen-Grossberg neural networks, Hopfield-type
neural networks and cellular neural networks. A constructive
example also has been presented to show the advantages of
our results over the previous literature results.
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