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Abstract—Most of the well known methods for generating 

Gaussian variables require at least one standard uniform distributed 
value, for each Gaussian variable generated. The length of the 
random number generator therefore, limits the number of 
independent Gaussian distributed variables that can be generated 
meanwhile the statistical solution of complex systems requires a 
large number of random numbers for their statistical analysis. We 
propose an alternative simple method of generating almost infinite 
number of Gaussian distributed variables using a limited number of 
standard uniform distributed random numbers. 
 

Keywords—Gaussian variable, statistical analysis, simulation of 
Communication Network, Random numbers. 

I. INTRODUCTION 
HE development and design of a simulation tool for the 
planning and optimization of radio communication 
systems is a multi-dimensional process due to the large 

number of different design requirements and systems 
parameters and the degree of randomness involved. Such 
planning tools considerably simplify and increase the 
effectiveness of the designing, planning and optimization of 
radio communication systems.  Amongst the tasks involved 
are the simulation of the electromagnetic environment and the 
estimation of its effect on radio communication devices by 
mathematical modelling methods. Monte Carlo simulation has 
become one of the most important tools in the field of science 
and engineering [1] for the statistical analysis of large and 
complex systems. The Monte-Carlo simulation provides the 
most accurate predictions in network planning and 
optimization tools through the utilization of Monte Carlo 
algorithms, thus providing reliable and credible results [1] –  
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[4]. The Spectrum Engineering Advance Monte Carlo 
Analysis Tool – SEAMCAT [5] is an example of a software 
tool based on the Monte-Carlo simulation method. This tool 
permits statistical modeling of different radio interference 
scenarios for performing sharing and compatibility studies 
between radio communication systems in the same or 
adjacent frequency bands. 

The Monte Carlo simulation methodology relies on a good 
source of numbers that appear to be random. Methods for 
producing pseudorandom numbers and transforming those 
numbers to simulate samples from various distributions are 
among the most important topics in statistical computing [6].  
One of the distribution from which samples are often required 
is the Gaussian distribution.  

Amongst the many ways for generating the value of a 
Gaussian (normally distributed random) variable include: 
1. Inverse transform sampling method which takes a sample 

from the standard uniform distribution and maps it to a 
normally distributed sample by using the inverse 
probability integral. 

2. The Box–Muller transform method which generates pairs 
of independent standard normally distributed random 
numbers, given a source of uniformly distributed random 
numbers. 

3. The acceptance-rejection method in which some of the 
total input uniformly distributed random numbers 
generated is thrown away. 

4. The use of a sum of large number of independent uniform 
distributed random variables (this sum according to the law 
of large numbers approximates to a normal distribution). 
Most of the well known methods for generating the value 

of a Gaussian variable described above are different in 
procedure but have in common the fact that each Gaussian 
value generated, requires at least one sample from the 
standard uniform distribution. The length [6] (the number of 
random samples that can be generated by a random number 
generator without repetition) of the random number generator 
therefore, limits the number of independent Gaussian 
distributed variables that can be generated. At the same time 
the statistical solution of complex problems e.g. the planning 
and optimization of a radio communication system like a 
mobile cellular communication network [2, 4] require a large 
number of random numbers for their statistical analysis. 
Therefore the use of the existing methods of generating a 
normally distributed variable is limited. 

In this paper, we propose an alternative simple method of 
generating two sets of almost infinite number of Gaussian 
distributed variables kx and ky on the bases of the complex 
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exponential )2exp( kj π ; where, ...21 ,,=k and using only a 
limited number of standard uniform distributed random 
numbers.  

In section II, the proposed algorithm for generating the 
Gaussian distributed variables and the investigation of the 
important properties necessary to establish the Gaussian 
nature of the generated data are presented. The next sections 
will be dedicated to the investigations of the properties of 
normality as mentioned in this section. In section III, we 
investigate the correlation between the two sets of data 

kx and ky  and its dependence on the sample seize N where 
we found that the two sets of data are uncorrelated. In section 
IV, we investigate the behaviour of the two sets of data as the 
sample seize N is increased towards infinity. By constructing 
the histograms of the data and calculating the mean value, the 
standard deviation for each set of data and the co-variation 
matrices were obtained for different sample sizes. In section 
V, we conclude on the results obtained.    

II.  PROPOSED ALGORITHM FOR GENERATING GAUSSIAN 
DISTRIBUTED VARIABLES 

Any complex number has a “real” ( x ) and “imaginary” 
( yj ) part, and is expressed as yj+x=Z . The imaginary 
part is the square root of a negative number, which is really a 
non-existent number. Complex numbers can be used to define 
a two dimensional variable. The representation of a complex 
number requires two orthogonal axes. It can also be 
visualized as a point on the complex number plane, or as a 
vector originating at the origin and terminating at the point.  
The complex exponential )2exp( kj π  can be expressed in the 
form ( ) ( ) ( )k 2πsink 2πcos2exp j+=kj π , where, ...,2,1=k . 

A sequence of complex random variables kZ , can be 
formed using the complex exponential )2exp( kj π  and a 
sequence of numbers iX  ( n,,,,=i ...321 ) which are 
independent and standard uniformly distributed as  
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Therefore, it is possible to assign a value for n  (example, 
between 10 and 50) and then generate a sequence of standard 
uniform distributed random numbers iX then, performing 
calculations according to the algorithm (Fig. 1) based on 
expression (1), we obtain two random sequences kx and ky . 
In Fig.1, the random number generator (RNG) provides the 
standard uniform distributed variable X . 

 

 
 
 
 
 
In order to establish that the random sequences 

kx and ky are each normally distributed, we have to 
investigate the following important properties: 
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Fig. 1 Algorithm for the generation of independent Gaussian 
sequences kx and ky based on the expression (1) 
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1. That the sequences of random variables kk y,x are 
uncorrelated. 

2.  That as the length of each of the sequences kx and ky , 
turns to infinity, the random variables  are independent and 
each asymptotically normal (central limit theorem).

 
 

3. That the mathematical expectations of each of the random 
sequences kx and ky equals zero and the co-variation 
matrix equals unity. 
The next sections will be dedicated to the investigations of 
the above properties for the normality of kx and ky . 

III. CORRELATION BETWEEN RANDOM SEQUENCES kx  AND 

ky  

The correlation coefficient ( )r  is a statistical calculation 
that is used to examine the relationship between two sets of 
data, in this case the sequences kx  and ky . The value of the 
correlation coefficient will always be between 1 and -1 and it 
tells us about the strength and the nature of the relationship.  
A correlation coefficient that has a value of exactly 1 or -1 
would be a perfectly straight line when the data sets are 
plotted on a graph. Values of r that are close to 0 tell us there 
is no relationship between the sets of data kx  and ky . 
Positive correlation coefficients tell us that when one variable 
is increased, the other variable will increase as well. Negative 
correlation coefficients tell us that as one of the variables is 
increased, the other variable will decrease.  

The correlation coefficient r will be calculated according 
to the expression [7]: 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−×

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∑ ∑∑ ∑

∑∑∑
N

=k

N

=k
kk

N

=k

N

=k
kk

N

=k
k

N

=k
k

N

=k
kk

y
N

yx
N

x

yx
N

yx

=r

1

2

1

2

1

2

1

2

111

11

.1

 

With the value of n  taken as 40, the sequences of data kx  

and ky  were each generated according to expression (1) 

above for values of N,,=k ...21 , where N is the length 
(sample or data size) of each of the sequences and was taken 
to be between 10000 and 100000 samples. The correlation 
coefficient r  as a function of generated data size N was 
obtained and graphically (Fig. 2). 

 
Fig. 2 Correlation Coefficient vs. generated Data Size 

From the results in Fig. 1, it is noted that the correlation 
coefficient r  fluctuates in the neighborhood of zero for all 
the investigated values of the generated data size N. This is a 
very strong indication that the random numbers kx  and ky  
thus generated are uncorrelated.  

IV. THE BEHAVIOUR OF THE RANDOM SEQUENCES kx AND 

ky  AS ∞→N  

The random sequences kx  and ky  were generated as 
before according to the proposed algorithm based on 
expression (1) for values of data size N between 10000 and 
50000 samples. The histogram plot for both generated 
sequences kx  and ky  for the different values of generated 
data size N were obtained (Fig. 3).  
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Fig. 3 Histogram for generated random sequences kx  and ky  for 

different values of   N 
 
For each data size, the mean values ( kx , ky ), standard 

deviations ( )
kykx σ,σ  and the co-variation matrix 

( xcov , ycov ) for each sequence were obtained (Table 1-3) 

and graphically represented (Fig. 4 -6) respectively.  
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TABLE I 
THE MEAN OF THE GENERATED RANDOM SEQUENCES  

kx AND ky

 
 

 
Fig. 4 The MEAN value of the of generated random sequences 

kx and ky as a function of N 

 
TABLE II 

THE STANDARD DEVIATION OF THE GENERATED RANDOM 

SEQUENCES kx AND ky  

 
 

 
Fig. 5 The Standard deviation of the generated random sequences 

kx and ky as a function of N 

 

TABLE III 
THE COVARIANCE MATRIX OF THE GENERATED RANDOM 

SEQUENCES kx AND ky  

 
 

 
Fig. 6 The Covariance matrix of the generated random sequences 

kx and ky as a function of N 

V. DISCUSION AND ANALYSIS OF RESULTS  
From the histogram (Fig. 3), it can be seen that as the 

sample size N increases, the random sequences 

kx and ky generated by the proposed algorithm approximate 
to a normal distribution. The results in Table 1, Table 2 and 
Table 3 show that as the sample size N increases, the mean 
value of the sequences kx and ky  is approximately zero, the 
standard deviation and covariance matrix each approximate to 
one respectively. Therefore, the algorithm (Fig. 1) based on 
the expression (1) can be used to generate independent 
random sequences kx and ky each having an approximate 
standard normal distribution (mean of zero and standard 
deviation of one) as k increases.  

The length of each sequence N is defined as ( )110 −= pN , 
where p  is the number of decimal digits of the random 

number X . If 110 −> pk , the values of kZ ( kx and ky ) 
starts to repeat i.e. ⇒=+ kNk ZZ NNk xx =+ and NNk yy =+ . 

 Increasing the value of p  by one, the value of N increases 

by times
p

p
10

10
10.10

≈ . Therefore the length of the random 

sequence can be increased considerable by increasing the 
number of decimal digits of the random number X . 
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VI. CONCLUSION 
The implementation of the proposed simple method of 

generating almost infinite sequence of normally distributed 
variables and the analysis of the results showed that indeed an 
almost infinite sequence of random numbers distributed 
normally can be achieved using only a limited number of 
standard uniform distributed random numbers.  

This method will be of interest to those who for example 
use simulation for the solution of complex system involving a 
high degree of randomness like in cellular mobile 
communication networks.  
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