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 
Abstract—This paper presents the development of an algorithm 

that predicts the arrival of a secondary user (SU) to a base station (BS) 
in a cognitive network based on infrastructure, requesting a Best Effort 
(BE) or Real Time (RT) type of service with a determined bandwidth 
(BW) implementing neural networks. The algorithm dynamically uses 
a neural network construction technique using the geometric pyramid 
topology and trains a Multilayer Perceptron Neural Networks 
(MLPNN) based on the historical arrival of an SU to estimate future 
applications. This will allow efficiently managing the information in 
the BS, since it precedes the arrival of the SUs in the stage of selection 
of the best channel in CRN. As a result, the software application 
determines the probability of arrival at a future time point and 
calculates the performance metrics to measure the effectiveness of the 
predictions made. 
 

Keywords—Cognitive radio, MLPNN, base station, prediction, 
best effort, real time. 

I. INTRODUCTION 

HE saturation and scarcity of the electromagnetic spectrum 
is due to its mismanagement and not to the scarcity of this 

resource, which proves that the policies implemented to avoid 
interference between networks and operators have led to a low 
actual use of the assigned spectrum for some channels and a 
high use for others [1], [2]. In this sense, the concept of 
cognitive radio (CR) [3] has been proposed as a means of aiding 
the establishment and implementation of technical solutions 
aimed at benefiting the spectral efficiency in present and future 
wireless networks in a dynamic way. The CR is based on 4 main 
functions, which are described in [4], and the decision-making 
stage consists of the characterization, channel selection and 
reconfiguration sub-stages of the cognitive nodes. The 
development of this article focuses on the characterization 
phase, which will focus on the modeling of SU behavior and 
subsequent prediction to determine the probability of arrival of 
a cognitive node to a central station at a future time point; This 
in order to give an indication to the BS of the type of users and 
requirements that will have to be processed (assign channels). 
This is intended to reduce the time it takes the BS to assign 
channels, optimizing the system [4]. Based on this premise, the 
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application of artificial intelligence techniques allows for 
adapting the changes in the arrival behavior of SUs in a BS 
based on autonomous learning. Taking advantage of this 
property, MLPNN is used and evaluated in order to determine 
its response to this type of future estimates. 

II. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) are computational 
models that emerged as an attempt to achieve mathematical 
formalizations about the structure of the brain. These imitate the 
structure of the nervous system, focusing on the functioning of 
the human brain, based on learning through experience, with 
the consequent extraction of knowledge from it. An ANN can 
be considered a mathematical model of mental and brain 
activity theories, based on the exploitation of parallel local 
processing and the properties of distributed representation [5]. 

III. MLPNN MODEL FOR ESTIMATING SU ARRIVAL 

In the following subsections, the process of creation of the 
algorithm is outlined from a machine learning perspective. In 
the first part, the form of representation of knowledge is 
presented, in which the form of representation of the input and 
output variables is defined; later the construction of the 
architecture of the neural network from a dynamic point of view 
is defined, the neural network changes its topology according 
to the size of the channel occupancy history. Finally, the 
process of training and validation of the created neural network 
and the metrics to measure the performance of the same is 
explained. 

Representation of an SU History: ሼݔሺ݅ሻ,  ሺ݅ሻሽ is defined as aݕ
pair of coordinates in ܴ௡∗ଷ, where ݔሺ݅ሻ is the binary 
representation of a time unit in a Space ܴ௡; ݊ is the number of 
digits in the binary representation and ݕሺ	݅ሻ	in a space ܴଷ, where 
the first component corresponds to the request or not of a BE 
type service; The second, the request for a RT type service and 
the third the BW required in KHz. An example of this 
representation corresponds to the one shown in (1): 
 

ሼݔሺ1ሻ, ሺ1ሻሽݕ ൌ ሼሾ0		0		0ሿ, ሾ0		0		0ሿሽ 
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This first approximation of representation of SUs with their 

respective characteristics considers the neural network 
topology without taking into consideration the nature of the data 
that are intended to be characterized. Because the transfer 
functions between each layer of the neural network are given 
by a sigmoid function, the range of the data is 0 to 1. This is not 
considered a problem for the data domain that is intended to 
characterize except for the case of ܴଷ	whose third component 
has domain in the natural numbers (and which corresponds to 
the BW). In this sense, it is proposed to separate the data set 
into two groups and to use two neural networks. The first 
network specializes in the characterization of data set ݕሺ݅ሻଵ, 
represented as described in (2), and from the design criteria: 
 The number of neurons in the input layer corresponds 

to	ܴ௡de ݔሺ݅ሻ. 
 The number of neurons in the output layer corresponds to 

the dimension ܴଶ of ݕሺ݅ሻ, each of the neurons will be 
specialized in modeling a SU characteristic. 

 The number of neurons in the hidden layers is obtained of 
the geometric pyramid topology. 
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The second neural network specializes in the characterization 

of the data set ݕሺ݅ሻଶ, represented in (3), with the criteria: 
 The number of neurons in the input layer corresponds to 

ܴ௡de ݔሺ݅ሻ.  
 The number of neurons in the output layer corresponds to 

the dimension ܴଵ de ݕሺ݅ሻଶ, each of the neurons will be 
specialized in modeling a SU characteristic. 

 The number of neurons in the hidden layers is obtained 
from the geometric pyramid topology. 
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Mathematical model of the neuronal system: For the 

development of the operation of the neural network, the set of 
examples shown in (2) is considered. Following the guidelines 
proposed for the construction of the proposed neural network, 
we obtain a three-layer system with 3 neurons in the input layer, 
2 in the hidden layer and 2 in the output layer, a graphical 
representation of this neural network is shown in Fig. 1. In 
addition, the next variables are defined: ݉: Number of layers of 
the neural network; ߠ: Control weight matrix, which maps 
(generates an association) from one layer ݅ to one layer ݅ + 1; 
 .݅ activation unit in layer :ܣ

 

 

Fig. 1 Representation of the MLB for the data set of (5) 
 

The procedure for calculating the output of the neural 
network is defined as shown in (4), called forward propagation 
algorithm. 

 

ሺ௜ሻܣ ൌ ݃ሺߠሺ௜ିଵሻ்ܣሺ௜ିଵሻሻ                             (4) 
 

where, ܶ is the transposed operation; ܣሺ௜ሻis the layer output to 
be calculated; ܣሺ௜ିଵሻ corresponds to the previous layer output; 
݅ ൌ 1, 2, 3, … . ሺ௜ሻܣ ;݉, ൌ ܺ; ݃	the sigmoid function. 

Considering the control weight matrix ߠሺଵሻ, we proceed to 
calculate the transition from the input layer to the hidden layer 
(5) and (6): 

 

ሺଵሻߠ ൌ ൦

ଵଵߠ
ሺଵሻ ଵଶߠ

ሺଵሻ

ଶଵߠ
ሺଵሻ ଶଶߠ

ሺଵሻ

ଷଵߠ
ሺଵሻ ଷଶߠ

ሺଵሻ

൪                                 (5) 

 

ሺଵሻܣ ൌ ܺ ൌ ൥
ଵݔ
ଶݔ
ଷݔ
൩                                    (6) 

 
Thus, the transition from the input layer to the output layer 
would be given as described in (7): 

 

ሺଶሻܣ ൌ ൥
݃ ቀݔଵߠଵଵ

ሺଵሻ ൅ ଶଵߠଶݔ
ሺଵሻ ൅ ଷଵߠଷݔ

ሺଵሻቁ

݃ሺݔଵߠଵଶ
ሺଵሻ ൅ ଶଶߠଶݔ

ሺଵሻ ൅ ଷଶߠଷݔ
ሺଵሻሻ

൩                       (7) 

 

For simplicity, the next variables are defined for the matrix ܣሺଶሻ 
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(8): 
 

ሺଶሻܣ ൌ ൥
ܽଵ
ሺଶሻ

ܽଶ
ሺଶሻ൩                                        (8) 

 
When calculating the transition from the hidden layer to the 
output layer by reference to the control weight matrix ߠሺଶሻ: 
 

ሺଶሻߠ ൌ ቈ
ଵଵߠ
ሺଶሻ ଵଶߠ

ሺଶሻ

ଶଵߠ
ሺଶሻ ଶଶߠ

ሺଶሻ቉                                    (9) 

 

ሺଷሻܣ ൌ ൥
݃ ቀܽߠଵଵ

ሺଶሻ ൅ ܽଶߠଶଵ
ሺଶሻቁ

݃ሺܽଵߠଵଶ
ሺଶሻ ൅ ܽଶߠଶଶ

ሺଶሻሻ
൩                            (10) 

  
Flowchart for the Learning Algorithm: 

 

 

Fig. 2 MLPNN Training Diagram 
 

A fragment of the MLPNN code for neural network 
optimization is shown. It should be noted that the sequence 
shown implies the existence of two Theta1 and Theta2 arrays 
corresponding to the average weight matrices of the neural 
network. The algorithm takes the training examples to find the 
optimal values of Theta1 and Theta2 that minimize the error 
obtained. 

MLPNN Algorithm 
1_݉ݑܿܿܽ_ܽݐ݈݁݀ ൌ   ;1ሻሻܽݐሺ݄ܶ݁	݁ݖ݅ݏሺ	ݏ݋ݎ݁ݖ
2_݉ݑܿܿܽ_ܽݐ݈݁݀ ൌ   ;2ሻሻܽݐሺ݄ܶ݁	݁ݖ݅ݏሺ	ݏ݋ݎ݁ݖ
for ݐ ൌ 1:݉ do 

ܽ_1 ൌ ܺሺݐ,:	ሻ; 
2_ݖ ൌ ܽ_1	 ∗  ;’1ܽݐ݄݁ܶ	
ܽ_2 ൌ ሾ1	݀݅݋݉݃݅ݏ	ሺ2_ݖሻሿ; 
3_ݖ ൌ ܽ_2	 ∗  ;’2ܽݐ݄݁ܶ	
ܽ_3 ൌ  ;3ሻ_ݖሺ	݀݅݋݉݃݅ݏ	
݅_ݕ ൌ ,ሺ1	ݏ݋ݎ݁ݖ  ;ሻܭ
ሻሻݐሺݕሺ݅_ݕ ൌ 1;	

3_ܽݐ݈݁݀ ൌ ܽ_3 െ 	;݅_ݕ
2_ܽݐ݈݁݀ ൌ 	3_ܽݐ݈݁݀ ∗ .	2ܽݐ݄݁ܶ	

∗ 	;2ሻሿ_ݖ	ሺሾ1	ݐ݊݁݅݀ܽݎܩ݀݅݋݉݃݅ݏ	
1_݉ݑܿܿܽ_ܽݐ݈݁݀ ൌ 1_݉ݑܿܿܽ_ܽݐ݈݁݀ ൅
:ሺ2	2_ܽݐ݈݁݀																																					 ݁݊݀ሻ′	 ∗ ܽ_1; 
2_݉ݑܿܿܽ_ܽݐ݈݁݀ ൌ 2_݉ݑܿܿܽ_ܽݐ݈݁݀ ൅ 	′3_ܽݐ݈݁݀ ∗

ܽ_2end; 
݀݊ܽݎ݃_1ܽݐ݄݁ܶ ൌ  ݉	/	1_݉ݑܿܿܽ_ܽݐ݈݁݀	
݀݊ܽݎ݃_2ܽݐ݄݁ܶ ൌ  ݉	/	2_݉ݑܿܿܽ_ܽݐ݈݁݀	
 

Neural Network Training: During the training process of the 
neural network, the value of the control weight matrices is 
determined using the back propagation algorithm which 
includes the next guidelines within its algorithm: 
 Randomly initialize the weights of matrices with numbers 

between -1 and 1. 
 Implement the forward propagation algorithm to obtain 

 .ሺ݅ሻݔ for any x	௠ܣ
 Calculating the cost ܬሺߠሻ from (11), in order to obtain the 

difference between the expected values and the values 
obtained, the objective is to have its value approach as 
close to 0. 

 

ሻߠሺܬ ൌ െ
ଵ

௠
∗ ∑ ∑ ሺݕሺݔሻ ∗ log	൫ሺܣሺ௫ሻ൯

௠
൅ ൫1 െ ሻ൯ݔሺݕ ∗௡

௫ୀ଴
௠
௫ୀ଴

log	൫ሺܣሺ௫ሻ൯
௡
ሻ(11) 

 

 Calculate the partial derivatives of 
ௗ௃ሺఏሻ

ௗఏ೔ೕ
ೖ  in order to 

minimize the error to the maximum (12): 
 

௜௝ߠ
௞ ൌ ௜௝ߠ

௞ െ ߙ
ௗ௃ሺఏሻ

ௗఏ೔ೕ
ೖ                         (12) 

IV. SOFTWARE IMPLEMENTATION 

 

Fig. 3 Software for predicting arrival of SUs (history creation) 
 

To determine the ability and precision of the MLPNN 
algorithm to calculate the probability of arrival of the next SU 
(with BE or RT and BW type QoS criteria) to the BS, a software 
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application was developed in C#. Fig. 3 shows the creation 
phase of the request history for BE, RT and BW (for the figure 
the past behavior is displayed requesting BE and RT only). 
 

 

Fig. 4 Creation stage of the specialized MLPNNs 
 

 

Fig. 5 Training phase of the neural network 
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Fig. 6 Prediction phase (probability calculation of a QoS request) of the neural network 
 

Fig. 4 shows an on-screen capture of the second phase of the 
software, where the two MLPNN neural networks are created 
(the first one specialized in estimating the BW that is likely to 
request the SU, and the second trained to predict the probability 
of requesting a BE or RT service). 

Fig. 5 graphically represents the training or learning stage of 
neural networks. Only the modeling for the historical behavior 
in the BE type requests is shown, where it is clear that the 
MLPNN manages to establish the (past) pattern requested by 
the SU. 

The last phase of the algorithm corresponds to the prediction, 
which will estimate the future 30% of the historical data and 
compare them with the actual behavior (Fig. 6). 

V. RESULTS EVALUATION 

In order to test the developed proposal, three test cases (from 
MS Excel) were generated using uniform, Poisson and 
exponential distributions. 

 
TABLE I 

TRAINING RESULTS FOR THE "EXPONENTIAL DISTRIBUTION" TEST CASE 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Iterations 500000 500000 

Training Error 0,13705 0.04018 

Time (msec) 350856 261833 

Validation Error 0.00027 0.00027 

Success Rate (%) 62 99 

 
TABLE II 

PREDICTION RESULTS FOR THE "EXPONENTIAL DISTRIBUTION" TEST CASE 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Cross Entropy 0.43791 4,70093 

MSE 0.05005 N/A 

Binary error N/A 0,47761 

Success Rate (%) 48 72 

TABLE III 
TRAINING RESULTS FOR THE "POISSON DISTRIBUTION" TEST CASE 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Iterations 500000 500000 

Training Error 0.37262 0.17537 

Time (msec) 333243 307682 

Validation Error 0.00205 0.00205 

Success Rate (%) 11 95 

 
TABLE IV 

PREDICTION RESULTS FOR THE "POISSON DISTRIBUTION" TEST CASE 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Cross Entropy 0.44064 0.47060 

MSE 0.00767 N/A 

Binary error N/A 0.1875 

Success Rate (%) 5 91 

 
TABLE V 

TRAINING RESULTS FOR THE "UNIFORM DISTRIBUTION" TEST CASE 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Iterations 500000 500000 

Training Error 0.54275 0.29872 

Time (msec) 354977 357718 

Validation Error 0.00205 0.02485 

Success Rate (%) 3 93 

 
TABLE VI 

PREDICTION RESULTS FOR THE "UNIFORM DISTRIBUTION" TEST CASE 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Cross Entropy 0.90017 4,70093 

MSE 0.10927 N/A 

Binary error N/A 0,89655 

Success Rate (%) 2 55 

 

The quantitative results during the training phase for 200 
examples are shown in Tables I, III, V; and the responses in the 
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estimation of the RT, BE and AB requests are observed in 
Tables II, IV, VI. 

The results found in the prediction suggest that the success 
percentage is low when predicting the BW to be requested by 
the SU. It should be noted that this metric evaluates that at any 
time point the expected value is equal to the value obtained 

without any margin of error. In this sense, for example, for the 
exponential distribution (Fig. 7), it is observed that the neural 
network identified the pattern, which is why the MSE (which in 
this case shows the difference between the expected and 
minimum values) is very small and in the order of hundredths. 

 

 

Fig. 7 Predicted exponential distribution for variable BW 
 

Another characteristic that can be drawn from the system 
behavior from the response given to the test cases is that it was 
possible to identify patterns for the Exponential and Poisson 
distributions; However, the "Uniform" case, as it did not present 
a pattern in its historical data, it was not possible to model or 
predict its behavior. 

VI. CONCLUSIONS 

The paper presents the development of an algorithm to 
estimate the probability of arrival of SUs to the central station 
of a CR network requesting a BE or RT type service, with a 
certain BW. The results show that the system is more efficient 
when the MLPNN can establish a pattern in the historical 
sequence; Otherwise, the success percentage in the estimation 
of the next request by an SU may be very low, rendering its 
implementation unviable because the channels reserved by the 
BS may not meet the characteristics that cognitive users will 
actually require. 
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