
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:4, 2008

394

Abstract—The concept of flexible manufacturing is highly

appealing in gaining a competitive edge in the market by quickly
adapting to the changing customer needs. Scheduling jobs on flexible
manufacturing systems (FMSs) is a challenging task of managing the
available flexibility on the shop floor to react to the dynamics of the
environment in real-time. In this paper, an agent-oriented scheduling
framework that can be integrated with a real or a simulated FMS is
proposed. This framework works in stochastic environments with a
dynamic model of job arrival. It supports a hierarchical cooperative
scheduling that builds on the available flexibility of the shop floor.
Testing the framework on a model of a real FMS showed the
capability of the proposed approach to overcome the drawbacks of
the conventional approaches and maintain a near optimal solution
despite the dynamics of the operational environment.

Keywords—Autonomous agents, Flexible manufacturing systems
(FMS), Manufacturing scheduling, Real-time systems.

I. INTRODUCTION
LEXIBILITY in manufacturing plays an increasingly
decisive role in keeping pace with the market change

world wide. Flexible manufacturing systems (FMSs) are
designed to face uncertainties and change in the market by
investing on high technology factories that can be controlled
to produce wide varieties of products with the same resources.
This investment pays back if the flow of production is
controlled in a flexible way that adapts in real-time to the
changes in job orders and the operation conditions. This
implies the demand on flexible allocation of jobs to machines
under consideration of the current status of operation as well
as the temporal constraints.

The flexibility of the FMSs is enabled by the technological
advancement of computerized numerically controlled (CNC)
machines. CNC machines offer flexibility on the machine
level by possessing the capability of performing different
operations. The shop floor of a typical FMS consists of two or
more CNC machines connected with an automated
transportation system and controlled by a central computer.
Each CNC machine is typically equipped with an internal
buffer in which cutting tools can be pooled for later use.
Carrying out an operation requires setting up the machine with

Manuscript received April 29, 2008
Iman Badr is with the Institute of Industrial Automation and Software

Engineering, Universität Stuttgart, Germany (e-mail: iman.badr@ias.uni-
stuttgart.de).

the required tools and downloading a program for controlling
the operation [1].

While planning for production, the limited cutting tools are
distributed among the machines, which results in partitioning
the machines into groups. Each machine group consists of a
number of identically or similarly tooled machines capable of
performing the same operations. This partitioning is planned
according to the expected types and quantities of parts to be
manufactured. Parts are likewise grouped into part families
based on similarities in physical dimensions and/or processing
[2]. This grouping principle adds a new dimension to the
gained flexibility by having candidate machines capable of
substituting each other in case of failure or overload.

Having alternatives in assigning a part to a machine results
in increasing the complexity of scheduling which deals with
the real-time management of the flow of production. It
involves specifying for each operation of each job a machine
to be executed on and a point in time to start the execution at.
The big dilemma encountered by scheduling for FMSs is to
optimize the performance by utilizing the available flexibility
while maintaining real-time reactivity to the dynamics of the
operation. A solution that caters for optimality by a thorough
investigation of the available alternatives always fails to
exhibit real-time reactivity due to the high complexity of the
problem.

Conventional methods of scheduling fail to provide a
mechanism for reacting to the dynamics of the operation in a
timely and effective manner. This operational inflexibility is
compensated in practice by skilled personnel who monitor the
control status and intervene to adjust the production flow in
reaction to disturbances. In addition, attempting to adapt to
market changes through the introduction of a new product line
or the addition of a new machine is hindered by the high
complexity of extending the employed scheduling software
[3].

Autonomous agents offer a suitable paradigm for realizing
systems dealing with uncertainty and dynamics in a flexible
way. Based on their special characteristics like reactivity and
interactivity, agents possess a good potential for overcoming
the drawbacks of the traditional scheduling approaches.

In this paper, an agent-based framework for manufacturing
scheduling is proposed. This framework is based on a
hierarchical multi-layer architecture that is abstracted from the
manufacturing environment. Scheduling incoming jobs is
carried out within the scope of the concerned agents to limit
the computational complexity. The generated schedule is

An Agent-Based Scheduling Framework for
Flexible Manufacturing Systems

Iman Badr

F

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:4, 2008

395

optimized at different levels of abstractions reflecting the
grouping principle employed in FMSs. The proposed
framework was tested on a model of a real FMS [4]. Test
results prove the capability of the framework to cope with the
dynamics of the manufacturing environment flexibly and
efficiently.

The paper is organized as follows. Section II analyzes the
problem and concludes by identifying the requirements on the
desired solution. Section III presents an overview of the
agent-based scheduling framework by focusing on the
solution approach and architecture, the scheduling method and
the advantages of the adoption of agents. Section V discusses
an application scenario and test results. Section VI concludes
with a summary and an outlook.

II. SCHEDULING OF FLEXIBLE MANUFACTURING SYSTEMS
Decisions and tasks concerning the management of

production are usually categorized into three interrelated
functions: planning, scheduling and control. These are
captured in Fig. 1 from a hierarchical view with the
corresponding levels of the automation pyramid. Planning is
basically concerned with decisions related to the part types,
the quantities to be produced and the machine groupings. The
plan generated during this phase acts as an input to scheduling
and contains data related to the part types to be produced and
the corresponding release dates and deadlines.

Manage-
ment
level

Technical process

Process and
machine control

level

Production
control level

Shop floor control

Shop floor

Scheduling

Planning
Manage-

ment
level

Technical process

Process and
machine control

level

Production
control level

Shop floor control

Shop floor

Scheduling

Planning

Fig. 1 A hierarchical view of manufacturing control

Scheduling is responsible for finding an allocation sequence

for executing the given plan by assigning jobs to resources in
real time. The execution of the schedule is performed
exogenous to the scheduling by the control layer. However,
operating conditions and disturbances like tool or machine
failure need to be fed back to scheduling to base its decisions
on updated information about the shop floor [5].

A. Problem Definition
Planning results in a set of jobs representing parts to be

produced in certain quantities with specific deadlines. For
each part type, a set of predetermined operations has to be
performed. The task of scheduling is to decide for each
operation where and when to be executed. In other words, it
involves solving two problems: selecting for each job a
specific machine for performing a certain operation and
determining the start and end time for the allocated job on the
selected machine. While the former is referred to as allocation,
the latter is called sequencing. [6].

Scheduling can be conceived as an optimization problem
seeking a schedule that minimizes a parameter determined by
planning like the average tardiness. It has to take into account
the set of constraints related to the parts to be produced such
as the technological ordering of operations and the delivery
deadline as well as the constraints stemming from the shop
floor such as the earliest availability time of machines [7].
Even without considering the dynamics of the environment,
this problem is shown to belong to the class of NP complete
problems, which makes the search for an optimal solution
infeasible due to the high computational complexity. [8].

FMSs are distinguished by a highly dynamic environment,
where several events occur all the time that cause deviations
from the planned schedule. Changes in planned products as
well as disturbances and uncertainties in the operating
environment are very likely. Changes in planned products
include job cancellation, delay or advance as well as rush
orders that may cause changing priorities of planned jobs.
Examples of disturbances on the shop floor are over- or
underestimation of the execution time, tool or machine failure,
and operator absenteeism [9].

B. Conventional Approaches
An attempt to examine the conventional approaches in

solving the scheduling problem should differentiate between
theory and practice. While researchers have made a
remarkably tremendous effort in analyzing the problem and
proposing possible solutions, this effort has had limited
impact on practice. The problem has always been considered
by researches in isolation from the dynamic environment,
where conventional algorithms focus on reducing the
computational complexity of the problem while ignoring the
stochastic and dynamic nature of the environment. This
tendency to deal with the problem in a deterministic and static
environment has resulted in a wide gap between theory and
practice [8].

In practice, FMS scheduling is dealt with by adopting either
the centralized static approach or the decentralized dynamic
approach [8]. In both cases, dynamics of the environment
disturbing the schedule are either left unhandled, or are
handled by repairing the schedule according to the expected
deviation and its impact.. Repairing a schedule occurs
manually by the operators who take corrective actions at the
control level like delaying the remaining jobs in case of a
disturbance like a machine failure. A regeneration of a new

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:4, 2008

396

schedule is only possible in the case of the centralized
approach but due to its high computational complexity is only
applied under critical situations like a relatively long-term
failure of a machine [9], [10].

1) Centralized Static Scheduling
In this approach, a global schedule is generated for the

entire system over a certain period of time. This generation
usually requires human expertise supported by computerized
tools and guided by an online data acquisition system that
provides a report on the current status of the shop floor. New
jobs that arrive after the schedule generation have to wait for
the beginning of the new cycle to be considered.

The advantage of this approach is that all resources are
considered while generating a schedule, which can better
optimize the utilization of the available capacity of the shop
floor. However, due to the computational complexity of
generating a global schedule, rescheduling cannot be
automated and corrective actions are rather carried out
manually as previously explained. Consequently, the
availability and productivity of the factory are badly affected.

2) Decentralized Dynamic Scheduling
Another approach which is broadly adopted in practice is

the delegation of scheduling to machine control, where one of
the parts waiting on the input buffer of a machine is selected
based on priority rules. Priority or dispatching rules are rules
used to assign priorities for jobs waiting for execution on a
certain resource [11]. Assigned priorities are calculated
according to parameters related to jobs like arrival time,
duration of the operation, or due date.

A large number of priority rules have been proposed in
literature. Due to the computational simplicity of most of the
dispatching rules, this method is widely adopted. Online
scheduling based on dispatching rules or dynamic scheduling
is more suitable for the dynamic nature of the job arrival of
the FMSs. Rush orders can take higher priority in execution
without the manual intervention of operators as in the
previous approach.

On the other hand, generating local schedules at the
machine level lowers the performance on the global scale.
This is due to the lack of consideration of the subsequent
operations required for this job and the current status of
resources offering these operations. In addition, like the other
method, this method fails to automatically readjust to
disturbances on the shop floor and the manual intervention in
this case is also required. Furthermore, simulation results
show that the performance of the various dispatching rules
varies according to the operating conditions. Consequently,
the application of dispatching rules faces the challenge of the
dynamic selection of suitable rules in reaction to the dynamics
of the environment.

C. Requirements on Flexible Scheduling
This brief outlook on the conventional approaches reveals

the need for another scheduling approach that suits the
dynamic nature of flexible manufacturing systems. A number
of requirements that the new approach has to fulfill are listed

below.
1) Optimizing Utilization of Resources
A good solution should make the best use of the available

resources to optimize the scheduling criteria and to maximize
the productivity. FMSs are distinguished by a relatively small
number of machines ranging from 2 to 30 and a limited
number of cutting tools [3]. This dictates the requirement on
good utilization of the available resources. Such utilization
has take the grouping principle into consideration and manage
the collective capabilities of resources grouped together.

2) Adaptability to Changes and Disturbances
The existence of resources with redundant capabilities

allows scheduling to automate the reaction to disturbances and
dynamics. In this way, the manual intervention is reduced and
the real-time performance of the system can be greatly
enhanced.

3) Scalability and Extensibility
Conventional scheduling systems are always designed as

customized solutions. Changes to the structure of the
underlying shop floor or to the planned products by, for
instance, introducing a new product is only possible with
highly complex and costly major modifications.
Consequently, extensibility and scalability should be catered
for by scheduling to allow for long-term flexibility [3], [12].

III. A PROPOSED AGENT-BASED SCHEDULING FRAMEWORK
In this section, the proposed framework is illustrated by

focusing on the concepts and highlighting the gained
advantages compared to the conventional approaches. The
adoption of autonomous agents for realizing the presented
concepts is motivated and illustrated.

A. Solution Approach and Architecture
To satisfy the aforementioned requirements, a hierarchical

negotiation-based scheduling approach is proposed. In this
solution, the problem is decomposed into entities representing
machines and jobs. Scheduling occurs dynamically for each
job through negotiations between jobs and the required
machines. The computational complexity of the problem is
hence reduced by limiting the scope of decision making to the
concerned entities.

To enhance the performance at the global level within the
real-time constraints, optimization is carried out under
consideration of the collective capabilities of the entities
belonging to the same group. This group-level optimization
motivated the introduction of a coordinator entity for every
group to manage the group-level capabilities and enforce the
real-time constraints. In other words, all jobs related to the
same part family are grouped together and coordinated by an
entity representing this part family. Similarly, all machines
capable of performing the same operation are grouped
together under the coordination of an operation entity.

For supporting reactivity, data related to planning and shop
floor control are made accessible to scheduling entities. To
facilitate scalability and extensibility, entities are defined to be
self-contained by encapsulating relevant data of the

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:4, 2008

397

corresponding physical entities like machines and part
families. The addition of a new machine or a part family
would then just mean the instantiation of the corresponding
entity.

This hierarchical negotiation-based approach has the
following advantages:
1) A change in planning or in the operating conditions is

propagated to the concerned entities without affecting
other entities. This implies the reactivity to changes with
a relatively low computational complexity.

2) The generated schedule is not optimized from just the
side of the machines by considering their own local
queues like the decentralized scheduling. Each job entity
revises the offers and can in case of conflicts or
discrepancies negotiate with the corresponding operation
entities for possible revision.

3) Disturbances on the shop floor like a break down in one
of the required cutting tools could be handled
automatically. This is carried out by contacting the
corresponding operation entity to take care of delegating
the scheduled jobs on that machine to other working
machines.

For realizing these concepts, the architecture depicted in
Fig. 2 was developed. Scheduling is represented by two main
layers representing planning and shop floor control. Each of
these layers is further decomposed into two sub-layers for the
individual and group-level optimization respectively. These
results into four levels of abstractions for machines,
operations, jobs, and coordinators of jobs related to the same
part family.

Planning

Part
families

Jobs

Operations

Machines

Planning
representative layer

Control
representative layer

Group

Intra-group cooperation

Negotiations

Shop floor control

Shop floor

Planning

Part
families

Jobs

Operations

Machines

Planning
representative layer

Control
representative layer

Group

Intra-group cooperation

Negotiations

Shop floor control

Shop floor

Fig. 2 The architecture of the scheduling framework integrated with
other control layers

As illustrated in the figure, scheduling occurs via

negotiations between entities of the layers representing
planning and shop floor control. This negotiation can be based

on the simple contract-net protocol [13]. An illustration of a
sample negotiation to generate a schedule for an incoming job
order along the four layers of abstraction is captured in Fig. 3.

Part Family

Operation

CNC1 CNC2 CNCn

a

c e c

d d

c

Job
order a) Job instantiation

b) Request allocation to an operation
c) Request allocation on a machine

instance
d) Bidding
e) Confirming allocation with selected

machines

d

Job

b

e

e

Product-related
optimization

Job-related
optimization

Operation-related
optimization
(allocation)

Machine-related
optimization
(sequencing)

Part Family

Operation

CNC1 CNC2 CNCn

a

c e c

d d

c

Job
order a) Job instantiation

b) Request allocation to an operation
c) Request allocation on a machine

instance
d) Bidding
e) Confirming allocation with selected

machines

d

Job

b

e

e

Product-related
optimization

Job-related
optimization

Operation-related
optimization
(allocation)

Machine-related
optimization
(sequencing)

Part Family

Operation

CNC1 CNC2 CNCn

a

c e c

d d

c

Job
order a) Job instantiation

b) Request allocation to an operation
c) Request allocation on a machine

instance
d) Bidding
e) Confirming allocation with selected

machines

d

Job

b

e

e

Product-related
optimization

Job-related
optimization

Operation-related
optimization
(allocation)

Machine-related
optimization
(sequencing)

Fig. 3 Illustration of the interaction protocol for the proposed
dynamic scheduling

As depicted in the Fig. 3, a job order causes the

corresponding product to instantiate a job entity and entitles it
to schedule its operations. The job then contacts the required
operation entities and requests an allocation under
consideration of its temporal parameters like deadline. Each
operation forwards the received request to the corresponding
machines which reply with their bids that depend on the
current scheduled jobs on each machine. The operation selects
the best bid(s) and confirms the allocation with the product as
well as with the selected machine(s) – surrounded in the figure
by a dotted circle.

As illustrated in the figure, the two previously mentioned
sub-problems of scheduling are solved at the operation and the
machine levels. Where sequencing takes place locally at the
machine level, allocation is performed at the operation level to
allow for the consideration of the current status of all the
member machines and optimize the use of their collective
capabilities.

B. Allocation Heuristics
Jobs are characterized by part types and quantities. The

sequence of allocating jobs on machines affect the overall
performance due to the setup time incurred by the machine in
switching from a part type to another. Switching to a part
within the same family requires relatively shorter time than
switching to another part in another family. While the former
is referred to as minor setup time, the latter is denoted as
major setup time.

Usually information about incoming jobs is not available a
priori. To converge to an optimal solution on the global scale
within uncertainty about part types and quantities of incoming
jobs, two allocation heuristics are defined. While the first
heuristic caters for dealing with uncertainty about incoming
part types, the second heuristic attempts to deal with the
fluctuations in job volumes. In what follows, the two
heuristics are explained.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:4, 2008

398

1) Balancing Resource Distribution (H1)
Major setup time represents a relatively significant

overhead. This heuristic attempts to minimize this overhead
by balancing the utilization of available machines on the
different families of parts. This occurs by allocating a job
from a certain part family to a number of machines
proportional to the expected quotient of the amount to be
produced from this family to the total number of parts along
all planned families. Such information can be acquired and
updated from planning.

For the sake of minimizing the time lost in setup, an
allocation cost is defined to denote the time lost by a machine
in switching to a new part. This cost is associated with an
allocation request of an incoming part on a certain machine
and amounts to the setup time that was incurred by the
machine for the previous allocation and would be lost if the
machine is to process the new request.

Associating a cost to each allocation bid serves in providing
the operation entity with lookahead information about
possible effects of the current allocation on the overall
performance. Accordingly, the operation entity attempts to
minimize the lost setup by selecting the set of machines that
offer the bids with the earliest start time and the least
allocation cost. Thereby, a reasonably good settlement
between the goals of planning and shop floor control is
achieved.

2) Greedy Allocation (H2)
Distributing parts to be manufactured among all machines

selected by the previous heuristic can be inefficient for jobs
with small volumes. This is due to the loss of long setup time
for the sake of shorter processing time. To avoid this, the loss
represented in the allocation cost is compared to the expected
gain represented in the batch processing time. Accordingly, an
allocation offer is accepted only if the expected gain exceeds
the allocation cost. In the extreme case when the requested
allocation deals with a batch size that is too small to yield a
gain even on a single machine, the role of the operation entity
is to find a way to enforce this allocation.

C. Agent-Based Realization
The realization of the proposed architecture is based on

autonomous agents to take advantage of the following
characteristics:

1) Reduced Software Engineering Effort
Agent-oriented development facilitates the realization of the

aforementioned architecture in two ways. First, the goal-
oriented decomposition serves in the separation of the
conflicting interests involved in the scheduling problem.
Second, the interactions among agents do not need to be
statically modelled, which drastically facilitates the
development process. Moreover, the agent-oriented
abstractions allow the modelling of inter agent
communications at a high level of abstraction namely the
knowledge level which relieves the developer from the low
level details in modelling these interactions [14].

2) Flexibility at Run Time
Multi-agent systems are characterized by decentralized

autonomous control, where each agent possesses a degree of
freedom over its action selection. In this way decisions are
made close to the corresponding physical entities which
enhances reactivity and adaptability. In addition, multi-agent
systems support openness by allowing new agents to register
and integrate themselves This feature aids in scalability and
extensibility, where the addition of a new machine or the
introduction of a new part family would just mean the
instantiation of a new agent that can integrate itself easily at
run time.

IV. APPLICATION AND TEST RESULTS
The proposed scheduling framework has been tested based

on the data of an IBM test line. It represents a huge FMS that
consists of thirty one testers grouped into four families. A
total of ten different card types grouped into four families are
to be tested on one or more testers according to their
predetermined plan. The problem is characterized by major
and minor setup times. Setup times depend just on the part
type being switched to. The goal is to maximize the
throughput which is defined as the total number of parts to be
manufactured divided by the makespan which is the total time
taken to finish all the parts. By assuming a fixed total number
of parts over a certain manufacturing period, the problem
reduces to minimizing the makespan [4].

0

1

2

3

4

5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Job number

Pa
rt

fa
m

ily
 ty

pe

(a) Variations of part family types of tested jobs

0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Job number

Q
ua

nt
ity

(b) Variations of quantities of tested jobs

Fig. 4 Illustration of types and quantities of tested jobs

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:4, 2008

399

In [4], the reported jobs were based on a static model by
assuming that all data already exist before the start of
scheduling. Therefore, no information is reported about the
details of the individual job arrival over time. The reported
data have been hence customized by identifying a set of
seventy jobs amounting to a total of 28025 parts based on the
reported part types and total quantities. The job arrival pattern
was made to feature a great alternation in part types and
families between subsequent jobs (see Fig. 4).

The customized dataset was used to compare the
performance of the proposed agent-based scheduling approach
to the traditional decentralized scheduling approach. The First
Come First Serve (FCFS) priority rule was applied for
sequencing at the machine level. For the sake of evaluation,
the three upper optimization layers of the proposed hierarchy
were disabled to emulate the conventional decentralized
scheduling based on FCFS. The operation-level optimization
was then enabled and tested with the same experimental
setting. This was done by testing the performance of applying
the first allocation alone followed by testing the two heuristics
together.

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

FCFS
FCFS + H1
FCFS +H1+H2

Fig. 5 Effect of variations of job arrival on makespan of the tested

scheduling methods

Fig. 5 depicts the variation in makespan in reaction to

variations in part family types of subsequent jobs. As
illustrated in the figure, the conventional decentralized
scheduling led to a dramatic increase in makespan due to the
frequent changeover of the setup of the machines which
increases the setup time and delays jobs. On the other hand,
the cooperative allocation based on the aforementioned
heuristics showed flexibility and resistance to change through
group-level optimization. Applying the two heuristics together
leads to improvement in makespan due to the resulting
flexibility in reaction to fluctuation in batch sizes of the
planned jobs.

Compared to the lower bound derived mathematically in
[4], the performance of the proposed approach lies within
9.9% of the optimal makespan. This is in contrast to the
decentralized scheduling whose performance amounted to

about 548% of the optimal performance (see Table I).
Considering the centralized static scheduling based on a static
model of job arrival, where all data about incoming jobs were
determined a priori, a schedule within 3% of the optimal
solution could be generated. [4]. Due to its lack of support to
the dynamic model of job arrival, the centralized approach
could not be tested with the modified dataset.

TABLE I

MAKESPAN AND THROUGHPUT OF THE TESTED METHODS RELATIVE TO THE
OPTIMAL BOUNDS

Scheduling method Makespan Throughput
(relative to lower bound) (relative to upper bound)

FCFS 547.9% 18,20%
FCFS+ H1 145.6% 68.6%
FCFS+ H2 109,90% 90,90%

The computational complexity was measured with respect

to the, the execution time needed to schedule each job on a 2.0
GH processor. It was found that scheduling one job takes on
average around 181,8 milliseconds by applying heuristic1
alone and 161 milliseconds when applying both heuristics.
This enhancement resulting from adding the second heuristic
can be attributed to the reduction in the number of the
machines selected for allocation which in its turn reduces the
overhead involved in negotiations among the corresponding
agents. Overall, the resulting execution time allows
interleaving scheduling with execution of real FMSs.

V. CONCLUSION AND FUTURE WORK
In this paper, the architecture and scheduling method of an

agent-based scheduling framework of the FMSs is proposed.
This framework is based on a hierarchical multi-layer
architecture that builds on the grouping principle of FMSs. It
optimizes the performance of the generated schedule at
several levels of abstractions. The architecture is designed to
support scalability and extensibility. Moreover, the flexibility
in enabling and disabling optimization at the different levels
serves in test purposes.

Test results on a model of a real FMS prove the potential of
the system to utilize the available flexibility and enhance the
system robustness in reaction to the dynamics of the
environment. Despite the fluctuations in the family types and
quantities of the tested jobs, the cooperative agent-based
scheduling employed in the proposed framework was found to
significantly outperform the decentralized scheduling and
approach the near optimal solution resulting from the static
approach.

Work is currently ongoing in applying other priority rules
and experimenting with their relative performance. In
addition, developing a concept for recovering the generated
schedule from deviations stemming from disturbances from
the shop floor control is currently under investigation.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:4, 2008

400

REFERENCES
[1] Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.

Handbook on Scheduling from theroy to applications.. Springer 2007
[2] M. P. Groover. “Fundamentals of modern manufacturing”. John Wiley

& Sons, New York, 2000
[3] J. Ranta, and I. Tchijov . “Economics and Success Factors of Flexible

Manufacturing Systems: The Conventional Explanation Revisited”. The
International Journal of Flexible Manufacturing Systems, 2 (1990): 169-
190

[4] R. J. Wittrock. “Scheduling Parallel Machines with Major and Minor
Setup Times”. The International Journal of Flexible Manufacturing
Systems, 2 (1990): 329-341.

[5] K. E. Strecke “Design, planning, scheduling, and control problems of
flexible manufacturing systems,” Annals of Operations Research vol.
3 no. 4 pp. 1-12, January 1985.

[6] L. Wang and D. Li. A Scheduling Algorithm for Flexible Flow Shop
Problem. Proceedings of the 4th World Congress on Intelligent Control
and Automation. June 10-14, 2002. 3106- 3108 vol.4.

[7] J. N. Gupta. “An excursion in scheduling theory: an overview of
scheduling research in the twentieth century”. Production Planning &
Control, Vol.13, No.2, 105-116, 2002.

[8] S. C. Graves. “A Review of Production Scheduling”. Operations
Research, Vol.29, No.4, Operations Management. (Jul.-Aug.,1981),
pp.646-675.

[9] G. E. Vierra, J. W. Herrmann, and E. Lin. “Rescheduling Manufacturing
Systems: a framework of strategies, policies, and methods”. Journal of
Scheduling, Vol.6, No.1, Jan.-Feb.,2003

[10] J. Hermann “Rescheduling Strategies, Policies, and Methods” in
Handbook of Production Scheduling, edited by J. Hermann, Springer,
2006.

[11] R. Haupt. “A survey of priority rule-based scheduling”. OR Spektrum
(1989) 11:3-16.

[12] D. M. Upton. "A flexible structure for computer-controlled
manufacturing systems". Manufacturing Review, 1992. 5(1):58-74.
http://www.people.hbs.edu/dupton/papers/organic/WorkingPaper.html

[13] M. Wooldridge. “An Introduction to Multi Agent Systems”. John Wiley
& Sons, Ltd, 2002.

[14] N. R. Jennings. “An agent-based approach for building complex
software systems”. Communications of the ACM, 44 (4). pp. 35-41.

