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Abstract—Partial discharge (PD) detection is an important 

method to evaluate the insulation condition of metal-clad apparatus. 
Non-intrusive sensors which are easy to install and have no 
interruptions on operation are preferred in onsite PD detection. 
However, it often lacks of accuracy due to the interferences in PD 
signals. In this paper a novel PD extraction method that uses frequency 
analysis and entropy based time-frequency (TF) analysis is introduced. 
The repetitive pulses from convertor are first removed via frequency 
analysis. Then, the relative entropy and relative peak-frequency of 
each pulse (i.e. time-indexed vector TF spectrum) are calculated and 
all pulses with similar parameters are grouped. According to the 
characteristics of non-intrusive sensor and the frequency distribution 
of PDs, the pulses of PD and interferences are separated. Finally the 
PD signal and interferences are recovered via inverse TF transform. 
The de-noised result of noisy PD data demonstrates that the 
combination of frequency and time-frequency techniques can 
discriminate PDs from interferences with various frequency 
distributions. 
 

Keywords—Entropy, Fourier analysis, non-intrusive 
measurement, time-frequency analysis, partial discharge 

I. INTRODUCTION 

ETECTING and identifying partial discharges (PDs) in 
metal-clad apparatus such as gas or oil insulated switchgear 

and transformers are well-established procedures[1]. In traditional 
methods, the PD sensors are mounted inside the metallic enclosure 
which promises high signal to noise ratio (SNR). But for 
operational switchgears and transformers without such PD sensors, 
arranging a shutdown specifically to fit internal couplers rarely can 
be justified[1]. So external non-intrusive sensors which are easy to 
install and have no interruptions on operation are becoming more 
and more popular for the devices which are not suitable to install 
internal sensors. Usually, the radiating electromagnetic wave from 
PD source escapes out of the cracks on switchgear and transformer 
enclosure and forms a small pulse-like voltage on the metal tank 
surface. This is so called transient earth voltage (TEV)[2],[3]. The 
non-intrusive PD sensors detect those impulsive TEV signals to 
determine the existence of PD.  
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When detecting PDs on the external surface of enclosure, one of 

the major problems that need to be addressed is the interferences 
from surroundings. 

Some hardware solutions such as non-intrusive sensors 
shielded with metal cover have been proposed to eliminate 
noises. Besides hardware design and improvement, the signal 
processing based noise-rejection is also a powerful tool to reject 
noises in measured PD signals with much lower costs. The 
time-domain features such as pulse height and phase angle, as 
well as the frequency-domain features such as frequency 
distribution, are often used to discriminate PDs from noises[4]. 
Meanwhile, the time-frequency (TF) analysis and artificial 
intelligence are also utilized[5]-[7]. 

All these approaches have pros and cons. The time-domain or 
frequency-domain algorithms are simple, fast, and easy to 
realize. But they have drawbacks when used to distinguish 
pulses with similar features. For instance, it is very hard for 
time-domain analysis which only reflects time-domain features 
to discriminate PD and impulsive noise if two pulses occur at 
the same time. This is also true for frequency-domain methods 
when the frequency ranges of PD and pulses overlap with each 
others. Therefore, time-frequency analysis which reveals the 
energy variation with both time and frequency was proposed. 
However, separation of pulses occurring at same time and 
having same frequency range is still a question. Meanwhile, 
how to extract PDs from the TF spectrum remains a big 
challenge. Artificial intelligence based methods such as neural 
network and fuzzy logic have also been employed. However, 
the large database that is needed in training is usually difficult to 
collect in most field tests. Therefore, all these approaches are 
good at removing particular kinds of noises. Any method alone 
may not produce good results in rejecting all noises in on-site 
PD measurement. Combination of the signal processing 
methods in different domains is a potential way to extract PDs 
from noisy background.This paper proposes a novel PD 
extracting method which, based on frequency distribution, 
groups the pulses with similar features and reject noise 
according to the PD characteristics. This paper begins with the 
fundamentals of non-intrusive measurement. Then, the features 
of noises and possible rejecting methods are discussed. Next, an 
advanced PD extracting method is introduced and the details of 
its algorithm are analyzed. Finally, this PD extracting method is 
performed on a noisy PD signal to demonstrate its effectiveness 
in noise rejection.  
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II.  MEASUREMENT SETUP 

When PD occurs in electrical apparatus, there is a voltage 
induced on its grounded or earthed metallic enclosure. To 
illustrate this idea, a laboratory test is set up as shown in Fig.1, 
where a PD generator is placed inside a metallic enclosure. The 
PD signals are recorded using an oscilloscope. (Tektronix 
TDS7104, band width: up to 1GHz and sampling rate: up to 
10GHz/s).  

 

 

Fig. 1 PD generator placed inside a metallic enclosure: (a) enclosure 
with its cover open, (b) enclosure with its cover close 

A. PD Sensor 

Fig.2 shows the drawing of the developed coaxial sensor for 
non-intrusive PD measurement with protruding inner conductor 
(part 4) extending beyond the bottom of outer conductor (part 
3). Part 1 is the female BNC interface and it is integrated with 
part 2.  

 

 

Fig. 2 Coaxial PD sensor 
 

Since the electrical apparatus are located inside a metal 
cladding, the high frequency components of the PDs emerging 
in the apparatus attenuate greatly through propagation. The 
high-frequency energy of most PDs detected on the outside 
surface cannot be greater than low frequency part unless a 
high-frequency amplifier is added. Therefore, the PD sensor for 
non-intrusive measurement should have a frequency response 
range wide enough to capture PD energies as much as possible 
and a lower-cutoff frequency small enough to ensure the 
less-distorted low-frequency energy are recorded.  

As an important factor, the amplitude response of the coaxial 
sensor is shown in Fig.3. 

 

 

Fig. 3 Amplitude response of the coaxial sensor 
 

Here, |Uo/Ui| equals to the absolute value of output voltage 
divided by input voltage at different frequencies. The -3dB 
point is around 80Hz at low frequency side and around 9MHz at 
high frequency side. The -3dB point is defined as the frequency 
where 20log10|Uo/Ui| equals -3.  

B. PD Features with Non-Intrusive Measurement 

In Fig. 1(a), besides the PD generator, there is also a HFCT 
placed inside the metallic cavity. Using the two similar coaxial 
sensors as shown in Fig. 2 and the HFCT, PD measurement was 
carried out in our laboratory. The sensor placed outside and on 
top of the metallic enclosure has its part 4 or inner electrode 
electrically contact with the outer surface of the top of the 
metallic enclosure. Similarly the sensor placed inside the 
metallic enclosure has its part 4 electrically contact with the 
interior surface of the bottom of the metallic enclosure. The 
results are shown in Fig.4 for two different durations, where the 
top wave is measured PD pulses using HFCT; the middle wave 
is data from the sensor placed inside the enclosure; the bottom 
wave is output from the sensor placed outside the enclosure. 
From these two figures, one can see that the measured PD pulses 
are almost the same from the two coaxial sensors placed inside 
and outside the metallic enclosure. Thus one can conclude that 
when PD occurs inside the enclosed metallic cavity, there is an 
induced voltage on its interior metallic surface, which is almost 
equally measurable by the sensor placed outside it. This 
provides fundamental basis for field test of metal-clad apparatus 
using non-intrusive PD sensing technique. 

 

 

Fig. 4 Measured PD pulses with different durations, (a) PDs of a power 
frequency cycle (20 milliseconds), (b) PDs of 4 milliseconds 

 
The frequency distribution of signal collected by coaxial 

sensor is generated by Fourier transform and shown in Fig.5. 
 

 
Fig. 5 Frequency distribution of signal in Fig.4(b) 

 
If Fig.5, 20log10(|F(ω)|) values are plotted to give a clear 

understanding. Here, |F(ω)| is the Fourier transform of signal f 
in Fig.4(b), ω denotes the frequency. The higher frequency 
range such as 30MHz that goes beyond the signal capture 
capability of coaxial sensor could be assumed to be dominated 
by white noise. Then, the noise level in Fig.5 is around 60dB 
which equals to the values of frequency distribution higher than 
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30MHz. The PD energies greater than this noise level are 
concentrated below 15MHz. 

III.  NOISE TYPES AND FEATURES 

Noise can be due to several kinds of sources and can couple 
with the systems in different ways and with different features. 
Therefore, noise rejection has no omnipotent solution and is 
best approached by devising several techniques, each of them 
tailored for a specific kind of noise[8]. To develop suitable tools 
for each kind of noise, the noise types and features are analyzed. 
Much previous work and field tests suggests that the noises that 
most likely need to be rejected during on-site measurements of 
metal-clad apparatus are: white noise, harmonics, repetitive 
pulses and random pulses[9]. Those noises have different 
patterns and can be classified into two groups: non-impulsive 
interferences and impulsive interferences. Features and 
potential rejections of these two groups of interferences are 
introduced in detail in following paragraphs. 

A. Non-Impulsive Interferences 

Non-impulsive interferences include white noise and 
sinusoidal noises. 

White noises are the most common background noise. They 
are usually generated by amplifier, oscilloscope or any 
electrical equipment. White noises are equal-power signals. 
They have equal power density throughout the whole frequency 
range. 

The harmonic signals usually come from communication 
systems or electronics equipments. They contain same 
frequency components throughout all time. Their energy 
decreases greatly in the frequency range that does not equal to 
their oscillating frequencies. Therefore, they appear to be sharp 
singularities in frequency domain or time-axis-paralleling strips 
in time-frequency domain.  

Commonly, the white noise and harmonics can be rejected by 
frequency-dependent thresholding. Both of them are very easy 
to remove when comparing with impulsive interferences. 

B. Impulsive Interferences 

Impulsive interferences usually include repetitive pulses and 
random pulses. Impulsive disturbance is difficult to distinguish 
by using only one technique because of its similarity with PD 
pulses in some aspects. The methods such as thresholding which 
is effective to remove white noise and harmonics are often 
ineffective to remove pulse-like disturbances. Therefore, 
advanced method should be explored. 

Repetitive pulses usually come from electronics apparatus 
such as AC/DC convertor and rectifier. The repetitive pulses 
from same source must have same features (i.e. frequency 
distribution). Meanwhile, because of the regular switching 
behaviors of electronics equipment, the repetitive pulses tend to 
group at equally-spaced phase values. Highly-repetitive 
occurrence of these exactly same and equally-spaced pulses can 
produce large-amplitude singularities in frequency domain. 
This characteristic suggests a possible solution of repetitive 
impulsive noise in frequency domain. Furthermore, the 

frequency-domain method is possible to separate pulses 
occurring concurrently. 

Besides the repetitive pulses from electronics equipment, 
random pulse is another type of impulsive interference that is 
often encountered in field test. Random pulses come from 
switching operations, lightning and so on. In general, there is 
not any correlation between supply voltage wave and random 
pulses, and the random pulses from the same source are not 
identical at different time moments. Thus, unlike repetitive 
pulses, the large-amplitude singularities in frequency-domain 
which are caused by repetitive occurrence of same pulses are 
seldom found in the frequency domain of random pulses. It is 
very hard to discriminate PDs from random pulses via 
frequency-domain analysis. However, the frequency 
distributions of pulses from the same source must be highly 
similar and different from those of pulses from other sources. 
For example, the PD pulses from the same source that travel 
along the same path should have identical distortion during 
propagation. Their frequency distributions must be different 
with those of pulses that happen in the immediate vicinity of PD 
sensor which means less distortion. This difference in frequency 
distribution of each pulse suggests that the PDs and noises can 
be classified and recognized pulse-by-pulse according to their 
frequency distributions. Time-frequency analysis is an efficient 
tool that reveals the frequency distribution of each pulse if the 
parameters are selected appropriately. It could be a potential 
solution of grouping pulses with similar frequency distributions. 

IV. PROCESSING SYSTEM 

The noise rejecting method proposed here is mainly based on 
frequency distributions of PD and noises. Referring to the 
analysis of noises in section III, the non-impulsive noises can be 
rejected via thresholding, the repetitive pulses can be removed 
by frequency analysis and the random pulses can be classified 
by their time-frequency distributions. Therefore, three main 
steps are included in this de-noising method: pre-processing, TF 
feature extraction, and pulse extraction. Here, TF feature 
extraction and pulse extraction are combined to be PD 
extraction. The flowchart in Fig.6 illustrates the procedure of 
processing system. 

 

 

Fig. 6 Flowchart of the processing system 
 

A. Pre-processing 

Pre-processing is based on frequency-domain analysis. The 
repetitive pulses and harmonics that have large-energy in 
frequency domain are removed by this step. As mentioned in 
section III, harmonics and repetitive pulse can produce 
large-amplitude singularities in frequency domain. On the other 
hand, PD is a random phenomenon and cannot generate 
large-amplitude singularities in frequency domain. Therefore, 
the large-amplitude singularities in frequency domain can be 
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regarded as noise-related energies. In this proposed method, the 
frequency distribution of whole signal is generated via Fourier 
transform and the large-amplitude singularities are removed. In 
most cases, the highly-repetitive pulses can be removed in 
pre-processing. 

B. PD Extraction 

After pre-processing, which rejects most repetitive pulses in 
noisy data, the frequency distribution of each pulse is generated 
by time-frequency analysis. Here, short-time Fourier transform 
(STFT) is employed. The size of sliding window is selected to 
be the duration of longest pulse in noisy signal to ensure the 
whole frequency distribution of a single pulse is included in one 
time-indexed vector in TF spectrum. Therefore, each 
time-indexed vector in TF spectrum is analyzed and classified. 
Two parameters: relative entropy and relative peak-frequency 
are employed to describe the frequency distribution of each 
time-indexed vector. Pulses with similar parameters are 
clustered and classified. Finally, based on PD feature analysis, 
the noises are rejected and PD pulses are retained. 

V. PRE-PROCESSING 

As mentioned in section III, repetitive pulses from the same 
source should have the same characteristics. Highly-repetitive 
occurrence of these identical and equally-spaced pulses can 
produce large-amplitude singularities in frequency domain. 
Fig.7 gives an example to demonstrate this phenomenon. This 
repetitive pulse signal is generated by a high-frequency PFC 
(power factor correction) convertor in laboratory and detected 
by coaxial sensor in Fig.2. 
 

 

Fig. 7 The Fourier coefficients of repetitive pulses of one cycle and a 
single pulse, (a) noise of one cycle, (b) single noise pulse,(c) the real 

Fourier coefficients of signal in (a), (d) the imaginary Fourier 
coefficients of signal in (a), (e) the real Fourier coefficients of pulse in 

(d), (f) the imaginary Fourier coefficients of pulse in (d) 
 

Fig.7 shows most energy of single noise pulse is in the 
frequency band from 15MHz to 20MHz. This is consistent with 
the energy distribution of pulse group of one cycle. Meanwhile, 
the amplitude of Fourier coefficients decreases greatly if the 
frequency does not correspond to the peak frequencies. 

According to this characteristic of repetitive pulses, a Fourier 
coefficients based noise reduction method is proposed as 
follow: First, the real and imaginary Fourier coefficients of 
noisy data are produced by Fourier transform. In order to keep 

the smooth energy in Fourier coefficients, the frequency axis is 
divided into many small frequency bands. Each band has a 
bandwidth of 0.5MHz. An empirical threshold 8σ is applied and 
moving along the frequency axis to detect the singular points in 
each frequency band. Here, σ is the estimation of white noise. 
Theoretically, setting the singular coefficients to zero could 
totally remove the periodic energy. But in practical application, 
the nearby coefficients of singular points also have large 
amplitude. A filter [1, 1-1/n, …, 1/n, 0, 1/n, …, 1-1/n, 1] is thus 
employed, where 2n+1 is the width of filter. The filter’s shape 
looks like an inverted triangular. By filtering the singular points 
with this inverted triangular filter, the coefficients near the 
singularities can also be reduced.  

VI. PD EXTRACTION 

A. Pulse Features Extraction 

In order to extract PD pulses effectively and automatically, 
the features of frequency distributions need to be extracted. The 
extracted features must be independent of shift, polarity, 
amplitude, and sampling points. These requirements suggest 
that the PD pulses from the same source with different phase 
angles, magnitude, and sampling rates should have similar 
features. The requirements can be satisfied by using relative 
entropy and relative peak-frequency which are calculated with 
normalized TF spectrum.  

In this paper, the TF spectrum is generated by short-time 
Fourier transform (STFT). It has often been used to determine 
the sinusoidal frequency components and phase features of local 
sections of signal. For any signal f, the resulting STFT is as 
follow:  

 

,( , ) , ( ) ( ) i t
uSf u f g f t g t u e dtξ

ξξ
+∞ −

−∞
= = −∫            (1) 

 
The sliding window gu,ξ(t)=eiξtg(t-u) is a real and symmetric 

window g(t)=g(-t), translated by u and modulated by the 
frequency ξ. It is normalized ||g||=1, so that ||gu,ξ||=1 for any real 
numbers u and ξ.  

PD pulses have a quite short duration and wide frequency 
range[10]. Empirically, a window with larger bandwidth and 
rapid decay is better for TF analysis of PD signal. The hanning 
window is thus selected. In order to keep enough frequency 
resolution and ensure whole frequency distribution being 
contained in one time-indexed vector, the size of window g(t) is 
defined 
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where, L is the length of pulse with longest duration in noisy PD 
data F, N is the length of F. When the longest duration L of pulse 
is greater than 2 microseconds, the window size K is the smallest 
integer that satisfies K≥L and K/2 divides N. If L is shorter than 
2 microseconds, the window size K is set to 2 microseconds to 
promise enough resolution in frequency. 
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When the window g(t) slides along the time axis, the 
frequency spectrum of the windowed signal is revealed. The 
spectrum of the whole time range forms a two-dimensional 
representation of signal which is called time-frequency 
spectrum[11]. It is denoted Ps: 

 
( , ) | ( , ) |P f u Sf u

s
ξ ξ=                             (3) 

 
From the definition of TF spectrum, one can easily find whole 

frequency distribution of single pulse is contained in one 
time-indexed TF vector. This time-indexed frequency 
distribution is independent of the polarity and phase angle of 
pulses.  

The time-indexed vector in TF spectrum is actually the 
energy distribution of pulse in TF domain. Its coefficients vary a 
lot with frequency. To produce a feature unaffected by 
magnitude, normalization of TF spectrum is applied as follows: 
the TF spectrum indexed by each frequency is subtracted by its 
minimum value and then is divided by its maximum value. 
Thus, in normalized TF spectrum, the minimum and maximum 
value in whole TF spectrum is 0 and 1, respectively. However, 
in this normalized TF spectrum, the influence from noises, 
especially white noise, cannot be ignored because the 
differences between pulse and noise coefficients decrease 
greatly. Thus, to eliminate the influence from white noise, the 
smaller coefficients in each frequency are removed by a 
threshold. To select as much large-amplitude coefficients as 
possible, a threshold with smallest estimation risk is needed. 
The minimax estimation which has been proved to have a 
smaller estimation risk than most other thresholding techniques 
is provided in [12], which uses a threshold to yield minimax 
performance for mean square error against an ideal procedure. 
For easy application in program design, an approximate 
minimax estimator can be used[13]. The threshold λ equals: 

 

2

0
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where m is the length of time scale and m=N/M, ε is the 
estimated variance of noise. As white noise of each frequency 
follows Gaussian distribution, the estimated variance of 
Gaussian noise was proved to be ε ≈ MX/0.6745 where MX is the 
median of absolute coefficients. The coefficients larger than 
threshold are regarded to contain pulse energy. 

After normalization and thresholding, the time-indexed 
vectors in revised TF spectrum denote the relative frequency 
distributions of all pulses. This relative frequency distribution 
satisfies all the requirements of features such as independent of 
shift, polarity, amplitude, and sampling points. However, in 
order to discriminate PD pulses from noises automatically, 
parameters that can describe this relative frequency distribution 
are needed. Therefore, relative entropy σE and relative 
peak-frequency σF are proposed. 

 
 

1) Relative Entropy 
Entropy is a measure of disorder. Here, the entropy means 

Shannon Entropy. The more chaotic signal must generate 
greater entropy. That means the time-indexed vector which has 
more varying coefficients will generate larger entropy value. 
The entropy H of each time-indexed vector X with possible 
values {x1, x2, …, xn} is defined as follow[14]: 

 

1

( ) ( ) log ( )
n

i b i
i

H X p x p x
=

= −∑ ,                    (5) 

 
where p(xi) is the probability of xi, and b is the base of logarithm. 
Common value of b is 2, and the unit of entropy is bit.  

From (5), we can conclude that the value of H(X) depends on 
the size of time-indexed vector X. In order to eliminate the 
influence from size, the relative entropy σE which equals the 
ratio of entropy value of each time-indexed vector to the 
maximum entropy of X is proposed. As shown in (5), entropy 
value H(X) reaches its maximum when all probabilities p(xi) are 
equal, p(x1)=p(x2)=…=p(xn)=1/n, and H(X)max=logbn, where n 
is the size of X. Thus, the related entropy σE is defined as: 
 

max( ) ( )E H X H Xσ =                            (6) 

The relative entropy only reflects the relative disorder of 
frequency distribution of each pulse. It is independent on the 
size of vector X. That is to say this relative entropy is 
independent on the sampling rate and size of sliding window. 
The pulses of the same type which have similar frequency 
distribution should have similar relative entropy. 

2) Relative Peak-Frequency 
Since the relative entropy of time-indexed TF spectrum is a 

measure of chaotic distribution, pulses with different 
distribution but similar disorder may have similar entropy. 
However, if two pulses from different sources have similar 
relative entropy values, their frequencies with largest energy 
cannot be the same because of their different frequency 
distributions. Therefore, the location of peak-frequency or the 
frequency of largest energy in each time-indexed vector X is 
employed in classification. Similarly, in order to eliminate the 
influence from size of X, the relative peak-frequency σF is 
defined 
 

max( )F F X Fσ =                              (7) 

 
Here, F(X) is the frequency with maximum energy in 

time-indexed vector X, Fmax is the size of X which is half of the 
sampling rate. As a parameter that describes relative location of 
peaks in frequency distributions, relative peak-frequency σF 
also satisfies independency requirements mentioned before. 

B. PD Pulse Extraction 

PD pulse extracting algorithm groups the pulses with similar 
parameters at first and then extracts the group or groups with 
most similar features with PDs. Therefore, PD pulse extracting 
method includes two steps: pulse grouping and noise rejection. 
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1) Pulse Grouping 
As discussed in section VI.A, two parameters: relative 

entropy σE and relative peak-frequency σF are used to describe 
the frequency distribution of each time-indexed vector which 
contains whole information of each pulse. The vectors with 
similar parameters σE and σF are grouped in this step. In 
practical application, pulse grouping should be fast and be able 
to deal with complex situations such as large number of pulses.  

Clustering analysis was proved to be effective in grouping 
data[8]. The distance between two points are calculated and 
compared. The points are grouped if the distance between them 
is small and separated if the distance is large. Usually, clustering 
analysis is a time-consuming procedure since the distances 
between every two points should be calculated.  

However, because only two parameters: relative entropy σE 
and relative peak-frequency σF are employed in this proposed 
method, the points near to each others should have similar 
values of both σE and σF. Therefore, the two parameters are first 
grouped respectively. For any one-dimensional vector, the 
points that belong to the same group must be close to each 
others and gather around their center. Between two groups, 
there must be a boundary where the number of points is very 
small. If the value range of σE or σF is divided into many 
intervals such as ten intervals, the histogram which denotes the 
number of points of each interval reveals the density of points. 
Maxima in histogram suggest centers of groups and minima 
suggest boundaries. Finding all the boundaries in σE and σF can 
divide the zones of clustered groups in σE-σF plane. For 
example, if there are two minima in histogram of σE and one 
minimum of σF, three and two segments are divided in σE and σF, 
respectively. Then six groups can be clustered in σE-σF plane. 
Although the gathering results have little differences with the 
one generated by ordinary clustering analysis, the difference 
should not be great as only two parameters are included. 
Meanwhile, this method is much faster.  

2) PD reorganization 
In non-intrusive measurement, the PD signal occurs inside 

the cladding has to travel a long way before being captured by 
PD sensors. Because their high-frequency energy decreases 
greatly during propagation, the relative peak-frequency σF of 
PD pulses should be smaller than impulsive noises which often 
have large oscillating components. On the other hand, the PD 
pulses usually have short duration and wide frequency range. 
That means, after thresholding, more coefficients with different 
amplitudes are contained in the time-indexed vector of PD pulse 
than those of other impulsive noises. The relative entropy σE of 
PD-contained time-indexed vector is thus larger. Therefore, the 
pulse groups with larger σE and smaller σF can be classified as 
PD. 

VII.  CASE STUDY 

The results and procedure of processing a combined signal 
with proposed method are reported in the following content as 
an example. 

 

The combined signal is made of a field-collected noise and a 
laboratory-generated PD data. Both signals are detected by the 
coaxial sensor in Fig.2. The PD signal is detected on the outside 
surface of metallic enclosure. The noise data is collected on the 
external surface of a gas-insulated switchgear. The 
field-collected noise data contains several kinds of impulsive 
interferences from convertors. Since large differences exist 
between the magnitudes of laboratory and field collected 
signals, the latter one is amplified before adding to the PD 
signal. 

The original data and the results after pre-processing are 
shown in Fig.8.  

 

 
Fig. 8 The noisy data and filtered result, (a) noisy data, (b) the real 

Fourier coefficients before and after filtering, (c) the imaginary Fourier 
coefficients before and after filtering, (d) PD-contained signal, (e) 
repetitive impulsive interferences (RII), (f) amplified single pulse 

 
The frequency range of PD is up to 15MHz as in Fig.5. But as 

illustrated in Fig. 8(b) and (c), most energy of the field-collected 
repetitive pulses concentrate around 1MHz. The two signals 
have overlapping frequency ranges. However, the repetitive 
pulses appear to be some singularities in Fourier coefficients 
that are totally different from PDs. Apparently, the 
large-amplitude coefficients in original data (gray coefficients 
in Fig.8(b) and (c)) are removed. Since this filtering method 
processes signal in pure frequency domain, it can effectively 
separate PD pulse and impulsive interference which occur at the 
same time. In Fig.8(f), three pulses that occur at the same time 
are amplified to demonstrate the effectiveness of this method in 
separating PDs and interferences that happen simultaneously. 
The noisy pulse is combined by one pulse from convertor and 
one PD pulse. After filtering the Fourier coefficients, the PD 
pulse and noise pulse are successfully separated.  

The filtered data in Fig.8(d) is then analyzed by PD extracting 
algorithm. The relative entropy σE and relative peak-frequency 
σF are scattered in Fig.9(b). Here, σE and σF are divided into ten 
intervals. Since most data points in the first interval of σE are 
zeros and the number is too larger than the others to plot all bars 
in a same figure clearly, the first bar of the histogram of σE is not 
shown in Fig.9(c). According to the histograms of σE and σF, two 
boundaries are selected. One is around 0.37 in σE and the other 
is about 0.256 in σF. Thus, four zones are divided in σE-σF plane.  
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The signals of each zones are recovered via inverse STFT 
and portrayed in Fig.9(e) to (h). The signals recovered with the 
points in zone 1 are PD signals. Fig.9(b) shows these PD pulses 
have larger σE and smaller σF as discussed in section VI. 

The result of de-noising procedure shows that the proposed 
method is able to detect PD signal and separate it from noises. 

 

 
Fig. 9 Extracted PDs and noises, (a) filtered data, (b) σE-σF plane, (c) 
histogram of σE, (d) histogram of σF, (e)-(h) extracted pulse of each 

zone 

VIII.  CONCLUSION 

Automatic PD extraction is realized in this paper through 
appropriate design of PD sensor and selection of suitable signal 
processing tools based on frequency distributions of PD pulses. 
According to the result of processing the combined noisy PD 
signal, this approach is capable of separating impulsive noises 
from PDs. Therefore, this advanced PD de-noising method can 
successfully supersede other existing PD de-noising methods in 
solving the problem of PD pulse extraction. It has several 
advantages over existing methods such as fast calculation and 
separating simultaneously-occurring pulses. 
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