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An Adequate Choice of Initial Sample Size for
Selection Approach
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Abstract—In this paper, we consider the effect of the initial
sample size on the performance of a sequential approach that used
in selecting a good enough simulated system, when the number
of alternatives is very large. We implement a sequential approach
on M/M/1 queuing system under some parameter settings, with a
different choice of the initial sample sizes to explore the impacts on
the performance of this approach. The results show that the choice
of the initial sample size does affect the performance of our selection
approach.
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I. INTRODUCTION

WE consider optimizing the expected performance of a
complex stochastic system that cannot be evaluated

exactly, but has to be estimated using simulation. Our goal
is to solve the following optimization problem

min
θ∈Θ

J(θ) (1)

where the feasible solution set Θ is a finite, huge and has no
structure. Meanwhile, J is the expected performance measure,
L is a deterministic function depends on θ and ξ, and we can
write J(θ) = E[L(θ, ξ)], θ is a vector that representing the
system design parameters, and ξ represents all the random
effect of the system. If we simulate the system to get estimate
of E[L(θ, ξ)], then the confidence interval of this estimate
cannot be improved faster than 1/

√
k where k is the number

of samples used to get estimates of J(θ). This rate maybe
good for some problems with a small number of alternatives
but it is not good enough for the class of complex simulation
which we consider in this paper. Thus, one could compromise
the objective to get a good enough solution rather than doing
extensive simulation.

Ranking and Selection (R&S) procedures, are used to select
the best system or a subset that contain the best systems
when the number of alternatives is small, see Kim and Nelson
[1]. The problem arise for a large scale problems since it
needs a huge computational time. In this situation, we would
compromise our objective to finding good systems rather than
estimating accurately the performance value for these systems.
The idea lies in Ordinal Optimization (OO) procedure, that
proposed by Ho et al. [2].

In many selection procedures, sample size in the first
stage t0 play an important role to the performance of these
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procedures. In fact, the initial sample size t0 cannot be too
small since we might get a poor estimates for the sample
mean and variances. On the other hand, t0 cannot be too large,
because in the first stage there exist many noncritical system
and by giving a large number of sample will result in losing a
large number of samples and also wasting computation time.
However, Chen et al. [3] and Chen et al. [4] suggested that
a t0 should be between 10 and 20 as a good choice for the
initial sample size. Unfortunately, there is no clear formula
to calculate an appropriate value of the initial sample size t0
for the selection procedures, when the number of alternative
is large.

In this paper, we study the effects of the initial sample size
t0 on the performance of one of the selection procedures;
a sequential approach Almomani and Abdul Rahman [5].
We also consider a heuristic approach to selecting a good
simulated system with high probability when the number of
alternative system is huge. This approach consists of four
stages; in the first stage we use the OO procedure to select
randomly a subset that overlaps with the set of the actual
best m% systems with high probability from the feasible
solution set Θ. In the second stage, we use Optimal Computing
Budget Allocation (OCBA) technique to allocate the available
computing budget in a way that maximizes the probability
of correct selection. This will follow by a Subset Selection
(SS) procedure to get a smaller subset that contains the best
system from the subset that is selected before. In the final
stage, we use the Indifference-Zone (IZ) procedure to select
the best system among the survivors in the previous stage.
This approach are applied to M/M/1 queuing system with a
different choice of the initial sample size t0 to know the effect
of the t0 on the selection approach performance.

This paper is organized as follows; In the next section
we give a background about OO, OCBA, SS, and IZ
procedures. In Section 3, we present our sequential approach.
Section 4, includes the M/M/1 queuing system example.
Finally, in Section 5, we give some concluding remarks.

II. BACKGROUND

A. Ordinal Optimization (OO)
The OO procedure has emerged as an efficient technique

for simulation and optimization. The aim of this procedure is
to find good systems, rather than estimating the performance
value of these systems accurately. The OO procedure has been
proposed by Ho et al. [2].

Suppose that the Correct Selection (CS) is to select a
subset G of g systems from the feasible solution set Θ that
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contains at least one of the top m% best systems. Since we
assume that Θ is very huge then the probability of CS is
given by P (CS) ≈ (1 − (1 − m

100 )g). Now, suppose that
the CS is to select a subset G of g systems that contains
at least r of the best s systems. Let S be the subset that
contains the actual best s systems, then here the probability
of CS can be obtained using the hypergeometric distribution

as, P (CS) = P (|G ∩ S| ≥ r) =
∑g

i=r
(s

i)(n−s
g−i)

(n
g)

. However,
since we assumed that the number of alternatives is very large
then the P (CS) can be approximated by the binomial random
variable. Therefore, P (CS) ≈ ∑g

i=r

(
g
i

)
( m
100 )i(1 − m

100 )g−i,
where we assume that s/n×100% = m%. It is clear that this
P (CS) will increase when the sample size g increases.

B. Optimal Computing Budget Allocation (OCBA)

The OCBA was proposed to improve the performance
of OO by determining the optimal numbers of simulation
samples for each system, instead of equally simulating all
systems. The goal of this procedure is to allocate the total
simulation samples from all systems in a way that maximizes
the probability of selecting the best system within a given
computing budget. For more details of OCBA see Chen et
al. [3], Chen et al. [4], and Chen [6].

Let B be the total sample that available for solving the
optimization problem given in (1). Our goal is to allocate these
computing simulated samples to maximize the P (CS). The
mathematical notation is written as

max
T1,...,Tn

P (CS)

s.t.

n∑

i=1

Ti = B

Ti ∈ N i = 1, 2, . . . , n

where N is the set of non-negative integers, Ti is the number
of samples allocated to system i and

∑n
i=1 Ti denotes the

total computational samples and assumes that the simulation
times for different systems are roughly the same. To solve this
problem Chen et al. [3] proposed the following theorem.

Theorem 1: Given a total number of simulated samples
B to be allocated to n competing systems whose per-
formance is depicted by random variables with means
J(θ1), J(θ2), . . . , J(θn), and finite variances σ2

1 , σ2
2 , . . . , σ2

n

respectively, as B −→∞, the approximate probability of CS
can be asymptotically maximized when

1) Ti

Tj
=

(
σi/δb,i

σj/δb,j

)2

; where i, j ∈ {1, 2, . . . , n} and i 6=
j 6= b.

2) Tb = σb

√∑n
i=1,i6=b

T 2
i

σ2
i

where δb,i the estimated difference between the performance
of the two systems (δb,i = Jb − Ji), and Jb ≤ mini Ji for all
i. Here Ji = 1

Ti

∑Ti

j=1 ξij , where ξij is a sample from ξi for
j = 1, . . . , Ti.

C. Subset Selection (SS)

SS procedure screens out the search space to eliminate non-
competitive systems and construct a subset that contains the
best system with high probability. This procedure is suitable
when the number of alternatives is relatively large, and is used
to select a random subset size that contains the actual best
system. It is required that P (CS) ≥ P ∗, where the Correct
Selection (CS) is selecting a subset that contains the actual
best system, and P ∗ is a predetermined probability.

The SS procedure dating back to Gupta [7], who presented
a single stage procedure for producing a subset containing
the best system with a specified probability. Extensions of
this work which is relevant to the simulation setting include
Sullivan and Wilson [8] who derived a two stage SS procedure
that determines a subset of maximum size m that, with a
specified probability will contain systems that are all within a
pre-specified amount of the optimum.

D. Indifference-Zone (IZ)

The goal of IZ procedure is selecting the best system
among n systems when the number of alternatives less than
or equal 20. Suppose we have n alternative systems that
are normally distributed with unknown means µ1, µ2, . . . , µn,
and suppose that these means are ordered as µ[1] ≤ µ[2] ≤
. . . ≤ µ[n]. We want to select the system that has the best
minimum mean µ[1]. The IZ is defined to be the interval
[µ[1], µ[1] + δ], where δ is a predetermined small positive
real number. We are interested in selecting an alternative i∗

such that µi∗ ∈ [µ[1], µ[1] + δ]. Let CS here is selecting an
alternative whose mean belongs to the indifference zone. We
would like the CS to take place with high probability, say
with a probability not smaller than P ∗ where 1/n ≤ P ∗ ≤ 1.

The IZ procedure consists of two stages. In the first stage,
all systems are sampled using t0 simulation runs to get an
initial estimate of expected performance measure and their
variances. Next, depending on the information obtained in
the first stage, we compute how many more samples are
needed in the second stage for each system to guarantee
that P (CS) ≥ P ∗. Rinott [9] has presented a procedure
that is applicable when the data are normally distributed and
all systems are simulated independently of each others. This
procedure consists of two stages for the case when variances
are completely unknown. On the other hand, Tamhance [10]
has presented a simple procedure that is valid when variances
may not be equal.

To achieve the CS with high probability, R&S procedures
needs a huge computational time, so it is not practical when
n is large. Therefore the combined approaches are proposed
to reduce the competent system. Nelson et al. [11] proposed
a two-stage subset selection procedure. The first stage is to
reduce the number of competitive systems. These systems are
carried out to the second stage in which involved with the
IZ procedure using the information gathered from the first
stage. Alrefaei and Almomani [12] proposed two sequential
algorithms for selecting a subset of k systems that is contained
in the set of the top s systems. Another comprehensive review
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of R&S procedures can be found in Bechhofer et al. [13],
Goldsman and Nelson [14], and Kim and Nelson [15].

III. THE SEQUENTIAL APPROACH

Our sequential approach consists four procedures, OO,
OCBA, SS, and IZ. Initially, using OO procedure, a subset
G is randomly selected from a feasible solution set that
overlaps with the set that contains the actual best m% systems
with probability (1− α1). Then OCBA procedure is used to
allocate the available computing budget. This is follows with
SS procedure to get a smaller subset I with a probability equal
to (1−α2), that contains the best system among the previous
selected subset. Finally, IZ procedure is applied to select the
best system from that set I with probability equal to (1−α3).

Algorithm:-
Setup: Specify g where |G| = g, k where |G′ | = k, the

number of initial simulation samples t0 ≥ 2, the
indifference zone δ, and t = t

(1−α2/2)
1

g−1 ,t0−1
from

the t-distribution. Let T l
1 = T l

2 = . . . = T l
g = t0, and

determine the total computing budget B. Here, G is
the selected subset from Θ, that satisfies P (G con-
tains at least one of the best m% systems) ≥ 1−α1,
whereas G

′
is the selected subset from G, where

g ≥ k. The iteration number is represented by l.
Select a subset G of size g randomly from Θ.
Take a random samples of t0 observations yij (j =
1, . . . , t0) for each system i in G, where i = 1, . . . , g.

Initialization: Calculate the sample mean and variances

ȳi
(1) and s2

i , where ȳi
(1) =

∑T l
i

j=1
yij

T l
i

and s2
i =

∑T l
i

j=1
(yij−ȳi

(1))2

T l
i
−1

, for all i = 1, . . . , g.
Order the systems in G according to their sample
averages; ȳ

(1)
[1] ≤ ȳ

(1)
[2] ≤ . . . ≤ ȳ

(1)
[g] . Then select the

best k systems from the set G, and represent this
subset as G

′
.

Stopping Rule: If
∑g

i=1 T l
i ≥ B, then stop. Otherwise,

randomly select a subset G
′′

of the g−k alternatives
from Θ−G

′
, let (G = G

′ ⋃
G
′′
).

Simulation Budget Allocation: Increase the computing
budget by ∆ and compute the new budget allocation,
T l+1

1 , T l+1
2 , . . . , T l+1

g , by using Theorem 1.
Perform additional max{0, T l+1

i − T l
i } simulations

for each system i, i = 1, . . . , g, let l ←− l + 1. Go
to Initialization.

Screening: Set I = {i : 1 ≤ i ≤ k and ȳ
(1)
i ≥ ȳ

(1)
j −

[Wij − δ]−,∀i 6= j}, where Wij = t
(

s2
i

Ti
+ s2

j

Tj

)1/2

for all i 6= j, and [x]− = x if x < 0 and [x]− = 0
otherwise.
If I contains a single index, then this system is the
best system. Otherwise, for all i ∈ I, compute the
second sample size Ni = max{Ti, d(hsi

δ )2e}, where
h = h(1 − α3/2, t0, |I|) be the Rinott [9] constant
and can be obtained from tables of Wilcox [16].
Take additional Ni − Ti random samples of yij for
each system i ∈ I , and compute the overall sample

means for i ∈ I as ȳ
(2)
i =

∑Ni

j=1
yij

Ni

Select system i ∈ I with the smallest ȳ
(2)
i as the

best.
Remarks:-
• The initial sample size t0 is the number of observations

that are taken in the first stage (OO procedure) in order
to get an initial estimate of mean and variance for each
system. Note that, if t0 is too small, we might get a poor
estimate of σ2

i (s2
i ). In particular, it could be that s2

i is
much greater than σ2

i , leading to an unnecessarily large
value of Ni.

• The Rinott constant h = h(1−α3/2, t0, |I|) is determined
by the desired confidence level (1 − α3/2), the initial
sample size t0, and the number of systems in the set
I (|I|). From tables of Wilcox [16] we note that, the
constant h increases in |I|, and decreases in α3 and t0.
The experiment design factor that is under control is t0.

• Nelson et al. [11] have shown that with probability at least
1 − (α2 + α3) our sequential approach selects the best
system in the subset G. Therefore, if G contains at least
one of the top m% systems, then our approach selects a
good system with probability 1−(α2 +α3). On the other
hand, from the OO procedure we can show that the se-
lected set G, contains at least one of the best m% systems
with probability (1 − α1) = 1 − (

1− m
100

)g. Therefore,
P (the selected system in the sequential approach is in the
top m% systems ) ≥ (1− (

1− m
100

)g)(1− (α2 +α3)) ≥
1− ((

1− m
100

)g + α2 + α3)
)
.

IV. NUMERICAL EXAMPLE

In our example, we consider the M/M/1 queuing systems
where the inter arrival times and the service times are expo-
nentially distributed and the system has one server. Our goal
is selecting one of the best m% systems that has the minimum
average waiting time per customer from n M/M/1 queuing
systems.

Moreover, as a measure of selection quality, we use the
Probability of Correct Selection (P (CS)), and the Expected
Opportunity Cost (E(OC)) of a potentially incorrect selection,
where the Opportunity Cost (OC) is the difference between
unknown mean of the selected best system and the actual best
system. More details of E(OC) can be found in He et al.
[17], and Chick and Wu [18]. In our approach, we consider
the E(OC) as the absolute value of the difference of unknown
mean between the selected best system and the actual best
system.

We apply our sequential approach in this example under
some assumptions. We assume that the arrival rate λ is
constant and the service rate µ is belong to the interval [a, b]
and particularly, take λ = 1 and µ ∈ [4, 5]. Suppose that
we have 1000 of M/M/1 queuing systems, and we discretize
the problem by assuming that Θ = {4.001, 4.002, . . . 5.000}.
Therefore, the best queuing system would be the 1000th

queuing system with µ1000 = 5.0. Let n = 1000, g = 50,
α2 = α3 = 0.005, δ = 0.05, k = 10 and ∆ = 20 (these
settings are chosen arbitrarily). Suppose we want to select one
of the best (5%) systems, then our target is the systems from
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951 to 1000. Here the correct selection would be selecting the
system that belongs to {µ951, µ952, . . . , µ1000}, and the ana-
lytical Probability of the Correct Selection can be calculated
as P (CS) ≥ 1−

((
1− 5

100

)50 + 0.005 + 0.005)
)
≥ 0.91.

Meanwhile, to study the effect of the initial sample size t0
on our approach, we choose five different values for the t0
as 10, 20, 30, 50 and 100. In the first experiment, we consider
the total number of simulation samples; “Total Budget” B =
1300 for all values of t0. We find that our approach works
just fine when t0 = 10, 20 and it is fail to working when
t0 = 30, 50, 100. Following this in the next experiment, we
consider the minimum value of B for all cases of t0, to see
the effects of t0 on performance of our approach.

Table I contains the result of this experiment, over 100
replications for selecting one of the best (5%) systems. From
the table, “min B” is the minimum value of the total budget,∑g

i=1 Ti is the average number of the total sample size in
Stopping Rule in our algorithm, and

∑
i∈I Ni is the average

number of the total sample size in Screening step in our
algorithm, and E(OC) is the average number of Expected
Opportunity Cost.

From Table I, we note that, the first parameter that affected
by the initial sample size t0 is the total budget B. For at least
the minimum value of B for each t0 our algorithm work and
move from the first stage to the next stage. Moreover, we
note that

∑g
i=1 Ti are keep changing for different value of

t0 with increasing pattern likewise t0. This is expected since
Ti is related to B. Furthermore,

∑
i∈I Ni approximately the

same in all cases of t0 except when t0 = 10. This happened
because in this approach we calculate the values of Ni after
we increase the ∆ and compute the new budget allocation for
each system. Clearly,

∑
i∈I Ni is not related to B. Actually,

the effect of t0 on Ni is almost non exist when t0 relatively
large, but in the other hand for a small value of t0, it will end
up with larger value of Ni.

Besides that, from Table I we can see that the P (CS) for
our approach is closed to the analytical P (CS). It shows that
the high P (CS) occurs when t0 = 10 with the value as high
as 84% comparing with the other values of t0. However, the
important note here is that when t0 is 10 we get the lowest
value for the E(OC). Also that, for all values of t0 the E(OC)
between our approach and the analytical E(OC) are closed
together, except when t0 = 10. For this initial value (t0 = 10),
there is a huge difference in the value of E(OC) between our
approach and the analytical values. This happened because
when t0 is small, we tend to get a poor estimates for the first
mean and variance.

V. CONCLUSION

In this paper we discuss the effect of the initial sample
size t0 on the performance of a sequential approach that is
used to selecting a good simulated system, when the number
of alternatives is large. This approach consists four stage.
Initially, using OO procedure, a subset G is randomly selected
form a feasible solution set that overlap with the set that
contains the actual best m% systems with high probability.
Then OCBA procedure is used to allocate the available

computing budget. This is follows with SS procedure to
get a smaller subset I with high probability, that contains
the best system among the previous selected subset, where
|I| ≤ 20. Finally, IZ procedure is applied to select the best
system from that set I . We apply this approach in M/M/1
queuing system under some parameters setting, and we test
five different value for t0, to study the effect of t0 on our
approach. We note that our approach is affected by t0 in
different rooms. The main parameters affected by t0 are, the
total budget B, the total sample size in Stopping Rule Ti,
and the Expected Opportunity Cost (E(OC)) of a potentially
incorrect selection. From the numerical result we note that the
initial sample size t0 here affect on B, where we need the
minimum value of B to make the approach work. Also we
note that the value of Ti increases when t0 increase. Finally,
for the small value of t0 will end up with high value in
(E(OC)). Since the performance of our sequential approach
is sensitive to the initial sample size t0, in a future work a
“zeroth stage” of sampling should be added to the approach
in order to determine an adequate choice for the value of the
initial sample size t0 for each system.
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TABLE I
THE NUMERICAL ILLUSTRATION FOR

n = 1000, g = 50, m% = 5%, k = 10, ∆ = 20

P (CS) E(OC)

t0 min B
∑g

i=1
Ti

∑
i∈I

Ni Suggested approach Analytical Suggested approach Analytical
10 500 1880 3920 84% 91% 0.012408734 0.004870680
20 1000 2805 2767 78% 91% 0.008835964 0.008004247
30 1500 3765 2680 78% 91% 0.009004282 0.008618002
50 2500 5600 2553 76% 91% 0.006561811 0.009390408
100 5000 10282 2750 75% 91% 0.005444701 0.008958827


