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Abstract—X-ray mammography is the most effective method for 

the early detection of breast diseases. However, the typical diagnostic 
signs such as microcalcifications and masses are difficult to detect 
because mammograms are of low-contrast and noisy. In this paper, a 
new algorithm for image denoising and enhancement in Orthogonal 
Polynomials Transformation (OPT) is proposed for radiologists to 
screen mammograms. In this method, a set of OPT edge coefficients 
are scaled to a new set by a scale factor called OPT scale factor. The 
new set of coefficients is then inverse transformed resulting in 
contrast improved image. Applications of the proposed method to 
mammograms with subtle lesions are shown. To validate the 
effectiveness of the proposed method, we compare the results to 
those obtained by the Histogram Equalization (HE) and the Unsharp 
Masking (UM) methods. Our preliminary results strongly suggest 
that the proposed method offers considerably improved enhancement 
capability over the HE and UM methods. 

 
Keywords—mammograms, image enhancement, orthogonal 

polynomials, contrast improvement 

I. INTRODUCTION 
REAST cancer is one of the leading causes of women 
mortality in the world. The primary goal of 

mammography screening is to detect small, non-palpable 
cancers in its early stage. [1] But mammograms are difficult to 
interpret as the pathological changes of the breast are subtle 
and their visibility is poor in low contrast and noisy 
mammograms. In order to increase the visibility of features 
several algorithms for image enhancement are proposed in the 
literature.  Image enhancement is an important step in 
Computer-Aided Detection (CADe) systems for automated 
analysis of mammograms. CADe systems have been 
developed to aid radiologists in detecting mammographic 
lesions that may indicate the presence of breast cancer. These 
systems act only as a second reader and the final decision is 
made by the radiologist. Some studies have shown that CADe 
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systems, when used as an aid, have improved radiologists’ 
accuracy for detecting breast cancer. Contrast enhancement is 
an essential technical aid in applications where human visual 
perception remains the primary approach to extract relevant 
information from images. A good number of studies have 
been carried out towards contrast improvement. R. M. 
Rangayyan et. al. [2] proposed an Adaptive Neighbourhood 
Contrast Enhancement (ANCE) technique for digitized 
mammograms in which objects are identified by a region-
growing technique and selectively enhancing the visual 
contrast. The ANCE-processed mammograms increased the 
detectability of malignant signs at earlier stages as compared 
with the original and unprocessed digitized mammograms.    

Enhancement in spatial domain results in enhancement of 
signal as well as noise. In order to overcome this limitation 
transformations to frequency domain were exploited by some 
research groups. The signal compression property of the 
transform allows separating signal from noise since signal 
energy is concentrated on a few large coefficients while noise 
energy is uniformly distributed among transform coefficients. 
This enables suppression of noisy coefficients (denoising) 
before contrast enhancement by thresholding the transform 
coefficients. P. Sakellaropulos et. al. [3] proposed a method 
for minimizing image noise while optimizing contrast of 
image features. This method is based on local modification of 
multi-scale gradient magnitude values provided by the 
redundant dyadic wavelet transform.  A. Mencattini et. al. [4] 
proposed an algorithm for image denoising and enhancement 
based on dyadic wavelet processing. The denoising phase is 
based on local iterative noise variance estimation. Moreover, 
in the case of MCs, they proposed an adaptive tuning of 
enhancement degree at different wavelet scales, whereas in the 
case of mass detection, they developed a segmentation method 
combining dyadic wavelet information with mathematical 
morphology. The approach consists of using the same 
algorithmic core for processing images to detect both MCs 
and masses.  
     Frequently enhancement in digital radiography is 
interpreted as edge magnification for contrast enhancement. 
Several methods have been proposed by research groups for 
edge enhancement and method proposed by S. Dippel et. al. 
[5] amplifies the edges after removing low frequency contents 
of an image and retaining or amplifying high frequency 
components. The method utilizes Discrete Wavelet Transform 
for contrast enhancement of edge coefficients.  J. Scharcanski 
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et. al. [6] proposed another method for image denoising and 
edge enhancement using shift invariant redundant wavelet 
transform. The distribution of horizontal and vertical detail 
coefficients of wavelet transform is modeled by a composition 
of Gaussian and Laplacian probability density functions at 
each scale. Then the shrinkage functions are combined in 
consecutive levels to retain the edges and remove the residual 
noise. The denoised wavelet coefficients are adaptively 
enhanced to produce the edge enhanced image. M. Malfait et. 
al. [7] proposed a filter using Markov Random Field model 
involving Bayesian probabilistic framework for image 
denoising. 

MC detection using fuzzy logic was proposed by H.D. 
Cheng et. al. [8] where the gray levels of an image were 
transformed to an interval [0, 1] using a function to locate the 
intensities of MCs. They employed fuzzy logic for 
transforming gray level contrast and local gray level variations 
into the fuzzy domain by creating a fuzzy image using low-
pass filtering. In the fuzzy domain, the fuzziness of a content 
of interest is represented, and contrast enhancement and 
sharpening of details are performed in the fuzzy domain. The 
effect of an image enhancement processing stage and the 
parameter tuning of a CAD system for the detection of MCs in 
mammograms was assessed by A. Papadopoulos et. al. [9]   
Five image enhancement algorithms were tested introducing 
the contrast-limited adaptive histogram equalization 
(CLAHE), the local range modification (LRM), redundant 
discrete wavelet (RDW), linear stretching and shrinkage 
algorithms.  P. Heinlein et. al. [10] proposed an algorithm for 
feature enhancement in mammograms using discrete wavelet 
decompositions, to enhance MCs.   M. G. Linguraru et. al. 
[11] presented an algorithm for detecting MCs based on a 
biologically inspired contrast detection algorithm in 
combination with preprocessing steps which involved shot 
noise, Curved Linear Structure removal, image enhancement 
and image normalization. H. Li et. al. [12] proposed a fractal 
modeling scheme for the enhancement of MCs. The breast 
parenchymal structures result in high local self-similarity 
which is decreased by the presence of MCs. This property 
enables the MCs to be enhanced based on the difference 
between the original and the fractal modeled image.  M. P. 
Sampat et. al. [13] proposed an approach for enhancement of 
spicules of spiculated masses using discrete radon 
transformation. The performance analysis of their method was 
carried out subjectively. The region of interest containing the 
spiculated mass was cropped and used for further analysis. 
Another method was proposed by A. R. Dominguez et. al. 
[14] for enhancement of masses that improves the image 
contrast based on statistical measures. The method was tested 
on 57 mammographic images containing masses.  J. Tang et. 
al. [15] proposed an image enhancement algorithm for low 
vision patients by enhancing the images in the discrete cosine 
transform domain by weighting the quantization table in the 
decoder.  

The medical images vary widely in terms of acquisition, 
noise characteristics and quality. Hence it necessitates to 

process on image by image basis. This motivates the design 
and construction of versatile denoising and enhancement 
method that is applicable to various circumstances. This paper 
presents an Orthogonal Polynomials based enhancement 
technique which enhances the subtle density differences of X - 
ray mammograms. The resulting output improves visual 
analysis and serves as a basis for the automatic quantification 
of the breast image analysis.  In this work, we propose a new 
adaptive method for image denoising and enhancement, which 
combines detection, enhancement of edges that are hidden 
behind the dense textural region and shrinkage of textural 
noise. The detection of significant edges is carried out using 
statistical testing based on Bartlett’s criteria with the OPT 
coefficients.  The OPT is a widely used unitary transformation 
for image analysis and compression with software 
implementations [16, 17]. Although the utility of each OPT 
coefficient in pattern recognition has never been outlined in 
medical images, these coefficients are useful for image 
processing and signal enhancement. Indeed, OPT coefficients 
have potential to perform both basic and complex image 
processing operations. One such signal enhancement 
technique is investigated for X-ray mammograms. 

The proposed approach is flexible enough to allow the user 
to select the desired image enhancement. Also, it does not 
require the user to alter any parameters for image denoising. 
This paper is organized as follows. In Sections II and III the 
proposed orthogonal polynomials transformation is presented. 
In Section IV, the proposed contrast enhancement technique 
using OPT scale factor upon edges and suppression of noise is 
described. The performance analysis used to evaluate the 
proposed technique is described in Section V. Finally, the 
experiments and results are discussed in Section VI. 

II.  ORTHOGONAL POLYNOMIALS TRANSFORMATION 
A linear 2-D image formation system is usually considered 

around a Cartesian coordinate separable, blurring, point 
spread operator in which the image I results in the 
superposition of the point source of impulse weighted by the 
value of the object function f. Expressing the object function  f  
in terms of derivatives of the image function I relative to its 
Cartesian coordinates is very useful for analyzing the image. 
The point spread function M(x, y) can be considered to be real 
valued function defined for (x, y) ∈ X  x Y, where X and Y are 
ordered subsets of real values. In case of gray-level image of 
size (n x n) where X (rows) consists of a finite set, which for 
convenience can be labeled as {0, 1, …, n-1}, the function 
M(x, y) reduces to a sequence of functions. 

    ( ) ( ) 1 ,...,1 ,0, ,, −== ntitutiM i                         (1) 
The linear two dimensional transformation can be defined by 
the point spread operator ( ) ( ) ( )( )tutiMyxM i=,,  as 
shown in equation (2). 

         ( ) ( ) ( ) ( )∫ ∫∈ ∈
=

Xx Yy
dxdyyxIyMxM ,,,,' ηζηζβ         (2) 

where ζ, η are coordinates in the 2-D transformed space and 
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( )yxI ,  is a mammogram image region wherein x and y are 
two spatial coordinates. Considering both X and Y to be a 
finite set of values {0, 1, 2 … n –1}, equation (2) can be 
written in matrix notation as follows 

                ( ) IMM t
ij ⊗='β                               (3) 

where ⊗  is the outer product, |β′ij| and |I| are n2 matrices 
arranged in the dictionary sequence, |I| is the image , |β′ij| are 
the coefficients of transformation and  the point spread 
operator |M| is  
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We consider a set of orthogonal polynomials u0(t), u1(t), …, 
un-1(t) of degrees 0, 1, 2, …, n-1 respectively to construct the 
polynomial operators of different sizes from equation (4) for n 
≥ 2 and ti = i. The generating formula for the polynomials is as 
follows. 

( ) ( ) ( ) ( ) ( )
( ) ( ) 1  and    
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We can construct point-spread operators |M| of different size 
from equation (4) using the above orthogonal polynomials for 
n ≥ 2 and ti =  i. For the convenience of point-spread 
operations, the elements of |M| are scaled to make them 
integers. 

III. THE ORTHOGONAL POLYNOMIAL BASIS 
For the sake of computational simplicity, the finite 

Cartesian coordinate set X, Y is labeled as {1, 2, 3}. The point 
spread operator in equation (3) that defines the linear 
orthogonal transformation for image can be obtained as 
|M| ⊗ |M|, where |M| can be computed and scaled from 
equation (4) as follows.      

      ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )222120

121110

020100

xuxuxu
xuxuxu
xuxuxu

M =
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−        (6) 

The set of polynomial basis operators Oij
n  (0 ≤  i, j  ≤ n-1) can 

be computed as  
             Oij

n = ûi ⊗ ûj
t 

where ûi is the (i + 1) st 
  column vector of  |M|. The complete 

set of basis operators of sizes (2 X 2) is given below. 
Polynomial basis operators of size (2 * 2) are 
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Since the operator M, defined in equation (6) is orthogonal 
and complete, it is evident that the transformation (equation 
(3)) is complete and the reconstruction can be expressed as    

                [ ] [ ]∑∑
= =

=
2

0

2

0

3
,

3
,

i j
jiijji OI β                          (7) 

where ( ) ( ) 1'1 −−
= MMMM tt ββ , [ ]3

, jiI is the (3 X 3) 

gray level image matrix, [ ]3
, jiO  accounts for the spatial, 

model variation and |βi,j| is the (i, j)th  coefficient of variation. 
Having discussed the orthogonal polynomials model for the 
forward and inverse transformations, the proposed image 
enhancement technique is presented in the following section. 

IV. PROPOSED IMAGE ENHANCEMENT IN THE OPT DOMAIN 
A small mammographic image region which is a function of 

two spatial co-ordinates is represented by a set of orthogonal 
polynomials. In this representation, the image region is 
considered to be a linear combination of uncorrelated 
(orthogonal) effects due to spatial variations. The uncorrelated 
effects due to the presence of edge have been separated 
successfully from those due to the presence of textures. The 
presence of edge and texture in the image region under 
analysis is detected on the basis of the strength of the 
appropriate orthogonal effects. Consider a gray level image 
I(x, y) of size (R X C), where x, y are the two spatial 
coordinates. The function I(x, y) which represents the gray 
level of the pixel is considered as a random variable. Thus, 
I(x, y) can be expressed as                    

              ),(),(),( yxyxgyxI η+=                           (8)   
 where g(x, y) accounts for the spatial variation owing to edge 
in I(x, y) and ŋ(x, y) is the spatial variation owing to texture. 
In order to measure the spatial variations owing to edge and 
texture separately, we represent  I(x, y) as shown in 
equation(7).  In general, equation (7) can be represented as   

                 [ ] [ ]∑∑
−

=

−
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=
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0
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n

i

n

j

n
jiij

n
ji OI β                               (9)    

where “n” stands for block size. It has been observed 
experimentally that the spatial variation that causes the 
interaction effects are owing to micro texture present in the 

mammogram image region [ ]n
jiI , . The spatial variations g(x, 

y) and    ŋ(x, y) can be approximated by an appropriate set of 
orthogonal functions. In this regard, a set of orthogonal 
polynomials have been discussed and the discrete formulation 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:4, No:1, 2010

30

 

 

has been used to determine a set of orthogonal effects, '
ijβ  

due to the micro edge and micro texture. These effects are 
obtained from equation (3) and transformed matrix of block 
size (4 X 4) is represented as follows as this block size is used 
in our experiments: 
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where  s at i = 0, 0 < j ≤ 3 and j = 0, 0 < i ≤ 3 are considered 
as responses towards edges and the remaining responses are 
assumed to be the responses towards textures as per grouping 
criteria proposed in [16]. Various micro textured regions can 
be characterized by estimating the orthogonal effects and their 
mean square variances. The mean square variances 2

ijS s 

corresponding to the orthogonal effects  ijβ s are computed as 

follows. 
             

[ ] [ ] [ ] [ ] [ ][ ] [ ] [ ] )))( ()( 11 −−= MMMIMMM ttt
ijβ      (11) 

                                         

[ ] [ ] [ ] [ ] [ ][ ] [ ] [ ] ))() ()( 1212 −−= MMMIMMMS ttt
ij   (12) 

A. Statistical Testing for Selective Signals 
     The mean square variances are grouped in to two sets 

such that set eψ  = { 2
ijS  }, where i = 0, 0 < j ≤ 3 and  j = 0, 0 

< i ≤ 3, are the set of variances due to the main effects and set  

tψ = { 2
ijS  }, where 0< i ≤ 3, 0 < j ≤ 3, are the set of variances 

due to the interaction effects. In order to test whether a given 
region belongs to a textured region, statistical testing based on 
Bartlett’s [18] criteria for testing the homogeneity among the 
variances is carried out.  

 After deciding whether the block requires enhancement 
depending on the presence of significant edges compared to 
the texture present based on statistical testing, proposed 
contrast enhancement is carried out. The proposed contrast 
enhancement technique is discussed below. 

B. Contrast Enhancement and Adaptive Denoising 
     Any real signal is corrupted by some noise. Any image 

contains a true signal and additional signals of no interest 
which can be termed as noises. Especially, in medical image, 
suppression of noise is a difficult task. In image denoising, 
one often faces uncertainty about the presence of a given 
“feature of interest” (e.g., an image edge) in the presence of 
noise. The enhancement operation should highlight the 
diagnostically relevant image features like edges in addition to 
denoising. In the proposed method, denoising refers to the 
suppression of textural features. Since, the presence of edge 

features are hidden by dense parenchymal patterns of 
mammograms, it is first necessary to denoise the data through 
the frequency components in the proposed OPT domain. 
However, conventional filtering techniques cannot be applied 
in the context of medical imaging because they produce edge 
blurring and loss of details. To achieve edge enhancement, we 
apply the novel OPT scale factor on the transformed 
coefficients of   given in equation (11).Thus we have    

               ij
ji

ij k ββ +∗ =                                   (13) 

where i = 0, 0 < j ≤ 3 and j = 0, 0 < i ≤ 3 for coefficients that 
correspond to responses towards edges. ∗

ijβ   is the scaled 

coefficient and k is OPT  scale factor. In case of image block 
which is considered for enhancement as a result of statistical 
testing, the texture coefficients are assumed to be noises and 
they have to be suppressed. So, the corresponding texture 
coefficients are multiplied with OPT scale factor given in 
equation (14) as follows:  

                                   0=+ jik                                 (14) 
where 0< i ≤ 3, 0 < j ≤ 3 for coefficients that correspond to 
responses towards texture. Thus, the proposed scheme 
involves zeroing the coefficients corresponding to texture 
resulting in noise suppression and scaling of coefficients 
corresponding to edges by OPT scale factor.   
    
 
                                                        
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1 Flowchart of proposed image enhancement in OPT domain 
 
The signal compression property of the transform allows 
separating the signal from noise as the signal is concentrated 
on few transformed coefficients and this property of the 
transform is established in [17]. Then the modified OPT 
coefficients are inverse transformed. The inverse 
transformation is carried out using the orthogonal polynomial 
basis functions as given in section III. This inverse operation 
results in the enhancement of image edges depending on the 
selection of OPT scale factor.  Fig. 1 shows the flow chart of 
the proposed image enhancement using the orthogonal 

Original Image 

Forward OPT 

Edge coefficients are increased 
by a scale factor & noise 
coefficients are equalized to 
zero based on statistical testing 

Enhanced Image 

Inverse OPT 
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polynomials framework.   

V.  PERFORMANCE MEASURE 

A. Quantitative analysis 
In order to measure the performance of the proposed 

contrast enhancement method, the Mammographic Image 
Analysis Society (MIAS) database of University of Essex, 
England consisting of digitized mammograms [19] is utilized. 

The dataset consisted of 322 medio-lateral oblique (MLO) 
mammograms and correspond to all density categories. The 
proposed OPT framework is applied on all 322 images of 
MIAS database.  

In order to evaluate the quality of enhanced images 
quantitatively, contrast, calculated from the co-occurrence 
matrices of original and enhanced images is used as the metric 
for image enhancement. The co-occurrence method [20] is 
based on the repeated occurrence of some gray level 
configuration. In co-occurrence matrix, an occurrence of some 
gray level configuration was described by a matrix of relative 
frequencies (i, j), describing how frequently two pixels with 
gray levels i, j appear in the image separated by a distance d = 
(dx, dy), where dx and dy represent the displacement in the x 
and y direction, respectively. In our implementation, the co-
occurrence matrix C(i, j) is derived with distance d = (1, 1), 
i.e., one pixel below and one pixel right and contrast is 
calculated from the co-occurrence matrix using  (15). 

∑
−

=

−=
1

0,

2 ),()(
n

ji
jiCjiContrast                            (15) 

where C(i, j) is the Grey Level Co-occurrence Matrix 
(GLCM). 

B. Qualitative analysis 
Three experienced radiologists ranked the performance of 

each original and the corresponding processed images of the 
sample (from 1 = best to 4 = worst) with respect to contrast 
and morphological (MC cluster characteristics such as 
number, shape, size, density; Mass characteristics such as 
center, contour, shape, size) characteristics of lesion. The 
sample is limited to fifty mammograms from MIAS database 
that includes all BIRADS (1 – 4) density categories with 
twenty five cases containing masses and twenty five cases 
containing MCs.  

VI. EXPERIMENTS AND RESULTS 
The proposed denoising and image enhancement in OPT 

domain has been experimented with all 322 X-ray 
mammograms available from MIAS database. The X-ray 
mammograms are characterized with inherent noise. One such 
mammogram containing MC cluster is shown in fig. 2(a). The 
image is partitioned into overlapping (4 X 4) regions in a 
sliding window technique and are applied with OPT in each 
sub-image regions, as described in section II. The coefficients 
corresponding to edges and textures are grouped from the 
resulting transformation coefficients, according to statistical 

testing  based on Bartlett’s criteria, as described in section IV 
A. Then, the coefficients corresponding to edge features are 
adaptively enhanced by multiplying with OPT scale factor and 
the texture coefficients are suppressed as described in section 
IV B.  Upon carrying out the bidirectional edge enhancement, 
the scaled coefficients are inverse transformed as explained in 
section III, resulting in edge enhanced and contrast improved 
mammogram image. The resulting output of the proposed 
image enhancement in OPT domain with scale factor k = 2 is 
shown in fig 2(b). The experiment is repeated for OPT scale 
factors  3, 4, 5 and 6 and the resulting outputs are shown in 
fig. 2(c), 2(d), 2(e) and 2(f) respectively. The corresponding 
GLCM contrast measures as calculated from equation (16) are 
63.93, 75.05, 84.99, 96.36 and 109.24 compared to 31.46, 
which is obtained for original image 2(a).   

To evaluate image enhancement quality we have used 
GLCM contrast measure as a means of quantitative 
assessment of the different contrast enhancement methods 
presented in this paper. In order to evaluate the effectiveness 
of the proposed enhancement technique against other 
commonly used contrast enhancement methods, twelve 
randomly selected mammograms from MIAS database are 
considered. The GLCM contrast measure values obtained for 
OPT scale factor 1, 2, 3, 4, 5 and 6 for 12 mammogram 
images are presented in Table I. The OPT scale factor equal to 
1 represents the original mammogram as there is no scaling of 
transformed coefficients.  As expected, increase of the OPT 
scale factor results in increase of contrast measure.  

The scale factor k can be adjusted by the user and the 
desired degree of enhancement can be selected. The 
adjustment is left to the medical expert who finally controls 
the image interpretation. Increasing the scale factor leads to an 
increased smoothing of weak image textures while enhancing 
the presence of the main image discontinuities, as shown in 
fig. 2(b) to 2(f). It can be seen from the images that scale 
factors ranging from 4 to 6 are adequate for which the 
presence of microcalcifications are distinctly visible. The 
results demonstrate that the increase of OPT scale factor leads 
to a stronger suppression of the background texture and to the 
enhancement of sharp intensity variations.  

Also, four  sample images viz. image containing  minute 
MC cluster, MC cluster, spiculated lesion and well 
circumscribed mass, with pixel values in the range 0 - 255 are 
shown in fig 3(a) , 4(a) , 5(a), 6(a), respectively. The resulting 
output of the proposed enhancement in OPT domain are 
shown in fig 3(b), 4(b), 5(b), 6(b), respectively. In each case, 
the OPT scale factor  used equals to five.  The enhanced 
images are analyzed quantitatively (contrast measure of the 
enhanced image) and qualitatively (visual estimates).  In this 
study, experimental results from proposed enhancement 
method are compared with two conventional methods of 
image enhancement such as histogram equalization and 
unsharp masking. The histogram equalization enhances each 
pixel based on the histogram equalization of pixels within a 
region (i.e., a moving window) surrounding the pixel. In this 
experiment, the size of the moving window is (64 X 64) 
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pixels. The unsharp masking adds the gradient value weighted 
by the contrast gain to the original image. A commonly used 
gradient function is the Laplacian operator. In this experiment, 
the contrast gain has a value of five. Eventhough different 
degrees of enhancement could be used, in order to compare 
the result constant gain factor is used. The GLCM Contrast 
values  CORIG for original mammogram,  CHE for enhancement 
by histogram equalization, CUM  for enhancement by unsharp 
masking, COPT  for enhancement by proposed method using  
OPT are calculated and given in Table II. It is evident from 
the Table II that the proposed method achieves higher contrast 
measure compared to histogram equalization and unsharp 
masking. 

According to radiologists qualitative analysis, the proposed 
method has shown promising results in enhancing visibility of 
lesions against dense parenchymal background. The proposed 
method demonstrates the highest performance in both lesion 
types. The histogram equalization method fails in visualizing 
both masses and MCs which is evident from the visual 
analysis of the images considered in fig. 3, Fig. 4. Fig. 5 and 
fig. 6.   

The average rank obtained from the three experienced 
radiologists, for original and the three image enhancement 
methods are obtained as described in section VB. The 
radiologists ratings with respect to contrast and morphology of 
lesions is presented in fig. 7 and fig. 8 respectively.  A low 
rank indicates a high preference. Reported results indicate that 
edge enhancement based on contrast improvement in OPT 
domain facilitates the interpretation of mammograms. In the 
enhanced mammogram image, both retro mammary fat plane 
and mammary gland are clearly visualized. The areola, skin, 
subcutaneous fat, surface veins and some of the peripheral 
cooper’s ligaments are better visualized than in the original 
mammographic image according to radiologist’s opinion. 

VII. CONCLUSION 
The presented results confirm the usefulness of OPT based 

processing methods for improving mass and MC detection and 
improved visualization of peripheral structures. This testifies 
the superiority of the enhanced mammograms over the 
original mammograms in several cases. The scale factor often 
enable better edge enhancement but in some cases result in 
over enhancement. We noticed exciting clear indications of 
mass and MC detection with undoubted interpretation. 
Nevertheless, image enhancement in OPT domain seems to be 
useful and more promising.  According to the opinion of 
radiologists who participated in the qualitative analysis, the 
proposed ‘enhanced view’ would be particularly useful when 
enhanced images are displayed together with original 
mammograms. Intensification of density distinctions due to 
significantly increased local contrast resolution should be 
interpreted and utilized as a supplement to conventional 
display. Contrast enhancement can assist radiogist’s 
interpretation of an image and in addition can facilitate the 
automated interpretation. Thus, the proposed technique is 

suitable for visually meaningful segmentation of masses and 
microcalcifications for automated analysis of mammograms. It 
is a transform domain technique and thus it can be easily 
integrated with the existing image coding standards such as 
JPEG, JPEG 2000. It is reported that the proposed technique 
is able to obtain more robust characteristics for noise 
suppression and detail preservation. The proposed method is 
of low complexity, as the transform involves integer values. 
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TABLE I   

CONTRAST MEASURE FOR DIFFERENT OPT SCALE FACTOR (k) 
 

Image no. k=1 k=2 k=3 k=4 k=5 k=6 

mdb015  31.39 51.05 59.16 70.57 85.08 102.55 

mdb025 27.90 30.58 39.39 59.47 80.56 96.48 

mdb028 28.01 34.01 36.62 42.32 50.23 60.84 

mdb198 50.39 66.09 81.58 107.37 125.79 143.02 

mdb199 35.74 62.09 69.44 79.77 92.50 107.80 

mdb209  35.42 56.98 83.27 113.52 138.86 164.70 

mdb211 33.22 56.78 63.17 72.44 83.85 97.59 

mdb222  27.40 34.88 45.74 64.39 86.12 106.04 

mdb223  22.29 46.84 58.47 70.65 83.88 98.57 

mdb245 31.45 63.92 75.07 84.98 96.35 109.23 

mdb271 25.85 30.63 42.25 65.28 90.55 110.60 

mdb290 30.53 31.71 33.64 41.05 53.34 70.91 

 
 
 

TABLE II 
CONTRAST VALUES  CORIG FOR ORIGINAL MAMMOGRAM,  CHE FOR 

ENHANCEMENT BY HISTOGRAM EQUALIZATION, CUM  FOR ENHANCEMENT BY 
UNSHARP MASKING, COPT  FOR ENHANCEMENT BY ADAPTIVE METHOD USING  

ORTHOGONAL POLYNOMIALS TRANSFORMATION 

Image  no. CORIG CHE CUM COPT

mdb015 31.39 48.78 71.48 102.55 
mdb025 27.90 52.03 46.64 96.48 
mdb028  28.01 51.73 58.44 60.84 
mdb198 50.39 59.83 84.50 143.02
mdb199  35.74 51.49 100.41 107.80 
mdb209  35.42 59.48 68.23 164.70 
mdb211 33.22 43.60 92.60 97.59 
mdb222 27.40 42.65 52.26 106.04 
mdb223 22.29 64.49 50.71 98.57 
mdb245 31.45 41.77 60.75 109.23 
mdb271 25.85 49.97 45.93 110.60 
mdb290 30.53 52.25 53.82 70.91 

 

 

 

 
 
 

Fig. 7 Average rank for original and the three image 
enhancement methods with respect to lesion contrast 

 
 

 
 
 

Fig. 8 Average rank for original and the three image enhancement 
methods with respect to lesion morphology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:4, No:1, 2010

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 (a) original mammogram (b) enhanced mammogram with OPT scale factor  k = 2 (c) enhanced mammogram with k = 3 
(d) enhanced mammogram with k = 4  (e) enhanced mammogram with k = 5 (f) enhanced mammogram with k = 6 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 3  (a) original mammogram containing MC cluster (b) image enhanced using proposed approach  
(c) Histogram Equalization of  original image (d) Unsharp Masking of the original image 
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Fig. 4 Comparative results for the MIAS database mammogram 209, containing a MC clusters which is not clearly visible in denser areas (a) 
original image; (b) image enhanced using proposed approach (c) Histogram Equalization of  original image (d) Unsharp Masking of original 

image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  (a) original mammogram containing spiculated mass (b) image enhanced by proposed approach  
(c) Histogram Equalization of  original image (d) Unsharp Masking of original image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  (a) original mammogram containing mass (b) image enhanced by  proposed approach 
(c) Histogram Equalization of  original image (d) Unsharp Masking of  original image 
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