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Abstract—In recent years, a new numerical method has been 
developed, the extended finite element method (X-FEM). The 
objective of this work is to exploit the (X-FEM) for the treatment of 
the fracture mechanics problems on 3D geometries, where we 
showed the ability of this method to simulate the fatigue crack 
growth into two cases: edge and central crack. In the results we 
compared the six first natural frequencies of mode shapes uncracking 
with the cracking initiation in the structure, and showed the stress 
intensity factor (SIF) evolution function as crack size propagation 
into structure, the analytical validation of (SIF) is presented. For to 
evidence the aspects of this method, all result is compared between 
FEA and X-FEM. 
 
Keywords—3D fatigue crack growth, FEA, natural frequencies, 

stress intensity factor (SIF), X-FEM.  

I. INTRODUCTION 

HE  accurate prediction of the fatigue crack growth  life of 
components is of great interest for fracture mechanic 

engineering. In this area, it is now increasingly necessary to 
accurately simulate three-dimensional growth of fatigue 
cracks in the complex structure. As a result, fracture 
mechanics calculation has been strongly developed in recent 
years. An important point is making itself when the slip must 
be explicitly described by numerical simulation. To mitigate 
these kind of problems, alternative methods have been 
proposed as the method of boundary elements condition, 
where only the surface of the crack must be mesh, mesh less 
methods where grid concept does not exist and that the crack 
is described by the functions ganglion weight values or 
methods based on the sharing of the unit (including 
generalized finite element method FEM and the extended 
finite element method X-FEM), which allow the use of 
meshes that do not comply with the crack from the 
discontinuity is taken into account by the functions of a 
special form. The finite element method is applicable digital 
specialist in the sector, in particular because of its availability 
in commercial codes. This is why it is the chosen method for 
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numerical study. Even if, it is underlined that the proposed 
approach could have been applied to either the extended, 
generalized or similar finite element methods. The level set 
method is the Basic concept of X-FEM and it’s device into 
two point: 
– Enriched with the Heaviside: it’s represent the cracked 

surface. 
– Crack tip enrichment: it’s represent the crack tip.  

II. ANALYTICAL MODELISATION OF SPECIMEN FRACTURE 

The fatigue mechanism in metallic materials should 
basically be associated with cyclic slip and the conversion into 
crack initiation and crack growth. The failure (fatigue life) 
comprises two periods, the crack initiation step and the crack 
growth step. The crack initiation step includes crack 
nucleation at the material surface and mico-crack growth 
structural. The crack propagation step usually is covered by 
Paris law [1]. In many cases the crack initiation step covers a 
relatively large percentage of the total fatigue life. The 
ultimate strength in fatigue failure is always precipitated by 
fatigue cracking at some level. This cracking, also known as 
fatigue crack growth (FCG), has become a foundational area 
of study as it pertains to damage design. Damage is a 
mechanistic philosophy and methodology whereby the 
remaining strength and/or life of a component are determined 
after measurable damage. According to this type of 
methodology, one deems a certain amount of damage to a 
component acceptable for use if it can be quantified at a non-
critical stage. More specifically in regards to fracture 
mechanics and fatigue design, a certain known crack size a, is 
acceptable up to a certain critical crack size ac [2]. The 
starting point of this study has its pedigree fracture mechanics 
and a review of the work done in this field along with fatigue 
crack propagation is very significant to this research. This part 
will survey Linear Elastic Fracture Mechanics LEFM, 95% of 
blade design in the turbine engine industry is accomplished via 
3D elastic anisotropic Finite Element Analysis, although 
crystal plasticity analysis is becoming a common tool for 
research applications, it is still not practical for blade design 
because of complex 3D geometry and loading involved [3], 
Nonlinear Fracture Mechanics EPFM, theoretical aspects only, 
and a part on how to model LEFM areas using FEA.  

A. Linear Elastic Fracture Mechanics  

Systematic analysis of the mechanical failure started in 15th 

century by Leonardo da Vinci. He has studied mechanical 

S. Lecheb, A. Nour, A. Chellil, A. Basta, D. Belmiloud, and H. Kebir 

An Adaptive Dynamic Fracture for 3D Fatigue 
Crack Growth Using X-FEM  

T



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:6, 2013

990

 

 

strength of metal wires. However only in 18th century 
invention of steam machine and following industrialization 
brought the extensive studies of the failure behavior of metals. 
Brittle fracture testing was first performed by Inglis in 1913 
and was finally quantified by Griffith [4] in 1920 using the 
First Law of thermodynamics and an energy release rate in 
looking at the stress analysis of an elliptical hole. Later, Irwin 
[5] and Orowan [6] introduced local domain of plasticity, 
there by representing the fatigue crack growth in metals more 
accurately. In 1958 Irwin proposed the stress-intensity factor 
K for Linear Elastic Fracture Mechanic analysis: 

 � � ��√��                                     (1) 
 
K is universal parameter. It depends on crack size, load 

stress and geometrical configuration parameter. In spite of the 
significance of plastic strain in the crack tip zone, the linear 
elastic fracture mechanics (LEFM) became a foundation to the 
study of fracture and fatigue tolerant manufacturing. 
Westergaard, Dugdale, and all followed as modifications to 
Linear Elastic Fracture Mechanic continued in loads to more 
rigorously account for the mechanics of cracked components. 
Stress intensity factor is a parameter which characterizes the 
severity of the situation obtained by applying a load or fields 
stress on a zone cracked. This factor is obtained by 
consecration of stresses and strains in the vicinity of the crack-
tip modes of cracking mode I, mode II, mode III. Factors KI, 
kII and KIII characterize both the geometry of the notch of the 
crack, and the nature of solicitation. They are unite in MPa 
m0.5 [7]. The stress intensity factors (SIF) correspond to 
specific kinematic motion of cracks growths. SIF characterize 
the strength singularity of the stress field at the crack tip.  

The finite element method (FEM) is now widely used in 
fracture mechanic engineering. Since its inception, it has been 
the subject of continuous development from the calculating 
community structures. Many works are dedicated to him [8], 
[9]. The extended finite element method proposes to enrich the 
approximation with discontinuous enrichment functions and 
singular the principle of partition of unity. Discontinuity is no 
longer necessarily carried by the mesh [10], [11]. The function 
of enrichment, as their name indicates, will be utilized to 
enrich the finite element model. They are given three main 
roles: 
1) Represented the discontinuity. 
2) Locate the crack-tip zone. 
3) Capture: the solution at the crack-tip. 

Meshing of three-dimensional solids is still one of the most 
burdensome tasks in finite element analysis. The difficulties of 
meshing became particularly serious with the advent of 
models. In treating such large-scale, unstructured finite 
element meshes, an inordinate amount of effort is devoted to: 
1) Generating the mesh. 
2) Coping with the unstructured character of the formulas 

during assembly and solution procedures. 
3) post-processing. 

Recently, it has become apparent that many of these 
difficulties can be circumvented by using structured meshes in 

conjunction with recently developed techniques for 
representing internal discontinuities [12], and internal details 
[13]. In fact, with these techniques, it becomes possible to 
model the detail associated with engineering situations with 
even greater fidelity than conventional finite element methods. 
For example, it is possible to model complex sliding or tearing 
surfaces within a body and to model cracks and small holes. 
One of the sources from which these capabilities have evolved 
is the seminal paper by Melenk and Babuska [14], in which 
the concept of partition of unity was first described. 
Belytschko and Black [15] employed the concept to model of 
cracks, in Moёs [16] and Dolbow [17] step functions were 
introduced through the partition of unity to model arbitrary 
discontinuities. They called the method the extended finite 
element method (X-FEM). Babuska [14] and Strouboulis [18] 
illustrated the potential of the partition of unity concept in 
modeling small holes in a mesh and introducing so-called 
handbook solutions, they called it the generalized finite 
element method. The method was expanded in Strouboulis 
[13], where the focus was towards the extension of the 
classical finite element method to meshes that do not conform 
to boundaries of the problem. In Moёs [16] and Belytschko 
[12] the quadrature issue was studied for meshes that do not 
conform to internal boundaries. Basic of XFEM Concepts is a:  
1) Numerical technique for describing a fatigue crack growth 

and tracking their motion.  
2) Couples naturally with XFEM and makes possible the 

modeling of 3D arbitrary crack propagation without 
remeshing level set method requires for  two functions: 

– The first describes the crack surface, Φ (phi).  
– The second, Ψ (psi), is constructed so that the 

intersection of two level sets gives the crack-tip. 
3) Uses signed distance functions to describe the crack 

growth geometry.  
No explicit representation of the crack is needed and the 

crack is entirely described by nodal data. Enriched with the 
Heaviside: it’s represent the cracked surface, crack-tip 
enrichment: 
 

          

          

          

          

          

          

          

          

 
Fig. 1 Enriched with the Heaviside (Φ)  

 
The level set method is the Basic concept of X-FEM and 

it’s device into two point: 
-The Heaviside function allows to model the discontinuity 

in displacement, and it’s represented by following formula: 

�	
� � �
1  �� � � 0�1  �� � � 0�                                (2) 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:6, 2013

991

 

 

-Series of four functions is used to describe the singularity 
at the crack tip, and it’s represented by following formula: 

 

��	
� � √�
��
�
�� ��� ! 2# $

��� ! 2# $��� !$
%&� ! 2# $

%&� ! 2# $��� !$
�                              (3) 

 
where (r, θ) are polar coordinates related to the crack tip.   

Modeling cracks using Level set method: Level set method 
offers an elegant way of modeling discontinuities. Level set 
method has been successfully applied for modeling cracks. In 
this section details regarding the crack modeling using level 
set functions and its coupling with XFEM will be discussed. 
Further, later in the part some of the key advantages of using 
level set functions in the framework of XFEM will be 
highlighted [19]. The extended finite element method allows 
one to shown cracks and weak (holes, material interfaces) 
discontinuities independent of the finite element mesh through 
the partition of unity. This allows one to avoid costly 
remeshing which occurs in the vicinity of the crack-tip in the 
traditional finite element framework when modeling crack 
growth. However, we have raised a point of discretization 
methods conventionally used in mechanics, focusing 
particularly on the basis of the X-FEM. The method level set 
and its coupling with X-FEM provides a satisfactory tool to 
solve free external problems and singular problem of example 
crack growth problems. 

 
 

    

    

    

    

 
Fig. 2 FEM Crack coincides with the interface mesh 

 
 

    

    

    

    

 
Fig. 3 X-FEM Crack is free 

 

B. Lateral Edge Crack in 3D Model Under Tension  

In following we illustrate the analytical method to calculate 
K. Theoretical analyses, Stress intensity factor K I for this 
configuration is: 

                                                                                          �' � � λ$�√��                               (4) 
We have these Dimension: Length: 6mm, width: 3mm, 

thickness: 1mm  
The geometrical configuration factor is: 

� λ$ � 1.12 � 0.231λ 
 10.55λ, � 21.72λ. 
 30.39λ0    
(5) 

 

C. Central Crack in 3D Model Under Tensile Load 

In following we illustrate the analytical method to calculate 
K Theoretical analyses:  

Stress intensity factor K I for this configuration is: 
                                   �' � � λ$�√��                                 (6) 

                                                               
TABLE I 

KI THEORETICAL ACCORDING TO STEPS (EDGE CRACK LENGTH) 

a (mm) KI Theoretical (MPa√mm) 

0.5 1.4128 
1 3.1655 

1.5 5.3346 
2 12.0904 
  

 
Dimension: Length: 6mm, width: 3mm, thickness:1mm 
The geometrical configuration factor is: 

                                                               

� λ$ � 1�2% 345
, 6  1 
 0.025λ, 
 0.06λ0$                (7) 

 

III. NUMERICAL SIMULATION OF 3D FATIGUE CRACK 

GROWTH  

In this part, we will use a software simulation for 
comparison the results, and can give us an idea for the 
distribution of the stress, also we will see the strain of the 
model in using the two methods FEM and X-FEM. The early 
stages of design, numerical simulation are used to test the 
product before making prototypes. We can thus reduce the 
cost and time of a project but also virtually test the product on 
the effect of changes. The use of this tool in conjunction with 
the dynamic testing allows both to validate the model, but also 
to broaden the scope of investigations. These applications 
allow the validation of the mechanical behavior under static or 
dynamic. When we create the model we have to enter the 
material(ALUMINIUM) properties  which are:  
– Young’s modulus: 70 GPa 
– Poison’s ratio: 0.33 
– Density: 2.7 Kg/m3

 

And we take the Boundary Conditions and Loads, loads 
consist of any of the loads fields, concentrated or distributed 
tensile. We take into account the boundary conditions which 
are: 
– For the displacement we have:  

ENCASTRE (U1=U2=U3=UR1=UR2=UR3= 0) ; 
ZASYMM (U1=U2=UR3= 0).  

– For the first force we applied a mechanical pressure 
(tensile) (P=-10N). 

 
 
 
 
 

Crack growth 

Crack growth 
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TABLE II 
KI THEORETICAL ACCORDING TO STEPS (EDGE 

a (mm) KI Theoretical (MPa

0.5 1.9007
1 2.5751

1.5 3.5475
2 5.5724

  

 
 

 
Fig. 4 Crack initiation, Boundary Conditions and Loads

 
Mesh and Creation of Cracked Domain, t

our model with based to the crack:  
- Element type: Tetrahedral              
- Element number: 25488 elements. 
 

A. Crack Initiation in Dynamical Part of 

After the simulation we have the following three results
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

DGE CRACK LENGTH) 

KI Theoretical (MPa√mm) 

1.9007 
2.5751 

3.5475 
5.5724 

 

4 Crack initiation, Boundary Conditions and Loads 

, then we try to mesh 

of Specimen 

ave the following three results: 

 

Fig. 5 First six modes shape of specimen uncracking
 

So, In this case we will create the same 
located in the medium of the
the cracked model and Creation of Cracked Domain:

 
 

 

 
 

 
 

5 First six modes shape of specimen uncracking 

ase we will create the same crack which is 
located in the medium of the model, the following fig show 

Creation of Cracked Domain: 
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Fig. 6 First six modes shape of model cracking by FEM

 
 

TABLE III 
COMPARISON OF THE NATURAL FREQUENCIES MOD

CRACK USING FEM  

Frequencies 
(HZ) 

Without  
Crack 

With  Crack
(FEM) 

f1 16.874 16.835 
f2 38.563 37.635 

f3 100.19 82.585 
f4 112.04 96.469 
f5 137.6 126.54 
f6 187.51 162.97 

 
 
 
 
 
 
 

 

 

 

 

modes shape of model cracking by FEM 

URAL FREQUENCIES MODEL WITHOUT AND WITH 

With  Crack 
With  
Crack 
(X-FEM) 

16.81 
37.627 
82.433 
95.704 
110.66 
145.66 

Fig. 7 First six modes shape of model cracking by X
 
The modal frequencies are decrease after the initiation 

crack. We note also when we use FEM the frequencies are 
lower than when we use X-FEM. 
and precise in these results. 

B. Crack Propagation in Lateral 

After the simulation, we obtain these values for stress max 
as function crack size propagation:
 

 
 

 
 

 
 

7 First six modes shape of model cracking by X-FEM 

The modal frequencies are decrease after the initiation 
crack. We note also when we use FEM the frequencies are 

FEM. The X-FEM is more reliable 

in Lateral Edge Crack  

obtain these values for stress max 
as function crack size propagation: 
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Fig. 8 Stress max Von Mises as function crack size (Edge crack)
 
We see when the crack lengths increase the S

too. And we conclude that the Crack has a great effect on 
resistance of model.   

 
TABLE IV 

KI THEORETICAL ACCORDING TO STEPS (EDGE 

a (mm) Smax   (MPa)

0.5 26.5
1.0 47.13
1.5 98.04
2.0 184.4

  

 
 
Propagation of the crack in the X-FEM

crack : 
 

 
Fig. 9 Crack propagation of edge crack specimen

 
We see in these pictures the fatigue crack 

model ender tension, And the goal is to determine the SIF 
according the crack propagation. 

 
 

 
Fig. 10 Comparison between KI theoretical and K

according to steps (crack length)

K [MPa mm0.5] 

 

 

as function crack size (Edge crack) 

We see when the crack lengths increase the Smax increase 
too. And we conclude that the Crack has a great effect on 

DGE CRACK LENGTH) 

Smax   (MPa) 

26.5 
47.13 

98.04 
184.4 

FEM for Lateral edge 

 

9 Crack propagation of edge crack specimen 

We see in these pictures the fatigue crack growth of the 
And the goal is to determine the SIF 

 

theoretical and KI numerical 
(crack length) 

And we can see that both theoretical and numerical results 
are almost equal.  

C. Crack Propagation in Central Crack 

We obtain these stress max as 
propagation: 
 

Fig. 11 Stress max Von Misess as function crack size (central 
crack)

 
We see when the crack lengths

with it. And we affirmed that the Crack has a great effect on 
resistance of model.   

Propagation of the crack in the X
(Central crack): 

 

Fig. 12 Crack propagation of central crack specimen
 
And the Goal of this case is also 

according to steps of crack propagations. 
This graph interprets comparison between K

KI numerical according to steps
 
 

Fig. 13 Stress intensity factor K function as crack
 
We get the same results of the Lateral edge crack, when we 

compare the results of both theoretical and numerical methods, 

a [mm] 

K [MPa mm0.5] 

theoretical and numerical results 

Central Crack  

e obtain these stress max as function crack size 

 
 

Stress max Von Misess as function crack size (central 
crack) 

We see when the crack lengths increase the Smax increase 
with it. And we affirmed that the Crack has a great effect on 

Propagation of the crack in the X-FEM for this case 

 
 

12 Crack propagation of central crack specimen 

And the Goal of this case is also to determine the SIF 
according to steps of crack propagations.  

This graph interprets comparison between KI theoretical and 
numerical according to steps (crack length):  

 
 

ntensity factor K function as crack size propagation 

We get the same results of the Lateral edge crack, when we 
compare the results of both theoretical and numerical methods, 

a [mm] 
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we can see that it’s almost equal, so we confirmed that the 
extended finite element method is accurate and efficacy. 

IV. CONCLUSION 

In this study were treated different examples of application 
of the method X-FEM in 3D with several cases (crack central, 
lateral Edge crack). The numerical simulation results of each 
sample application were compared with theoretical results and 
also with the work of researchers in this field and have given a 
good approximation. The X-FEM has shown great flexibility 
and very good results without any need to refine the mesh at 
the crack. So the validation of XFEM numerical simulation of 
crack growth and stress intensity factor by theoretical model is 
confirmed.  
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