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An Active Set Method in Image Inpainting
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Abstract—In this paper, we apply a semismooth active set
method to image inpainting. The method exploits primal and dual
features of a proposed regularized total variation model, following
after the technique presented in [4]. Numerical results show that the
method is fast and efficient in inpainting sufficiently thin domains.
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[. INTRODUCTION

HE process of filling-in removed, damaged, or unwanted
regions in images is called inpainting. This is synonymous
with image interpolation wherein continuously defined data is
constructed on a region in such a way that the region blends
well with the surrounding features. For a long time, inpainting
has been used by artists in restoring artistic paintings. In [1],
Bertalmio et al first applied inpainting to digital images by
using high order PDE models. Since then, numerous
approaches to inpainting have been developed: variational
techniques, wavelet-based methods, combination of wavelets
and total variation minimization, elastica model, isotropic
diffusion, etc..
In [2], Chan and Shen introduced the following total
variation model that inpaints non-texture type images:

af |Vu|dx+%f (u —ug)? dx )
EUD E

min
u€BV (EUD)

where the observed image is denoted by uy, £ is any fixed
closed domain outside D, and |-| denotes the Euclidean norm.
The image domain E U D is taken to be a square. The model is
closely related to the Rudin, Osher, and Fatemi (ROF) model
for image denoising. Since the TV model is nondifferentiable,
Chan and Shen introduced a global smoothing parameter to
the TV term and a steady solution is obtained using a low pass
filter and a Gauss-Jordan iteration scheme.

A variational model for image reconstruction on a
rectangular image domain Q with Lipschitz continuous
boundary 9Q is

mi Ef |Vu|§dx+lf IKu—dIde+af |Vul,dx
ueBv(?) 2 J, z), B

In [4], Hintermueller and Stadler regularized the above

M. Neri and E.R.R. Zara are with the Institute of Mathematics, University
of the Philippines, Diliman, Quezon City 1101 Philippines (phone: 0632-
9280439; fax: 0632-9201009; e-mail: marrick@math.upd.edu.ph; email:
errzara@math.upd.edu.ph).

model by local smoothing on the TV term, i.e., by replacing
fﬂ |Vu|,dx withf!2 F,(Vu)dx, where

(vl iflVul, <y
E,(Vu) = v
|Vu|2—E ifflVul, =y

andy > 0. The resulting model is

minyepy(o) s J, [Vulddx +3 [, [Ku —d|* dx +
al, F(Vw (2)

Further, they developed a semismooth Newton-type method
that solves the resulting regularized version of the TV model
using an active set strategy. The method was shown to
converge superlinearly.

In this paper, we modify the regularized variational model
(2) to make it amenable to image inpainting. The primary
change is in the restriction of the fidelity term f %(u—d)z to the
non-inpainting domain £. We develop an active-set approach
to solve the resulting model and we show that the method
exhibits good inpainting capabilities.

II. MODEL

In the discrete setting, each (i,j) pixel in the n X n grid of
pixels inE' U D is represented by u; ;. For ease in computation,
we stack the image matrix » to an image vector v. The
components of the image vector vare described as:

V(ij—in+i = Yfor1 <i,j<n

wherev € RV, N = n?. The discrete total variation of v is

formulated as
= > Il

=1

TV (v)

W)+ V), )

N
=1

T
where[Vv], = [(va) b (Vyv)Hn] .The gradient
nentsV,and V,, are approximated using forward differences.
The discrete total variation image inpainting model for (1) is

compo-

N
. 1 2
min TV(v) + f(v) = aIZI[Vv]ll tolv =2l @
=1

where we define |x|gyy =/ Xiew X7 for an index set W, and
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v, is the observed image in stacked form. We propose the
following regularized variation model for inpainting:

N
152}21,}, {“Fy(vv) + %Iv—Vole} + %ZHVU]I |2} 5B)
=1
where
1N .
=N e if|[Ve]] <y
F,(Vu) = iwzm S
[Vul, == ifl[Vv]| =¥

2

Forl = 1,2,...,N.Clearly, model (B,) is convex and is
guaranteed a unique solution. When the inpainting region D is
empty, (Py)reverts to the working model in [4].

The active set method that we implement exploits the
primal-dual features of (P,), whose Fenchel pre-dual is the
supremum of

—llldiv p + vl + SllvClizs —Sldivplllts, (B

where p € R?Y, the Euclidean norm |[[p],|| < A,

) (Uy —pd)~x,x) ifX=E,
I3, = Y N
((—ud)'x,x)y ifX=0D.

Ais the discrete Laplacian, and div = —V7 is the discretized

divergence (cf. [5]).

III. OPTIMALITY CONDITIONS
The solutions to the primal (Py)and dual (Dy)problems,
given by ¥, and p,respectively, satisfy the following optimal-
ity conditions ([4],[5]):

—uAv, + 7, — divp, = v° onE (5)
—uAp, =divp, onD (6)

y[ﬁy]l - A[Vﬁy]l =0 if”[ﬁy]l” <4

) . B e onEuD (7)
”[Vvy]l” [pV]l - A[VUV]L 1f”[pl’]l” =4
forl =1,2,...,N.
Let x € RVNwith k; = 1if pixel-index i€ E, and 0
otherwise. We combine equations (5) and (6) as

—uAB, — div p,+xz (8, —v°) =0 (8

wherexz = D(x), the N X N diagonal matrix.
The optimal conditions in (7) can also be combined as:
max(y, [V, 1)) (1 — 2[5, ], = 0 9
for every [ =1,2,...,N. In the next section, we present a

Newton-type solution method based on the optimality
conditions presented here.

IV. A SEMISMOOTH METHOD
Using equations (8) and (9), we determine a Newton
method that mirrors the active set approach in [4] for image
denoising. Results in generalized differentiability and
semismoothness (cf. [3]) allow the use of a Newton step to
(5),(6), and (9) at thek-th approximations v* and p*:
k P _(_k 0
o= ulv +d1vkp +KE/E vk +v?%) (10)
AVVE — D(m®)p
where
&= (yA +rz —div )
GV D(m*))’
8y
5=(s1)
G=—Ay+ XAkHD(Pk)](VVk),
mk = max(ylLy,n(Vv¥)) € R?N

with the mapping 1: RN — R2" given by
(), = v llwithw € R*N,i = 1,2, ...,2N

Now, the active set indicator x,, ., = D(t*) which is a
2N x N diagonal matrix with

o [1 if(n(vv*)), =y

o if(n(Vv"))L_<y
determines whether a component is part of the active
setAy 1by setting t; = 1, or not.The matrix J is the Jacobianof
7, that is,
-1(D(V,v) D(V,v)
Vv) = (D(n(Vv
/) ( (n€ ))) <D(va) D(V,v)

With all components of m*> 0, this means that the diagonal
matrix D(mF) is invertible. We obtain, andd,, as

8, = AD~1(mF)Vv* — pk — D1 (m*)GVS, (11)
and
Hyby = fi (12)
with
Hy, = —ph + k5 + divD~ (m¥)GV
fie = uAV* + div AD 1 (m*)Vv* + ig(—v* + v0).

Whenever Hj is not positive definite, we use the shift
modifications in [4] to get a positive definite matrix H; .
We propose the following active set method for inpainting:

Algorithm: Active Set Method

1) Set k=0 and initialize (v°,p°) € RN x R?V,

2) Determine the members of the active set by solving
Xap,, € R*N x R?N,

3) ComputeH; if p* is not feasible for alli = 1, ..., N.

Otherwise set Hf = H,.

4) Solve for &, in Hi 8, = fj, and compute B
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5) Update v¥** = v* + &, and p*** = p* + §,,.
6) Stop, or set k :=k + 1 and go to step 2.

We note that the proposed method for inpainting is
analogous to that in [4] for denoising. Numerical
implementations of the algorithm are presented next.

V. NUMERICS

The algorithm is implemented in MATLAB R2010b on a
machine with a speed of 2.93 GHz and with 2 GB of RAM.
Our test images are square grayscale images which are nearly
noise-free and blur-free degraded only by thin lines and text
which are the inpainting domains. The goal of inpainting is to
reconstruct the inpainting domain by using the image
information surrounding these domains.There is no ideal value
for y; however, the smaller y is, the better the observed
inpainting and restoration of edges. With this, we set y =
10~*.The value of « is set to 0.01. We observed that in our
test runs, there was no need to perturb H) to make it positive

definite.

Fig. 1 (a) Original image
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Fig. 2 (b) Image with lines

d
e

Fig. 2 (c) Active set method

Our first image sample is a256 X 256 image (figure 1(a)).
The image masked with thin lines (about 2 to 4 pixels wide) is
figure 2(b). The mask is user-defined and is created using an
image editing software. The result obtained using the active
set method is shown in figure 2(c). This result is obtained in 3
iterations, with a time of 5.1 seconds. The method converged
in 14 iterations. Convergence is determined once the norm of
the vector composed of the left-hand-sides of optimality
conditions (8) and (9) has sufficiently decreased from its

initial value.
o .
nt .
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throug undle,

Fig. 2 (a) Image with text

e

Fig. 2 (b) Active set method

The second masked image has text to be inpainted (figure
2(a)). The reconstruction is given in figure 2(b) obtained in 3
iterations and 6.9 seconds. We see that the method is effective
in inpainting both line and text regions.

The next example is a 256 X 256 grayscale image (figure
3(a). Thin lines constitute the inpainting domain. The
reconstruction using the active set method effectively removed
the lines in 10 iterations with a time of 12.4 seconds.

Fig. 3 (a) Original image
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Fig. 3 (c) Reconstructed image

VI. CONCLUSION

We presented a variation model for image inpainting and a
semismooth primal-dual active set method to solve it. Our
numerical experiments show that the method is very effective
in providing good reconstructions within reasonable time. The
algorithm is applicable for filling in small domains in non-
texture based images.
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