
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2538

Abstract—Ambient Computing or Ambient Intelligence (AmI) is

emerging area in computer science aiming to create intelligently

connected environments and Internet of Things. In this paper, we

propose communication middleware architecture for AmI. This

middleware architecture addresses problems of communication,

networking, and abstraction of applications, although there are other

aspects (e.g. HCI and Security) within general AmI framework.

Within this middleware architecture, any application developer might

address HCI and Security issues with extensibility features of this

platform.

Keywords---AmI, ambient computing, middleware, distributed-

systems, software-defined networking.

I. INTRODUCTION

ODAY almost everyone own mobile or fixed devices that

help them to accomplish tasks in order to ease daily life. In

near future, those devices surrounding (i.e. interacting) people

will increase in both number and capabilities. Ambient

Intelligence (AmI) studies aim the problem of creating some

form of intelligence into this interactivity. For instance, devices

with sensing (e.g. temperature or humidity measuring) or

acting capabilities (e.g. controlling valves, switches or handling

items, etc.) that might have “Intelligence” could sense or act

without interrupting day life of person, while easing tasks. In

order to achieve this intelligence, devices should have (1)

situational awareness; (2) discovery of other devices; (3)

collaboratively compute features. On the other hand, AmI also

incorporates Human-Computer Interaction and Security issues.

In this paper, we are going to propose middleware architecture

aims to address communication and collaboratively computing

problems. The middleware architecture leaves sensor input,

HCI and security aspects to application developer where these

components are mostly application-specific.

In Section II, an overview of problems and related topics

will be presented. Then, the general architecture will be

presented. In Section IV, details of components within

architecture will be presented. In Section V, related works will

be covered.

Ekrem Aksoy and Nihat Adar are with the Department of Computer

Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey (e-mail:
eaksoy@ogu.edu.tr, nadar@ogu.edu.tr).

Selçuk Canbek is with the Department of Computer Engineering, Eskisehir

Osmangazi University, Eskisehir, Turkey and the Department of Computer
Engineering, Ahmet Yesevi University, Turkestan, Kazakhstan (e-mail:

selcuk@ogu.edu.tr).

II. PROBLEMS AND RELATED TOPICS

A. Managing Communication Complexity and

Interoperability

Ambient devices require ubiquitous computing capabilities.

Since computing power and communication capabilities of

these devices are increasing while size form-factors are

decreasing, it is obvious that in near future many day life

objects a person interact with will be increase.

The main problem of creating such a connected environment

is to be able to handle different way of communications for

different communication requirements. These differences may

arise at different levels of OSI model [1]. Today, Computer

Networking practice manages this “fragmentation” with

covering functionalities within bag of protocols and embedding

these functions into devices capabilities [2].

Embedding each function into a device capability creates

complexity of management and interoperability. For instance, a

communication link cannot be established with two devices

both having Bluetooth protocol stack but not having the same

profile (interoperability problem). On the other hand, an

enterprise device network might require monitoring of traffic

flow and intercepting a suspicious flow (managing

communication at large problem) [3]. In both cases, current

toolset is not adequate enough to keep simplicity.

Another problem of establishing communication network is

to be able to proxying (or delegation) of traffic among different

sub-networks. Although this problem also implies reliability

issues, communication aspects of this problem also have to be

handled within management of network [4].

In general, AmI devices form two communication networks

from a device’s perspective: (1) Line of Sight (LoS) network (a

network of direct communication can be established) or (2)

Beyond Line of Sight (BloS) network. LoS network is formed

with devices within neighborhood. Neighborhood in this aspect

is created with ability to communicate, thus a device having

more protocols (i.e. capabilities) is highly possible to have

large neighborhood. BloS network is formed with delegation.

A device might proxy communication traffic to its

neighborhood on behalf of a device that cannot reach those

devices within its neighborhood. BloS communication is

important for reasons like reliability and interoperability. For

instance, a device A might require capabilities of device C and

form a communication link over device B. Otherwise, device

C’s capabilities is not at service for device A.

Managing such a complex network while keeping

interoperability, requires new approaches to Networking like

T

AMBICOM: An Ambient Computing Middleware

Architecture for Heterogeneous Environments
Ekrem Aksoy, Nihat Adar, Selçuk Canbek

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2539

Network Function Virtualization (NFV) or Software-defined

Networking (SDN) [5].

B. Context-Awareness with Semantics

In order to accomplish any given computing task in a

connected environment, devices should be context-aware.

Context-awareness might be implemented statically (i.e.

application-specific perspectives) or dynamically (i.e. device

discovers the context within). Although static context

awareness could be implemented easily, the flexibility,

reliability, and extensibility of such applications fall short of

those having dynamic context discovery. In static context-

awareness, a platform has to be handling application stacks

where in dynamic context-awareness either application or

platform is adaptive to context changes. There are studies

covering both schemes. Specifically, for dynamic context

discovery, Semantic technologies could be used (1) to create

ontologies for devices to use discovery of context, and (2) to

describe capability requirements of tasks and capabilities of

devices. Moreover, micro-kernel-like architectures [6] or

Sensor-network OSes [7], [8] define static scheme for

application stacking (hence, context-awareness).

A general AmI framework should support both schemes of

context discovery as proposed in related works [9], [10].

C. Reliability

The most prominent feature of an AmI platform is reliability.

The pervasive and ubiquitous nature of AmI challenges

requirement of any given task guaranteed to be accomplished if

enough capabilities exist within environment.

The nature of AmI might require additional focus on Quality

of Service (QoS) oriented computing, since different

applications require different QoS requirements. Moreover,

QoS scheme within platform has to be flexible and dynamic.

Fortunately, NFV and related studies [11], [12] provide

scheme for QoS in communication as well as OMG DDS [13]

like studies are provide QoS mechanisms within Distributed

Systems (DS) framework. In addition, when reduced into a DS

problem, almost all reliability schemes are covered at Birman’s

work [14].

III. AMBICOM MIDDLEWARE ARCHITECTURE

AMBICOM, Ambient Computing Middleware architecture

is a decentralized, QoS oriented data-centric communication

middleware architecture providing scheme to create modular

application stacks and API to integrate sensory and QoS

requirements.

In this section, we pair general features with problem areas

described in Section II.

A. Communication in AMBICOM

AMBICOM uses Data-centric Publish/Subscribe scheme to

handle distributed communications and relies on L2/L3

networking control function virtualization and provides

application developers to use either TCP or UDP as well as

other protocols in applications. The main motivations are:

• L4-L7 protocols are mostly application specific. For

instance, a reliable transport might required for application

A (sensory data file transfer) and an unreliable transport

might required for application B (video streaming). The

former application will choose TCP where the latter might

prefer UDP. Although Data-centric communication among

nodes is mostly UDP and Multicast, QoS policies and

ACL-like policies provide security.

• L2/L3 is providing minimum set of manageable

networking required for AmI devices. This provides

flexibility and extensibility. Most AmI devices rely on

TCP/UDP on L4-L7.

• LoS/BloS networking management require at least L2/L3

networking services.

The moderate AmI device will likely to have a CPU and a

communication stack of at least L1/L2. AMBICOM might

cover these AmI devices with fundamental data link services

either built-in to device or by platform itself:

• Connectionless or Connection-oriented virtual data link,

• Error and Flow control,

• MAC and Multiple-access control for Ethernet, Wireless,

Bluetooth, RFID,

• Data Link Switching (LoS/BloS),

• Anycast Multicast/Broadcast Routing (LoS/BloS),

• Quality of Service.

1. LoS Communication Management

Line of Sight communication starts with learning

mechanism. Learning in this context is ability to obtain a

unique identifier of another device after a communication

package (or frame in networking terms) arrives from it. This

could be MAC in case of Ethernet, Wifi, Bluetooth, and similar

protocols. Each node keeps flow tables for LoS communication

2. BloS Communication Management

BloS communication management is handled through

Proxy’ing of communication on behalf of initiator. This feature

is built-in to each AMBICOM node and each node keeps proxy

flows with additional flow tables. This proxy flow tables is a

bit different than forwarding tables since no TCAM involved to

implement tables.

BloS communication also implies AMBICOM application

developer to choose a routing scheme dynamically. RIP [15] or

OSPF [16] could be chosen for routing scheme or a custom

routing scheme could be implemented.

Fig. 1 LoS and BloS Communication in AMBICOM

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2540

TABLE I

ACCP COMMAND LIST

Command Name Description

OA Objective Asked

OG Objective Granted

OHT Objective Handle True

OHF Objective Handle False

ODT Objective Delegated True

ODF Objective Delegated False

OD Objective Delegate

From dynamic routing perspective, AMBICOM nodes are a

bit different than usual SDN switches like Open vSwitch [17]

or any other implementation like Ethane [18]. Moreover, the

usual schemes for communication are Multicast or Broadcast.

Therefore, different node replying to same message possibly

answer and receiving node could choose one of the messages

based on different metrics including custom developed ones.

Beyond L2/L3 level networking, there is also an L4-L7

protocol to provide communication in AMBICOM context.

3. AMBICOM Communication and Control Protocol

AMBICOM Communication and Control Protocol (ACCP)

is connectionless application protocol providing control

mechanisms for forming a Task Groups. ACCP is much like

MQTT protocol [19] for that sense. On the other hand, MQTT

is based solely on TCP and it requires brokers like CORBA

[20]. AMBICOM deploys any L4-L7 protocol on datapath

where UDP transport will be used in implementation as a proof

of concept.

ACCP has commands for both LoS and BloS

communication. In general, ACCP provides, communication

establishment for generating topologies on-demand since

AMBICOM assumes no information prior to link established

and assumes changes happen in any moment.

Acting in such scheme makes TCP and central mediation

functions useless. Table I shows the list of commands in

protocol.

ACCP is a connectionless protocol and very lightweight in

that sense. Implementing ACCP over any L2/L3/L4

networking takes minimal effort.

How the ACCP scheme works will be explained in Section

IV.

B. Context Awareness in AMBICOM

AmI applications are generally defined within their own

context. AMBICOM in general depends on Data-centricity and

QoS-based computing to provide Context-awareness

mechanisms to application developers.

Each service request (i.e. a task) given to any node in

AMBICOM environment defines capability requirements.

These capability requirements are abstracted from AMBICOM

“fabric” with ACCP.

Capability Requirements are associated with Task in Input

Data Objects (IDO’s). An IDO is a context specific object that

defines input data set, capability requirements and steps to

complete task. As an example, an IDO for “Check e-Mails”

task might include:

a) Input Data: email credentials,

b) Capability Requirement: SMTP communication,

c) Steps: login, read headers, return (each defined

dependent to the context of application).

The granularity of each IDO is defined in application

context. IDO’s are tranported within AMBICOM Data-centric

Publich/Subscribe framework.

The IDO results are published through Data-centric Pub/Sub

framework (DCPS framework) and also context-dependent.

C. Reliability

Reliability in AMBICOM is achieved through QoS-based

computing. QoS policy imposes each role of an AMBICOM

node. Although details of each role will be explained in the

Section IV, roles in AMBICOM are:

1. Primary Coordinator Role,

2. Shadow Coordinator Role,

3. Task Member Role.

Each role has its own set of QoS policies:

1. TaskSpreadPolicy,

2. TaskDispatchPolicy,

3. TaskMonitorPolicy,

4. ShadowCoordinatorPolicy,

5. TaskRepoReplicationPolicy,

6. TaskAcceptancePolicy,

7. TaskProgressReportPolicy.

Each application has its own set of QoS policy

implementations through AMBICOM API, and these policies

are imposed over roles of each node through configuration

distribution.

Reliability in AMBICOM is defined within this context as:

“If there is enough capabilities exist within an

AMBICOM environment for enough duration, any given

task will be accomplished.”

This implies that, for any given task at a given node, it is

accomplished if required capabilities exist for certain amount

of time for that task to be completed within that node’s LoS or

BloS neighborhood. Therefore, QoS policies and Data-centric

computing schemes provides reliability to AMBICOM.

IV. AMBICOM MIDDLEWARE ARCHITECTURE IN DETAIL

In this section, AMBICOM components and mechanisms are

described.

A. Architectural Concepts in AMBICOM

Main concept and top most abstraction of AMBICOM is

“Task Group”. A Task Group is group of node, formed under

task’s requirements and QoS policies, where each node has a

role within a Task Group.

Within a Task Group, each participant node assumed to have

one Role:

1. The node where the task is defined gets Primary

Coordinator Role,

2. The node selected based on ShadowCoordinatorPolicy

becomes Shadow Coordinator,

3. Based on other QoS policies, other participant(s)

become(s) Team Member.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2541

Fig. 2 Task Group in AMBICOM

Task Board shown in Fig. 2 is a logical representation;

however, there is no Black Board approach as defined in

Multiagent Systems. The Task Board simply abstracts the

notion of task progress monitoring. In fact, Task Board is the

progress table that kept on Primary Coordinator, and updated

by Task Member(s) actually doing the task due to

TaskProgressReportPolicy

Each node in AMBICOM can participate more than one

Task Group, but a node can only be Primary or Shadow

Coordinator in a group, not both at the same time.

Beside AMBICOM fabric (mechanisms to communicate and

control plane functions, data-centric publish/subscribe topics

for task acquisition and policy filtering), each node has pre-

defined set of policies based on application context. Policies

are related to Roles with Policy Filter API. Therefore, any node

could dynamically configure itself based on control inputs and

pre-defined filters.

B. Mechanisms of AMBICOM

In order to develop applications on top AMBICOM and

program against AMBICOM API, mechanisms of different

states within AMBICOM should be known.

1. Task Acquisition

Task Acquisition is done through defined Data-centric

publish/subscribe framework. Each node has capability to

acquire a task IDO. IDO is defined through a set of API and is

context-dependent.

When an IDO is defined for a node, receiving node

configures itself into Primary Coordinator (PC) Role and set of

PC policies are loaded dynamically, related tables are setup and

PC thread is started. Each PC thread has a defined

asynchronous events and queue for nonblocking operation.

Then PC tries to establish a Task Group. Based on

TaskSpreadPolicy and TaskDispatchPolicy, and using ACCP

commands, PC tries to find nodes, ask them to handle the task

or delegate it BloS.

Any node receiving a task request, based on

TaskAcceptancePolicy, generate a reply through ACCP

channel.

2. Shadow Coordinator

PC selects a Shadow Coordinator (SC) based on

ShadowCoordinatorPolicy. When a node is selected to SC

Role, it loads TaskRepoReplicationPolicy, creates SC threads

to monitor PC based on policy (e.g. heartbeat intervals, etc.),

and if PC fails, SC goes on monitoring progress and accepting

results of task.

3. Task Progress

Any node receiving a task request and accept it based on

TaskAcceptance policy becomes Team Member (TM). TM

loads TaskProgressReportPolicy and creates TM thread.

Within thread, IDO is processed and results are published to

Data space of AMBICOM (i.e. Data-centric Pub/Sub

Framework).

4. Control-plane

Each AMBICOM node has ACCP as a built-in feature.

Moreover, control-plane (CP) for forming Task Group is

seperated from data-plane (DP) where DP is implemented

within Data-centric Publish/Subscribe framework. CP layer in

a node provides ACCP implementation and flow tables beside

TaskAcceptancePolicy.

5. Data-Plane

Data-plane (DP) within AMBICOM is provided through

Data-centric Publish/Subscribe (DCPS) framework where each

node participates into a global data space. Global data space is

segmented with topics.

There are two kinds of topics: i) built-in topics and ii)

context topics. Application developer can provide context

topics through DCPS API and these context topics are

published as one of the built-in topics.

Built-in topics for AMBICOM are:

a) IDOTopic: Defines IDO(s) for application context. Each

node publishes its own topic names to receive IDO and

response the result.

b) TaskBoardTopic: Defines Task Board topic name of the

context. Task Board is related to PC and TM(s) publishes

their Task Progress Reports to that topic.

Context-dependent topics are defined through these built-in

topics, especially for IDO and task result.

In Section IV C, it is described how the example use-case

from Section III is achieved within AMBICOM.

C. An Example Use-case of AMBICOM

An application context (IDO topic, policies, ACCP end

points) of E-Mail Communication is developed by an

application developer and deployed in an AMBICOM

environment. A device receives “Check e-Mails” request (e.g.

user presses a button), but it’s not capable of communicating

either with Mail Server or SMTP at all. Steps might take place:

1. PC Device publishes IDO through it’s IDO topic. Since

this topic is already know to other AMBICOM devices via

built-in IDOTopic, it’s already has subscribers. OA

request is broadcasted.

2. Subscriber devices get OA command and also aware of

context, process IDO (especially capability requirements).

Since capability requirements are defined as SMTP and

Mail Server access, devices check their capabilities and

reply back with OHT or OHF based on

TaskAcceptancePolicy. If any node returns OHT, Task is

assigned to that node with OG reply. The node then

subscribes to context dependent IDO topics and starts

processing.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2542

3. If all nodes in LoS returns OHF, PC issues OD command

to delegation of task to BloS. All nodes receiving OD re-

issues OA to their LoS and get OHT/OHF replies. If OHT

reply is received, ODT reply is issued back to PC and

nodes PC selects those nodes (ODT, OHT) based on

TaskSpreadPolicy and TaskDispatchPolicy and a Task

Group is formed. After OG command is issued back,

accepted ODT and OHT nodes are become Team Member

(TM).

4. TM process email check request (i.e. connects to mail

server via SMTP and logs in with user credentials and

reads all headers) and returns the result (email headers)

through publishing on its result topic.

Although this example is very simple for sake of AmI

capabilities of AMBICOM, it basically explains how

AMBICOM works and how an application developer interacts

with AMBICOM to develop applications. Moreover, although

this example of checking new email headers are incorporates

discrete data payload (i.e. string data representations of each

new email), stream type of data payload can also be returned

via defining stream endpoints and related input parameters in

context dependent result topic.

V. RELATED WORKS

There are increasing efforts toward defining a common

platform for AmI applications, thus AmI Middleware. For

instance aWESoME [24] is a web service based middleware

utilizing W3C XML Web Services approach. AmbientDB is a

P2P data management platform [25] and focused on data

sharing and management aspects and based on Distributed

Hash Tables as in P2P networks. HYDRA [26] also provides a

middleware for AmI, and focuses on Service oriented

architecture approach. LAICA [27] is another framework and

it is based on Multi-agent Systems.

Many other studies focus on services that an AmI should

offer [28]-[30]. Moreover, semantic (as in Semantic Web)

definition of AmI is also a popular subject, for example [31],

[32]. On the other hand, communication services are usually

studied under WSN studies like [7], [8]. Middleware

requirements are studied in [33], however, only generic

middleware approaches are described.

VI. IMPLEMENTATION STATUS AND CONCLUSION

REMARKS

AMBICOM is in implementation phase and early

observations and comments are presented in this section.

AMBICOM is being implemented on commodity x86 and

ARM based computers with IP (Ethernet of WiFi)

communication capabilities.

AMBICOM core thread and role based threads are

implemented on BSD-style sockets where event based

processing is asynchronous. BSD-style kqueue and kevents are

being used. This provides high throughput as suggested in [21].

ACCP is also being implemented in this way.

For DCPS, OMG DDS is being considered. DDS provides

DCPS in high performance and, reliable transportation could

be achieved with QoS policies. DDS also utilizes UDP as

transportation but can provide reliability. PGM [22] and

JGroups [23] can also be used, but higher reliability and

performance observed with DDS. Currently, UDP based

sockets and IPC are being used.

For Task Board, Symas Lightning Memory-Mapped

Database (LMDB) [34] is being used. LMDB is a lightweight

key-value based datastore and it is used in OpenLDAP project.

Stream type results (like streaming voice or video as a result)

need to be well defined in IDO’s like resolution requirements

or codec requirements. This slows Task Group forming process

significantly. Therefore, streaming type of result is left out of

scope of this work.

Since ACCP is lightweight protocol implemented over L3-

L4 (UDP/IP), it lacks L2 functionality as of now, and

definitely, L2 functionality needed for small devices or

appliances. UDP Broadcast techniques are used in proof of

concept implementation and each packet is limited with 1024

bytes of payload data unit (PDU) with 31 bytes of ACCP

header, thus max total of 1055 bytes in line with UDP packet.

Developer productivity is not targeted for Proof-of-Concept

work, but IDO/Result API and ACCP Northbound API should

be well defined and documented. As of now, the system

boundaries are not clear.

Current implementation has ~3200LoC of C code and

working on UNIX like operating systems.

Performance of current implementation will be studied in

detail; however, rough performance figure in 3 node

environment consisting of 3 x86 PC’s (each with i5 CPU and

2GB RAM) connected through a standard WiFi switch is

shown in Table II.

TABLE II

PERFORMANCE

Test Completion Duration

1MB data ingestion 0.57sec

10MB data ingestion 7.1sec

10MB with 1 Node Failover (down-up) 9.3 sec

REFERENCES

[1] Zimmermann, Hubert. "OSI reference model--The ISO model of
architecture for open systems interconnection." Communications, IEEE

Transactions on 28.4 (1980): 425-432.

[2] Shenker, Scott, et al. "The future of networking, and the past of
protocols." Open Networking Summit 20 (2011).

[3] Koponen, Teemu, et al. "Onix: A Distributed Control Platform for

Large-scale Production Networks." OSDI. Vol. 10. 2010.
[4] Kim, Hyojoon, and Nick Feamster. "Improving network management

with software defined networking." Communications Magazine, IEEE
51.2 (2013): 114-119.

[5] Nunes, Bruno, et al. "A survey of software-defined networking: Past,

present, and future of programmable networks." Communications

Surveys & Tutorials, IEEE 16.3 (2014): 1617-1634.
[6] Will, Heiko, Kaspar Schleiser, and Jochen Schiller. "A real-time kernel

for wireless sensor networks employed in rescue scenarios." Local

Computer Networks, 2009. LCN 2009. IEEE 34th Conference on. IEEE,
2009.

[7] Akyildiz, Ian F., et al. "Wireless sensor networks: a survey." Computer

networks 38.4 (2002): 393-422.
[8] Dunkels, Adam, Björn Grönvall, and Thiemo Voigt. "Contiki-a

lightweight and flexible operating system for tiny networked sensors."

Local Computer Networks, 2004. 29th Annual IEEE International
Conference on. IEEE, 2004.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2543

[9] Ramos, Carlos, Juan Carlos Augusto, and Daniel Shapiro. "Ambient

intelligence—The next step for artificial intelligence." Intelligent

Systems, IEEE 23.2 (2008): 15-18.
[10] Preuveneers, Davy, et al. "Towards an extensible context ontology for

ambient intelligence." Ambient intelligence. Springer Berlin Heidelberg,

2004. 148-159.
[11] Casado, Martín, et al. "Virtualizing the network forwarding plane."

Proceedings of the Workshop on Programmable Routers for Extensible

Services of Tomorrow. ACM, 2010.
[12] Pfaff, Ben, et al. "Extending Networking into the Virtualization Layer."

Hotnets. 2009.

[13] Pardo-Castellote, Gerardo. OMG Data-Distribution Service (DDS):
Architectural Overview. REAL-TIME INNOVATIONS INC

SUNNYVALE CA, 2004.

[14] Birman, Kenneth P. Reliable distributed systems: technologies, web
services, and applications. Springer Science & Business Media, 2005.

[15] Hedrick, Charles L. "Routing information protocol." (1988).

[16] Moy, John T. OSPF: anatomy of an Internet routing protocol. Addison-
Wesley Professional, 1998.

[17] Pfaff, Ben, et al. "Extending Networking into the Virtualization Layer."

Hotnets. 2009.
[18] Casado, Martin, et al. "Ethane: Taking control of the enterprise." ACM

SIGCOMM Computer Communication Review. Vol. 37. No. 4. ACM,

2007.
[19] Banks, A., and R. Gupta. "MQTT Version 3.1. 1." OASIS Standard

(2014).

[20] Ben-Natan, Ron. Corba: a guide to common object request broker
architecture. McGraw-Hill, Inc., 1995.

[21] Lemon, Jonathan. "Kqueue-A Generic and Scalable Event Notification

Facility." USENIX Annual Technical Conference, FREENIX Track.
2001.

[22] Gemmell, Jim, et al. "The PGM reliable multicast protocol." Network,

IEEE 17.1 (2003): 16-22.
[23] Ban, Bela. "JGroups, a toolkit for reliable multicast communication."

URL: http://www. jgroups. org (2002).

[24] Stavropoulos, Thanos G., et al. "aWESoME: A web service middleware
for ambient intelligence." Expert Systems with Applications 40.11

(2013): 4380-4392.

[25] Fontijn, Willem, and Peter Boncz. "AmbientDB: P2P data management
middleware for ambient intelligence." Pervasive Computing and

Communications Workshops, 2004. Proceedings of the Second IEEE
Annual Conference on. IEEE, 2004.

[26] Eisenhauer, Markus, Peter Rosengren, and Pablo Antolin. "Hydra: A
development platform for integrating wireless devices and sensors into
ambient intelligence systems." The Internet of Things. Springer New

York, 2010. 367-373.

[27] Cabri, Giacomo, et al. "The LAICA project: Supporting ambient
intelligence via agents and ad-hoc middleware." Enabling Technologies:

Infrastructure for Collaborative Enterprise, 2005. 14th IEEE

International Workshops on. IEEE, 2005.
[28] Anastasopoulos, Michalis, et al. "Towards a reference middleware

architecture for ambient intelligence systems." ACM conference on

object-oriented programming, systems, languages, and applications.
2005.

[29] Bogdanowicz, Marc, et al. Scenarios for ambient intelligence in 2010.

Office for official publications of the European Communities, 2001.
[30] Cook, Diane J., Juan C. Augusto, and Vikramaditya R. Jakkula.

"Ambient intelligence: Technologies, applications, and opportunities."

Pervasive and Mobile Computing 5.4 (2009): 277-298.
[31] Klein, Michael, Andreas Schmidt, and Rolf Lauer. "Ontology-centred

design of an ambient middleware for assisted living: The case of

soprano." Towards Ambient Intelligence: Methods for Cooperating
Ensembles in Ubiquitous Environments (AIM-CU), 30th Annual

German Conference on Artificial Intelligence (KI 2007), Osnabrück.

2007.
[32] Preuveneers, Davy, et al. "Towards an extensible context ontology for

ambient intelligence." Ambient intelligence. Springer Berlin Heidelberg,

2004. 148-159.
[33] Georgalis, Yannis, Dimitris Grammenos, and Constantine Stephanidis.

"Middleware for ambient intelligence environments: Reviewing

requirements and communication technologies." Universal Access in
Human-Computer Interaction. Intelligent and Ubiquitous Interaction

Environments. Springer Berlin Heidelberg, 2009. 168-177.

[34] Chu, Howard. "Mdb: A memory-mapped database and backend for
openldap." LDAPCon’11 (2011).

