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Abstract—In this paper Algebraic Riccati matrix equation is used 

for Eigen-decomposition of special structured matrices. This is 
achieved by similarity transformation and then using algebraic riccati 
matrix equation to triangulation of matrices. The process is 
decomposition of matrices into small and specially structured sub-
matrices with low dimensions for fast and easy finding of Eigen-
pairs. Numerical and structural examples included showing the 
efficiency of present method. 
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I. INTRODUCTION 
ALCULATION of eigenvalues and eigenvectors of a 
matrix is important in any engineering problems [1]. 

Basic and fundamental calculations for stability, vibration and 
buckling analysis of structural systems require to solving 
generalized eigenvalue problem [2, 3]. For calculation of 
eigenvalues and eigenvectors of a matrix the characteristic 
equation of the matrix should be formed and the 
corresponding equation of order n should be solved [4]. 

Recently canonical forms are developed and used for 
Eigensolution of symmetric structured matrices arising in data 
analyzing of symmetric and regular structures [5, 6]. There are 
also classical methods for Eigensolution of structured matrices 
based on LU decomposition, preconditioning, divide and 
counter algorithms and other approximate methods [7- 9]. 

The algebraic Riccati equation has been widely used in 
control system syntheses [10, 11], especially in optimal 
control [12, 13]. As the solution to this equation may not be 
unique [14], the existence conditions of solutions have been 
considerably investigated [15]. A review of application and 
solution of algebraic riccati matrix equation can be found in 
[16]. 

In this paper, a simple and efficient method is presented for 
computing of the eigenvalues and eigenvectors of spatial 
structured matrices by the use of algebraic Riccati equation. 
Here bisymmetric matrices and per symmetric are 
decomposed into sub-matrices with low dimensions for simple 
and fast computing of eigenvalues and eigenvectors. 
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II. BASIC DEFINITIONS OF GRAPH THEORY 
A.  Definitions from Graph Theory 
A graph ),( ENG  consists of a set of elements, )(G , called 

nodes and a set of elements, )(GE , called edges, together 
with a relation of incidence which associates two distinct 
nodes with each edge, known as its ends. Two nodes of a 
graph are called adjacent if these nodes are the end nodes of 
an edge. An edge is called incident with a node if it is an end 
node of the edge. The degree of a node is the number of edges 
incident with the node. A subgraph iG  of a graph G  is a 

graph for which )()( GNiGN ⊆ and )()( GEGE i ⊆ , and 

each edge of iG  has the same ends as in G. A path graph P is 

a simple connected graph with 1)()( += PEPN  that can be 
drawn in a way that all of its nodes and edges lie on a single 
straight line. A cycle graph C is a simply connected graph 
with )()( CECN =  that can be drawn so that all of its nodes 
and edges lie on a circle. A path graph and a cycle graph with 
n nodes are denoted by nP  and nC , respectively.  

B. Matrices Associated with a Graph 
Let G be a graph with n nodes. The adjacency matrix A is 

an n×n  matrix in which the entry in row i and column j is 1 
if node in  is adjacent to jn , and is zero otherwise. This 

matrix is symmetric and the row sums of A are the degrees of 
nodes of G. The Laplacian matrix of graph G is defined as: 

 
L = D − A. (1) 

 
where D is a diagonal matrix in which the i-th diagonal entry 
is equal to the degree of node i [17]. 

III. SIMILARITY TRANSFORMATION OF MATRICES   

A complex scalar iλ  is called an eigenvalue of the square 

matrix nn×A  if a nonzero vector iv  exists such 

that iii vAv λ= . The vector iv  is called an eigenvector of A 

associated with iλ . The set of eigenvalues of A is called the 

spectrum of A. A scalar iλ  is an eigenvalue of A if and only if 
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0)det( =− IA iλ . That is true if and only if iλ  is a root of the 
characteristic polynomial. Two matrices A and B are said to 
be similar if there is a nonsingular matrix U such that:  
 

AUUB 1−=  (2) 
 

The mapping A → B is called a similarity transformation. It 
can be shown that similarity transformations preserve the 
eigenvalues of matrices: 
 

,ii vAv λ=  (3) 

,111

ii vUvAUUU λ−−− =  (4) 

 
By substituting AUUB 1−=  and ,1

ii vUy −= we will have:  
 

,ii yBy λ=  (5) 
 

Equation (5) which is a standard representation of Eigen-
problems means that iλ  are also the eigenvalues of the matrix 
B [18].  

IV. BISYMMETRIC AND PER SYMMETRIC MATRIXES 
A. Bisymmetric Matrix 
In mathematics, a bisymmetric matrix is a square matrix 

that is symmetric about both of its main diagonals. More 
precisely, an n×n matrix M is bisymmetric if and only if it 
satisfies tMM =  and M×S = S×M, where S is the n×n 
exchange matrix. 

 

,

1

1
1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
N

S  (6) 

 

B. Persymmetric Matrix 
In mathematics, persymmetric matrix may refer to a square 

matrix which is symmetric in the northeast-to-southwest 
diagonal or a square matrix such that the values on each line 
perpendicular to the main diagonal are the same for a given 
line. If B is persymmetric matrix  

 
SBSB =t  (7) 

 
where, S is the exchange matrix. 

V.  ALGEBRAIC RICCATI MATRIX EQUATION  
The matrix equation  

 
0,CDXXAXBX =−−+  (8) 

 

is called algebraic riccati matrix equation. Where DC,B,A, , 
with appropriate dimensions, are known matrices and X  
should be determined. Solutions of the algebraic riccati matrix 
equation (8) are important in many applications. Potter (1966) 
who has solved a special case of the equation, but the closed 
form of the problem has not been solved [19]. Additional 
particular solutions are obtained by the decomposition of C 
into a sum of three matrices. Unfortunately, there is no 
procedure for determining every permissible decomposition of 
C. This solution of riccati equation by decomposition of C is 
as the following: 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=++
=−

=

=

C.PNM
P,DX

N,XA

M,XBX

(9) 

VI. DECOMPOSITION OF SPECIALLY STRUCTURED MATRIX  
Consider the following blocked matrix: 

 

,⎥⎦
⎤

⎢⎣
⎡

=
DC
BA

L  (10) 
 

 
where A,D∈Rn×n. It is desired to find a similarity 
transformation form of L. we use matrix U as 
  

,⎥⎦
⎤

⎢⎣
⎡

=
IX
0I

U  (11) 
 

 
It is obvious that 
 

,1
⎥⎦
⎤

⎢⎣
⎡
−

=−

IX
0I

U  (12) 
 

 
Eigenvalues of L can be determined as 
 

,iiv vL λ=  (13) 
 

 
Similarity transformation of L can be written as  
 

,UU 1 LK −=  (14) 
 

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡
−

=
IX
0I

DC
BA

IX
0I

K  (15) 
 

 
expanding and then simplification of (15) yields   
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⎥⎦
⎤

⎢⎣
⎡

−++−−
+

=
XBDCDXXAXBX

BBXA
K  

 

(16) 
 

If the algebraic riccati equation, 
0CDXXAXBX =++−− , can be solved, then we can 

decompose (10) as 
 

⎥⎦
⎤

⎢⎣
⎡

−
+

XBD0
BBXA

 (17) 
 

 
So the eigenvalues of L can be found; 
 

).()()( XBDBXAL −∪+= eigeigeig  (18) 
 

VII. DECOMPOSITION OF BISYMMETRIC MATRICES   
Consider bisymmetric matrix L  

 

,
AB
BA

L ⎥⎦
⎤

⎢⎣
⎡

= T  (19) 
 

 
L is bisymmetric matrix so it is required to have 

 

.

,

SAAS

BSBS T

=

=
 (20) 

 
 

Similarity transformation of L can be written  
 

⎥⎦
⎤

⎢⎣
⎡

−++−−
+

=
XBABAXXAXBX

BBXA
L T  (21) 

 

 
If the matrix equation 0BAXXAXBX =++−− T  can be 

solved, we can write decomposed form of L. For this 
case SX = , satisfies in the algebraic riccati matrix equation 
Eq. (21) so: 
 

).()()( SBABSAL −∪+= eigeigeig  (22) 
 

VIII.   EXAMPLES 
Example 1 (Numerical): Consider the following sub-

matrices: 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
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⎣

⎡
=

−
−−

−
=

987
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369

,
1532

361
214

BA ,  ⎥⎦
⎤

⎢⎣
⎡

=
SASB

BA
M t  

 
In this example A is symmetric and B is persymmetric so 

we can calculate the eigenvalues of M using present method 
by eigenvalues of the following sub-matrices:     
 

).()()( BSABSAM −∪+= eigeigeig  
eig(A+BS)=[ 0.6833, 9.1077, 30.2089], 

eig(A-BS)=[ -13.6225, 7.3721, 16.2504]. 
 

So the eigenvalues of matrix M: 
 

eig(M)=[ -13.6225, 0.6833, 7.3721, 9.1077, 16.2504, 
30.2089]. 

 
Example 2 (graph theory): 
Consider the graph (G) as; 

 

 
Fig. 1 Graph (G). 

 
Adjacency matrix of graph (G) M and its sub-matrices A, B 

can be formed as:  
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M t  

 
Directly calculation of the eigenvalues of M yields:  

 
eig(M)= (-1.7912, -1.6180, -1.0000, 0.6180, 1.0000, 2.7912) 
 

Now we can decompose M to (A+BS) and (A-BS) so 
eigenvalues of M: 
 

),()()( BSABSAM −∪+= eigeigeig  
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eig(A+BS)=(-1.7912, 1.0000, 2.7912), 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

504

 

 

,
110

100
001

100
001
011

010
101
010

1

1

1

000
100
110

010
101
010

=BS-A

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=−

=−

 

 
eig(A-BS)=(-1.61803, -1.0000, 0.61803). 

 
 Finally eigenvalues of M can be formed as: 

 
),()()( BSABSAM −∪+= eigeigeig  

eig(M)= (-1.7912, -1.6180, -1.0000, 0.6180, 1.0000, 2.7912). 
 

According the above calculation, we can decompose the 
graph G to sub-graph G1 and G2 in the following form: 
 

 
)()( 21 GGG ∪=  

Fig. 2 Graph (G) and its decomposition and healed form. 
 

Example 3 (structural mechanics): 
Consider the truss models G1, G2, G3, G4 and their 

adjacency and Laplacian matrices of the truss model as: 
 

1 2 3 4

6 7 8 9
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Fig. 3 Graph model of truss G1. 
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Fig. 4 Graph model of truss G2.  
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Fig. 5 Graph model of truss G3. 
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Fig. 6 Graph model of truss G4. 
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In all of these examples adjacency and Laplacian matrices 

are persymmetric and sub-matrices hold in the defined 
conditions so we can decompose to smaller sub-matrices for 
easy and fast computing of their eigenvalues.  

IX. CONCLUDING REMARKS 
In this paper, a simple method by using the algebraic riccati 

matrix equation is presented for calculating the eigenvalues of 
adjacency and Laplacian matrices of bisymmetric and 
persymmetric matrices of structural and graph theory models. 
Examples studied here show that the results obtained by the 
present method are exact solution method for the problem. 
The calculated eigenvalues are exact values, and can 
efficiently be used for solution of the models whose structural 
matrices are or can be transformed into the presented form. 
The present method can be used in combinatorial optimization 
problems such as the ordering and partitioning of structural 
models.  
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