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Abstract—Several studies have been carried out, using various 
techniques, including neural networks, to discriminate vigilance 
states in humans from electroencephalographic (EEG) signals, but 
we are still far from results satisfactorily useable results. The work 
presented in this paper aims at improving this status with regards to 
2 aspects. Firstly, we introduce an original procedure made of the 
association of two neural networks, a self organizing map (SOM) 
and a learning vector quantization (LVQ), that allows to 
automatically detect artefacted states and to separate the different 
levels of vigilance which is a major breakthrough in the field of 
vigilance. Lastly and more importantly, our study has been oriented 
toward real-worked situation and the resulting model can be easily 
implemented as a wearable device. It benefits from restricted 
computational and memory requirements and data access is very 
limited in time. Furthermore, some ongoing works demonstrate that 
this work should shortly results in the design and conception of a 
non invasive electronic wearable device. 

Keywords—Electroencephalogram interpretation, artificial 
neural networks, vigilance states, hardware implementation 

I. INTRODUCTION

pontaneous electrical brain activities, partly represented 
by electroencephalographical (EEG) signals, are dynamic, 

stochastic, non-linear and non-stationary. The EEG 
recordings depend on the location of the electrodes, their 
impedance and the state of vigilance. The awakening-sleep 
transition is characterized by abrupt changes in frequencies, 
amplitudes and topographic distributions of the EEG signal. 
These changes vary substantially from one healthy subject to 
another. 

The aim of the study is to obtain an algorithm of vigilance 
detection from a minimal number of EEG electrodes, easy to 
implement on programmable devices, to be used in 
ambulatory and real everyday life conditions, including 
artefacts.

This study was divided into two stages. The first stage 
consisted in drawing the cartography of the states of the 
awakening-sleep transition by using the topological 
properties of self-organizing maps (SOM). This connectionist 
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unsupervised approach will be summarized in this paper and 
is more precisely described in [1]. The second stage of our 
study is the main topic of the present paper. From the 
unsupervised classification obtained above, a connectionist 
supervised classification algorithm, the learning vector 
quantization (LVQ), is used for two different tasks. Firstly, 
the artefacted states are detected and removed. Secondly, the 
states deprived of artefacts are then classified in order to 
decide for the state of vigilance. 

II. MATERIALS AND METHODS

A. Subjects 

This study was concerned with a control group of five 
healthy male medical students, aged 18 to  23. The 
recruitment was made by direct contact and voluntary 
membership. Each subject had three 24-hour recordings 
fortnightly with an interval of 15 days. For each recording, 
the subject fills in a questionnaire clarifying his sleeping 
hours, his night and possibly his diurnal awakening. He 
hourly estimates his level of vigilance during the  periods of 
awakening according to a visual analogical scale ranging 
from 0 (sleepy) to 10 (wide awakening). 

B. Recordings

The equipment in use is an ambulatory long-duration 
recording system with 8 channels, OXFORD MEDILOG 
9000 model. The analogical recording is made on a magnetic 
tape. The analogical recordings are digitized and visualized 
by a second reading system. 

Each recording contains two EOG channels, an EMG 
channel of the chin and five EEG channels. For the EOG, the 
active electrodes are placed at the level of the external 
canthus (on the right and on the left) with the reference at the 
level of the contralateral mastoid. The EMG is recorded by a 
bipolar diversion connected to two 2 cm distant electrodes 
placed on the cowlick and the chin. The EEG is recorded by 
bipolar diversions (F3-F4; C3-P3; C3-01; C4-P4 and P4-O2). 

The sampling frequency of all the registered signals is 128 
Hz. Four noisy recordings are eliminated. A 24-hour 
recording, for every subject, is selected (five 24 hour 
recordings are used in our application). 

C. Qualification of the states of vigilance by the expert 

Questionnaires filled by the subjects and recorded signals 
are exploited by an expert in EEG and polysomnography 
interpretation, to label the different vigilance levels. His 
analysis on the zones of awakening-drowsiness transition 
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enabled to distinguish five levels of vigilance: wide 
awakening (Wa), calm awakening with wide open eyes 
(Cawoe), calm awakening with closed eyes (Cace),
drowsiness (Drow) and stage 1 of the sleep (Stg1).

To take into account artefacted parts and to ensure the 
continuity of the visual analysis, the expert had to define 
three other states: artefacted calm awakening with wide open 
eyes (Art-Cawoe), artefacted calm awakening with closed 
eyes (Art-Cace) and artefacts due to movements (Mv).

The visual analysis relies on all the recorded signals and 
especially the EEG which is one of the most sensitive 
indicators in the changes that occur in the wide awakening-
drowsiness cycle [1].  

D. Pre-processing 

In our approach, we wish to lay emphasis on a realistic 
design, including hardware implementation as discussed 
below. In order to allow for a portable, easy-to-wear system, 
we have tried to find a compromise between as few 
electrodes as possible and acceptable performances, which is 
an important drawback with regard to existing approaches. 
More precisely, we have opted for only a right parieto-
occipital EEG derivation (P4-O2). The choice of the 
derivation P4-O2 helps to avoid the ocular frontal derivation 
artefacts and allows to get an alpha activity of a posterior 
topology, a characteristic of the calm awakening with closed 
eyes.

The spectral pre-processing applied on this derivation (P4-
O2) consists of a Short Term Fast Fourier transformation 
STFFT with 4-second portions and a 512-point Hamming 
window ponderation type. For this purpose, 23 bands of 1 
Hz, normalized from 1 to 23Hz, are used : 

Hz231i,100
PST

Hz)1)(iPS(i
PPSi tofrom

to

PSSi = Percentage of the power spectrum of the 
corresponding i band. 

PST = Total power Spectrum. 
PSi = Power Spectrum of the corresponding i band. 
After this treatment and the choice of a signal band coding, 

connectionist treatments are applied, as described below.

III. CONNECTIONIST APPROACH

In this work, two kinds of connectionist model have been 
used for the separation and the classification of the vigilance 
states:

The automatic extraction of categories has been 
performed using a self-organizing models with 
unsupervised training. 

From the categories extracted above, discrimination of 
artefacted states and classification of non-artefacted 
states can be obtained by LVQ with supervised training. 

A. Self-organizing map: SOM 

The SOM principle models the mechanism of the spatial 
self-organization of perceptions operated by the cortex in the 
form of a topographic classification process (Figure 1). 
According to this process, the input data, that can be 

represented in the general case in the form of vectors with N 
dimensions, are converted into classes which self-organize 
according to a two-dimensional structure of neurons on 
which neighborhood relations are preset. The process of 
SOM topographic classification thus combines a stage of 
classification with one of data projection. In this 
connectionist model, two layers of neurons are used: the first 
encodes the inputs and the second computes the outputs 
(classes). The two layers are entirely connected. The SOM 
training algorithm model is detailed in [2,3]. It is competitive 
and unsupervised. For each input example, it includes mainly 
two stages: 

- Propagation of activity and selection of the most 
activated (winning) neuron. 

- Updating the winning neuron's profile and those of 
the neurons belonging to its neighborhood. 

These stages of neuronal selection and specialisation are 
the basis for self-organization in the map. In our study, we 
have exploited the capacity of the SOM to separate, in an 
unsupervised way, states already quantified by the expert to 
better analyze the distribution of these states on the output 
space and the associations which can emerge between them.  
The maps were initialized, taught and evaluated using the 
routines in the SOM_PAK program package [4]. 

B. Learning Vector Quantization: LVQ 

The unsupervised Kohonen maps constitute an effective 
tool for the pre-processing toward the separation of the input 
vectors and their redistribution in various classes. Indeed, the 
SOM enables us to have an idea about the statistical 
distribution of the input vectors on the output layer. After 
training, a neuron in this layer can be activated by input 
vectors corresponding to various classes, which is a problem 
in decision making and neuron labelling process. To 
overcome this limitation, a second training phase -supervised 
this time- is applied. This phase allows a readjustment of the 
distribution probability and of the labels attributed to neurons 
in the output map, in such a way that only one class is 
attributed to each neuron.

The supervised-training algorithm suggested by Kohonen 
is known as the Learning Vector Quantization (LVQ) [2]. 
The architecture of the LVQ is similar to that of the Kohonen 
map, without lateral connections on the neurons of the 
second layer (Figure 1). With its various alternatives, this 
algorithm improves the separation in classes from the 
solution suggested by the unsupervised training. For a given 
input, the method consists in bringing closer the most 
activated neuron if it is in the right class (supervised 
training), and to push it back in the opposite case. The other 
neurons (i.e. losers) remain unchanged. Each neuron thus 
becomes class-representative.  
The maps were initialized, taught and evaluated using the 
routines in the LVQ_PAK program package [5]. 

IV. RESULTS AND DISCUSSIONS

The results presented below and related to the application 
of the neuronal tools on portions of EEG signal recorded in 
the various subjects, are described and analyzed in order to 
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obtain the best approach to quantify the various states of 
vigilance. 

A. Analysis of transition zones by Kohonen maps 

Hata!
For each subject, we have built and trained a SOM with an 

output layer corresponding to a matrix of 5x5 neurons. 
After the unsupervised training phase, an analysis of the 

map's spatial distribution was carried out. The study was 
related to the SOM ability to produce a pertinent distribution 
of the predefined vigilance levels on the output neurons. In 
case a neuron is activated by only one state, it is said to be 
specific to this state. If several states take part in the same 
neuron activation, they are presented by decreasing order of 
frequency and the analysis is done according to the 
occurrence, in the same neuron, of pairs and even triplets of 
states which are generally close states on a scale of vigilance 
states.

B. Automatic classification by Learning Vector 

Quantization  

Taking into account the results summarized above and 
detailed in [5], we propose to add a supervised stage to 
remove the ambiguous cases, when two (or more) different 
states activate the same neuron. This should thus improve the 
specificity of each neuron. At this stage, supervision is 
brought by the expert, who associates a unique vigilance state 
to each neuron.
For that aim, we used a Learning Vector Quantization 

network because of its supervised competitive nature. This 
approach was applied in two different contexts: on the one 
hand within the framework of the detection of the artefacted 
states and, on the other hand, within the framework of the 
classification of two states of vigilance: Awakening and 
Sleep (deprived of artefacts). 

1) Recognition of the artefacts 

The network architecture includes 23 units in the input 
layer which represent the 23 spectral bands, and 25 units in 
the output layer.  Concerning the supervised corpus, for each 
subject, we gathered on the one hand, the three artefacted 
states (Art-Cace, Art-Cawoe and Mv) and, on the other hand, 
all the other states that are not artefacted (Wa, Cace, Cawoe, 
Drow, Stg1).  Thus, we have only 2 groups of vigilance 
states: artefacted states (Art-State) and non-artefacted states 
(NArt-state).  To evaluate the LVQ performances in each 
subject we used two normalized and balanced corpora, one 
for the training and the other for the test. 

After this treatment, only non artefacted data will be 
processed for classification. Accordingly, only the rates for 
that case are interesting here. With that restriction, we obtain 
rates close to or over 70 %, which is acceptable for further 
processing even if, as mentioned below, supplementary 
efforts have to be done in that difficult domain of artefact 
elimination. 

TABLE 2
LVQ INTRA AND INTER SUBJECT PERFORMANCES FOR SUBJECTS 1, 2, 3 AND 4 (TASK: AWAKENING AND SLEEP NON-

ARTEFACTED STATES RECOGNITION)

Training corpus Test corpus 

LSR* (%) 
TSR** for 

subject1 (%) 
TSR** for 

subject2 (%) 
TSR** for 

subject3 (%) 
TSR** for 

subject4 (%) 

Awakening 96.43 100 62.03 3.45 29.17 

Sleep 91.84 100 80.95 100 100 Subject1

Total 94.29 100 70.42 56.25 63.83 

Awakening 91.14 96.43 42.31 13.79 12.5 

Sleep 90.48 83.67 95.65 91.43 100 Subject2

Total 90.85 90.48 76.39 56.25 55.32 

Awakening 100 37.5 34.18 64.58 

Sleep 94.29 87.1 74.6 78.26 Subject3

Total 96.88 65.45 52.11 71.28 

Awakening 60 100 57.69 91.67 

Sleep 62.07 71.43 71.74 84.78 Subject4

Total 60.94 86.67 66.67 88.3 

* : LSR : Learning Success Rate 
**: TSR : Test Success Rate 

Figure 1: From left to right, the first two layers represent the 
general architecture of the Self Organizing Map (SOM): 
Xi(i=1....23) input corresponds to the percentage of the power 
spectrum  of I band (PSSi). Wp,n(p=1.....23, n=1....25) weights from 
input to competitive layer. The other two layers indicate the 
principle of Learning Vector Quantization (LVQ) 
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2) Classification of the sleep and awakening states

We are interested here in the automatic classification by 
the LVQ of non-artefacted states related to sleep and 
awakening. This time, for each subject, a training and a test 
corpus were built gathering the two states (Cace and Cawoe), 
as well as the two states (Drow, Stg1). We thus  had only 2 
states of vigilance: Awakening and Sleep. It should be noted 
that in this approach the artefacts (Art-Cawoe, Art-Cace and 
Mv) are not taken into account. The network architecture 
includes 23 units on the input layer, which represent the 23 
spectral bands, and 25 units on the output layer (cf. 
discussion above on that point) which characterize the two 
states (sleep and awakening).

The global performance is first computed for all subjects. 
One LVQ network is learned with the training corpora of the 
five subjects and is globally tested with all the test corpora. 
This experiment yields a total success rate on the test corpus 
of 76.73% with a recognition rate of the Sleep-Wakening 
states  of 72.28% and 81.19% respectively (see table 1). 

Concerning intra and inter-subject evaluation, four 
identical LVQ networks are learned, each one with the 
training corpus of one subject (the training corpus of subject 
5 was not used because it did not have enough sleep states). 
As reported in Table 2, each network is tested four times, 
each time with the test corpus of one subject. 

Intra-subject performance can be observed for subjects 1 
and 2 and yields excellent recognition rates of the sleep and 
awakening states in the test corpus which reach respectively 
100% and 76.39% (Table 2). It was not possible to compute 
this performance for subjects 3 and 4, because not enough 
non-artefacted states were available. 

Generally speaking, good inter-subject performances are 
more difficult to obtain, particularly when too few subjects 
are considered, as it is the case here. That is the reason why, 
it is important to underline here that there is a very great 
correspondence between the states of vigilance in subjects 1 
and 2 and subjects 3 and 4.  Indeed, for the training 
parameters of subject 1, the success rate on the test corpus of 
subject 2 is 70.42%. This rates is 90.48% if the training 
parameters of subject 2 are applied on the test corpus of 
subject 1. 
The success rate on subject 4 test corpus is 71.28% if the 
training parameters of subject 3 are used. Finally, it is noticed 
that if the training parameters of subject 4 are applied to the 
test corpus of subjects 1, 2 and 3, we obtain good recognition 
rates of 86.67, 66.67 and 88.30%  respectively. 

It should be noted that when the network is mistaken, the 
classification error is made most of the time on the wakening 
state: the network recognizes it as a vector of the Sleep state 
(table 3). This can be explained by the absence of artefacts at 
the level of the sleep state, which makes their visual 
recognition and their labelling easier by the expert. 

V. CONCLUSION

Connectionist methods with supervised and unsupervised 
training were used to discriminate the EEG signals 
characterizing the vigilance states. These models enabled us 
to attain a level of performance comparable with that of the 
more recent works in the field [7]. Beyond this performance, 

we have opted of an artificial neuronal model with a minimal 
architecture (23 neurons in input layer and 4 neurons on the 
output layer). Firstly, this architecture minimizes the 
complexity and allows implementation onto material devices 
[8] towards real time hypovigilance detection in ambulatory 
conditions. Secondly, it demonstrates that information, 
pertinent enough to characterize vigilance states, can be 
extracted from EEG signal recorded from a single electrode.  
It should also be noted that the intervention of the expert was 
fundamental in our approach. Indeed, an expertise made it 
possible to differentiate 5 non-artefacted vigilance states and 
3 artefacted ones. 
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TABLE 1
LVQ GLOBAL PERFORMANCES FOR ALL SUBJECTS (TASK:

AWAKENING AND SLEEP NON-ARTEFACTED STATES RECOGNITION)
 Training corpus Test corpus 
 Awakening Sleep Awakening Sleep 

Success rate  (%) 95.36 88.17 81.19 72.28 
Total success rate (%) 92.01 76.73 


